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Abstract—This paper considers the problem of matrix-variate
logistic regression. It derives the fundamental error threshold on
estimating low-rank coefficient matrices in the logistic regression
problem by obtaining a lower bound on the minimax risk. The
bound depends explicitly on the dimension and distribution of
the covariates, the rank and energy of the coefficient matrix, and
the number of samples. The resulting bound is proportional to
the intrinsic degrees of freedom in the problem, which suggests
the sample complexity of the low-rank matrix logistic regression
problem can be lower than that for vectorized logistic regression.
The proof techniques utilized in this work also set the stage for
development of minimax lower bounds for tensor-variate logistic
regression problems.

Index Terms—logistic regression, low-rank matrix, minimax
risk, singular value decomposition.

I. INTRODUCTION

Logistic Regression (LR) is a statistical model used com-
monly in machine learning for classification problems [1].
In the simplest terms, LR seeks to model the conditional
probability that a categorical response variable yi takes on one
of two possible values, yi ∈ {0, 1}, which represents one of
two possible events taking place (such as success/failure and
detection/no detection). In regression analysis, the aim is to
accurately estimate the model class parameters through a set of
training data points {xi, yi}ni=1 , where xi is the ith covariate
sample vector. The conventional LR model is as follows:

Py|x(yi = 1|xi) =
1

1 + exp−(bTxi+z)
, (1)

where yi ∈ {0, 1} is the binary response, xi ∈ Rm is
the known covariate vector, b ∈ Rm is the deterministic
but unknown coefficient vector, and z is the intercept where
E[z] = 0.

In many practical applications, covariates naturally take
the form of two-dimensional arrays. Common examples in-
clude images, biological data such as electroencephalography
(EEG), fiber bundle imaging [2] and spatio-temporal data [3].
Classical machine learning techniques vectorize such matrix
covariates and estimate a coefficient vector. This leads to com-
putational inefficiency and the destruction of the underlying
spatial structure of the coefficient matrix, which often carries
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valuable information [4], [5]. To address these issues, one can
model the matrix LR problem as

Py|X(yi = 1|Xi) =
1

1 + exp−(⟨B,Xi⟩+z)
, (2)

where Xi ∈ Rm1×m2 is the known covariate matrix, B ∈
Rm1×m2 is the coefficient matrix, and z is the intercept. The
model in (2) preserves the matrix structure of, and the valuable
information in, the covariate data. In matrix-variate logistic
regression analysis, the goal is to find an estimate of the
coefficient B.

In this paper, we focus on the high-dimensional setting
where n ≪ m1m2 and derive a lower bound on the minimax
risk of the matrix LR problem under the assumption that
B has rank r ≪ min{m1,m2}. We note that the low-
rank assumption has been used ubiquitously in regression
analysis in former works [6], [7]. This low-rank structure
may arise from the presence of latent variables, such that
the model’s intrinsic degrees of freedom are smaller than
its extrinsic dimensionality. This allows us to represent the
data in a lower-dimensional space and potentially reduce the
sample complexity of estimating the parameters. Minimax
lower bounds are useful in understanding the fundamental
error thresholds of the problem under study, and in assessing
the performance of the existing algorithms. They also provide
beneficial insights to the parameters on which an achievable
minimax risk might depend.

Whilst a number of works in the literature derive minimax
lower bounds for higher-order linear regression problems [7],
[8], as well as vector LR problems [6], [9], [10], to the
best of our knowledge, little work has been done on this
topic in matrix-variate LR problems. Regarding the existing
literature, there are several works that study the matrix LR
problem. Many works extend the matrix LR problem of (2)
by proposing regularized matrix LR models in order to obtain
rank-optimized or sparse estimates of the coefficient matrix in
the model in (2) [5], [11]. Recently, works have introduced
regularized matrix LR models for inference on image data
[12]. Much of the literature develops efficient algorithms and
provides empirical results on their performance [5], [11], [12]
while some provide theoretical guarantees for the proposed
algorithms [11]. By contrast, Baldin and Berthet [13] model
the problem of graph regression as a matrix LR problem,
where B ∈ Rm×m. The matrix B is assumed to be block-



sparse, low-rank, and square. Under these assumptions (which
are restrictive and not the most general), the authors derive

minimax lower bounds on the estimation error
∥∥∥B̂−B

∥∥∥2
F

.
The three prior works [4], [11], [12] implement algorithms

for matrix logistic regression but do not prove sample com-
plexity bounds (upper or lower). In this paper, we derive a
minimax lower bound on the error of a low-rank LR model
which gives a bound on the number of samples necessary for
estimating B. Contrary to prior works, we impose minimal
assumptions on B, making our results generalizable to a larger
class of matrices.

Our Minimax lower bound relies on the distribution of the
covariates and the energy of the regression matrix. Following
previous works that derive minimax lower bounds in the
dictionary learning setting [14], [15], we use the standard
strategy of lower bounding the minimax risk in parametric
estimation problems by the maximum error probability in a
multiple hypothesis test problem and using Fano’s inequality
[16]. We derive a lower bound that is proportional to the
degrees of freedom in the rank-r matrix LR problem, and we
reduce the sample complexity from O(m1m2) in the vector
setting to O(r(m1+m2)). This result is intuitively pleasing as
it coincides with the number of free parameters in the model.
We also show that our methods are easily extendable to the
tensor case, i.e., B is a coefficient tensor with some known
properties.

II. MODEL AND PROBLEM FORMULATION

We use the following notation convention throughout the
paper: x, x, X and X denote scalars, vectors, matrices and
tensors, respectively. We denote Im as the m × m identity
matrix. Also, ∥x∥0, ∥x∥2 and ∥X∥F denote the ℓ0, ℓ2 and
Frobenius norms, respectively. Given a matrix X, xj is the
jth column of X. If X is a third-order tensor, then by fixing
indices in the first and second modes, the matrix X:,:,j is the
jth frontal slice of X. If a ∈ R, then ⌊a⌋ is the greatest
integer less than a. We denote A ⊗ C as the Kronecker
product of matrices A and C. We define the function vec(X)
as the column-wise vectorization of matrix X. Finally, [R] is
shorthand for {1, . . . , R}.

Consider the matrix LR model in (2), in which the Bernoulli
response yi ∈ {0, 1} is the ith response variable of n in-
dependent and identically distributed (i.i.d) observations. The
covariate matrix Xi ∈ Rm1×m2 has independent, normally
distributed, zero-mean and σ2 variance entries. The response
yi is generated according to (2) from Xi and a fixed coefficient
matrix B ∈ Rm1×m2 with ∥B∥2F upper-bounded by a constant.

We consider the case where B is a rank-r matrix. Specifi-
cally, the rank-r singular value decomposition of B is

B = B1GBT
2 , (3)

where B1 ∈ Rm1×r and B2 ∈ Rm2×r are (tall) singu-
lar vector matrices with orthonormal columns, and G =

diag(λ1, · · · , λr) ∈ Rr×r is the matrix of singular values with
λi > 0,∀i ∈ [r]. Under this low-rank structure of B, we have

Py|X(yi = 1|Xi) =
1

1 + exp−(⟨B1GBT
2 ,Xi⟩+z)

. (4)

We use Kronecker product properties [17] to express b =
vec(B) as b = (B2 ⊗B1) vec(G).

The goal in LR is to find an estimate B̂ of B using the
training data

{
Xi, yi

}n
i=1

. We assume that the true coefficient
matrix B belongs to the set

Bd(0) ≜ {B′ ∈ Pr : ρ(B′,0) < d}, (5)

the open ball of radius d with distance metric ρ = ∥·∥F , which
resides in a given the parameter space,

Pr ≜

{
B′ ∈ Rm1×m2 : rank(B′) = r, B′ = B′

1G
′B′

2,∥∥b′
1,j

∥∥
2
=
∥∥b′

2,j

∥∥
2
= 1,b′

k,j ⊥ b′
k,j′ ,∀j, j′ ∈ [r],

j ̸= j′, k ∈ {1, 2}
}

∪ {0}. (6)

Thus Bd(0) ⊂ Pr and B has energy bounded by ∥B∥2F < d2.
Our objective is to find a lower bound on the minimax

risk for estimating coefficient matrix B. We define the non-
decreasing function ϕ = ∥·∥2F ≜ R+ → R+ with ϕ(0) = 0.
The minimax risk is thus defined as the worst-case mean
squared error (MSE) for the best estimator, i.e.,

ε∗ = inf
B̂

sup
B∈Bd(0)

Ey,Xc

{∥∥∥B̂−B
∥∥∥2
F

}
, (7)

where Xc is the covariate tensor of n samples. We point out
that minimax risk in (7) is an inherent property of the LR
problem and holds for all possible estimators.

III. MINIMAX LOWER BOUND FOR LOW-RANK MATRIX
LOGISTIC REGRESSION

The minimax lower bounds in the low-rank matrix LR
setting that are based on Fano’s inequality will depend ex-
plicitly on the dimensions of the covariate matrices Xi and
their distribution, the rank, the upper bound on the energy of
the coefficient matrix B, the number of samples, n, and the
construction of the multiple hypothesis test set.

The novelty of our work is that we explicitly leverage the
rank-r structure of the coefficient matrix B, in (3), which
leads to the construction of each hypothesis that is structurally
different in our setting compared to vector LR [6], [9],
[10]. Furthermore, existing low-rank matrix packings, such
as those in Negahban and Wainwright [18] are not useful
in the LR setting of this paper, since the logistic function
in our model makes part of our analysis non-trivial and
fundamentally different to such works. In this work, we create
a set BL from three constructed sets (for B1, B2 and G),
and derive conditions under which all sets can exist. These
conditions ensure the existence of a hypothesis set, BL, with
elements that have a rank-r matrix structure and additional
essential properties noted below. We also show that our chosen



constructed hypothesis set and analysis are more suitable for
our matrix-variate model because they are easily generalizable
to the tensor setting for LR.

A. Main Result

We derive lower bounds on ε∗ using an argument based on
Fano’s Inequality [19]. To do so, we first relate the minimax
risk in (7) to a multi-way hypothesis testing problem between
an exponentially large family, with respect to the dimensions
of the matrices, of L distinct coefficient matrices with energy
upper bounded by d2, i.e., matrices residing inside the openball
Bd(0) of fixed radius:

BL = {Bl : l ∈ [L]} ⊂ Bd(0), (8)

where the correct hypothesis Bl is generated uniformly at
random from the set BL.

More specifically, suppose there exists an estimator with
worst-case MSE that matches ε∗. This estimator can be used to
solve a multiple hypothesis testing problem using a minimum
distance decoder. The minimax risk can then be lower bounded
by the probability of error in such a multiple hypothesis test.
Our main challenge is to further lower bound this probability
of error in order to derive lower bounds on the minimax risk.

We now state our main result on the minimax risk of the
low-rank matrix coefficient estimation problem in LR.

Theorem 1. Consider the rank-r matrix LR problem in (4)
with n i.i.d observations,

{
Xi, yi

}n
i=1

where the true coef-
ficient matrix ∥B∥2F < d2. Then, for covariate vec(Xi) ∼
N (0, σ2Im), the minimax risk is lower bounded by

ε∗ ≥

([
c2
(
c1r(m1 +m2 − 2) + c1(r − 1)

)
− c3

]
− 1

)
8nσ

√
2
π

,

(9)

where c1 =
(
1− 1

10

)2
, c2 = log2(e)(

√
2−1)

4
√
2

and c3 =

( 3(
√
2−1)√
8

) log2
(
3
2

)
.

We discuss the implications of (9) of Theorem 1 in Sec-
tion V

B. Roadmap for Theorem 1

For notational convenience, we define the response vector
of n samples as y = [y1, · · · , yn], and the covariate tensor of
n samples as Xc ∈ Rm1×m2×n, where the ith frontal slice,
Xc

:,:,i, is the covariate matrix Xi of the ith sample.
For our analysis, we construct a hypothesis set of L distinct

matrices, as defined in (8). However, each hypothesis Bl is
a low-rank matrix following the decomposition in (3) and is
composed of three separately constructed sets (for B1, B2, and
G). Now, consider I(y; l), the mutual information between the
observations y and random index l. The construction of the
set BL is used to provide upper and lower bounds on I(y; l),
from which we derive lower bounds on the minimax risk ε∗.

For finding a lower bound on I(y; l), we first consider
the exponentially large packing set BL, with respect to the

dimensions of B, where any two distinct hypotheses Bl and
Bl′ are separated by a minimum distance, i.e.,

∥Bl −Bl′∥2F ≥ 8δ (10)

for some positive δ. To achieve our desired bounds on the min-
imax risk, we require the existence of an estimator producing
estimate B̂ and achieving the minimax bound ε∗ <

√
δ. We

consider the minimum distance decoder

l̂(y) ≜ argmin
Bl′∈Bd(0)

∥∥∥B̂−Bl′

∥∥∥2
F
, (11)

which seeks to detect the correct coefficient matrix Bl. We
require the estimate B̂ to satisfy

∥∥∥B̂−Bl

∥∥∥2
F
<

√
2δ, for the

minimum distance decoder to detect Bl and for the probability
of detection error to be P(l̂(y) ̸= l) = 0. A detection

error might occur when
∥∥∥B̂−Bl

∥∥∥2
F

≥
√
2δ. The following

bound relates the loss
∥∥∥B̂−Bl

∥∥∥2
F

and the probability of error

P(l̂(y) ̸= l):

P(l̂(y) ̸= l) ≤ P
(∥∥∥B̂−Bl

∥∥∥2
F
≥

√
2δ
)
. (12)

Next, (12) is used to obtain a lower bound on I(y; l) using
Fano’s inequality stated below [16]:

I(y; l) ≥
(
1− P(l̂(y) ̸= l)

)
log2(L)− 1 ≜ u1. (13)

Secondly, for finding an upper bound on I(y; l), we recog-
nize that the LR model produces response variables yi that
are Bernoulli random variables conditioned on Xi. On the
basis thereof, we evaluate the mutual information, conditioned
on Xc, I(y; l|Xc). Next, define fl(y|Xc) as the conditional
probability distribution of y given Xc with coefficient matrix
Bl, and let DKL be the relative entropy, between any two
fl(y|Xc) and fl′(y|Xc), produced from two distinct Bl, Bl′ .
Due to the convexity of − log, we upper bound DKL as
follows [14], [20]:

I(y; l|Xc) ≤ 1

L2

∑
l,l′

EXcDKL(fl(y|X)||fl′(y|X)) ≜ u2.

(14)

Lastly, we remark that from [14] we have I(y; l) ≤
I(y; l|Xc), and I(y; l|Xc) is trivially lower bounded by (13).
Thus, (13) and (14) give rise to upper and lower bounds on
the conditional mutual information:

u1 ≤ I(y; l|X) ≤ u2, (15)

where u1 and u2 require evaluation, and from which we obtain
a lower bound on the minimax risk.

IV. PROOF OF MAIN RESULT

The formal proof for Theorem 1 relies on three lemmas.
Lemma 1 introduces the exponentially large, with respect
to the dimensions, set of vectors from which we will later
construct G. The set is constructed as a subset of an (r− 1)-
dimensional hypercube with a required minimum distance



between any two distinct elements in the set. Lemma 1 bounds
the probability that this minimum distance is violated.

Lemma 1. Let r > 0 and F ≥ 2. Consider the set of F
vectors

{
sf ∈ Rr−1 : f ∈ [F ]

}
, where each entry in vector sf

is an independent and identically distributed random variable

taking values
{
− 1√

r−1
,+ 1√

r−1

}
uniformly. The probability

that there exists a distinct pair (f, f ′) such that ∥sf − sf ′∥0 <
r−1
20 is upper bounded as follows:

P(∃(f, f ′) ∈ [F ]× [F ], f ̸= f ′ : ∥sf − sf ′∥0 <
r − 1

20
)

≤ exp

[
2 log(F )− log(2)− 1

2

(
1− 1

10

)2

(r − 1)

]
. (16)

The above is a direct result of a standard application of Mc-
Diarmid’s inequality [21]. Notice, however, that our technique
differs from [22] because we are imposing minimum distance
conditions in the Hamming metric, rather than conditions on
the inner product, between vectors.

Similar to the above, the following corollary introduces a
set of matrices from which we will construct B1,B2.

Corollary 1. Let m, r > 0 and P ≥ 2. Consider the set of
P matrices

{
Sp ∈ R(m−1)×r : p ∈ [P ]

}
, where each entry

in matrix Sp is an independent and identically distributed

random variable taking values
{
− 1√

(m−1)r
,+ 1√

(m−1)r

}
uniformly. The probability that there exists a distinct pair
(p, p′) such that ∥Sp − Sp′∥0 ≤ (m−1)r

20 is upper bounded
as follows:

P(∃(p, p′) ∈ [P ]× [P ], p ̸= p′ : ∥Sp − Sp′∥0 <
(m− 1)r

20
)

≤ exp

[
2 log(P )− log(2)− 1

2

(
1− 1

10

)2

(m− 1)r

]
.

(17)

From the results in Lemma 1 and Corollary 1, Lemma 2
derives conditions on L such that BL with a certain set of
properties exists, and constructs two sets of matrices: 1) m1×r
and m2×r orthonormal matrices from the set of “generating”
matrices defined in Corollary 1, and 2) r×r diagonal matrices
from the set of “generating” vectors in Lemma 1. Each element
Bl ∈ BL is constructed from the three sets defined above,
according to the decomposition in (3). Next, we prove lower
and upper bounds on the distance between any two distinct
elements in BL. The lower bound determines the minimum
packing distance between any two Bl,Bl′ , whilst the upper
bound is used to derive the results in Lemma 3.

Lemma 2. There exists a collection of L matrices BL ≜ {Bl :
l ∈ [L]} ⊂ Bd(0) for some d > 0 of cardinality

L = 2
⌊ log2(e)

4

(
(1− 1

10 )
2
(r(m1+m2−1)+(1− 1

10 )
2
(r−1)

)
− 3

2 log2( 3
2 )⌋

(18)

such that for any√
8(r − 1)

r
< ε ≤ d

√
r − 1

r
, (19)

we have

rε2

r − 1
< ∥Bl −Bl′∥2F ≤ 4

rε2

r − 1
. (20)

Lemma 3 derives an upper bound on I(y; l|Xc).

Lemma 3. Consider the matrix LR problem given by the
model in (2) such that B ∈ Bd(0), for some d > 0,
and consider the set BL defined in Lemma 2. Consider n
i.i.d observations yi following a Bernoulli distribution when
conditioned on Xi ∼ N (0, σ2I), then we have,

I(y; l|X) ≤ n
2

r

√
2

π
σε. (21)

The final lemma bounds the error probability P(l̂(y) ̸= l)
under the conditions, mentioned in Section III-B, on ε∗

and
∥∥∥B̂−Bl

∥∥∥2
F

for the recovery of hypothesis Bl by the
minimum distance decoder. The proof follows exactly that for
Lemma 8 in [14].

Lemma 4. Consider the minimum distance decoder in (11),
for the L matrices constructed in Lemma 2. Consider the LR
regression model in (2) with minimax risk ε∗, which is assumed
to be upper bounded by ε∗ ≤

√
δ. The minimum distance

decoder recovers the correct hypothesis if
∥∥∥B̂−Bl

∥∥∥2
F
<

√
2δ.

The detection error of the minimum distance decoder is upper
bounded by P(l̂(y) ̸= l) ≤ 1√

2
.

Proof of Theorem 1: Fix r, let ε > 0 satisfy (19), and
define ε2 ≜ 8δ(r−1)

r . Suppose there exists an estimator B̂

which guarantees a risk ε∗ ≤
√
δ =

√
r

8(r−1)ε. By Lemma 2,
there exists a packing set BL containing L distinct rank-r
matrices, where L satisfies (18) and for any pair Bl,Bl′ ∈
BL, the distance ∥Bl −Bl′∥2F satisfies (10). By Lemma 3, the
conditional mutual information I(y; l|Xc) is upper bounded
by (21), and P(l̂(y) − Bl) is upper bounded by Lemma 4.
Replacing (21) and (13) in (15), we have:

√
2− 1√
2

log2 L− 1 ≤ I(y; l|X) ≤ nσ
2

r

√
2

π
ε. (22)

Lastly, if we set ε∗ =
√

r
8(r−1)ε, then we achieve the result

in (9).

V. DISCUSSION AND CONCLUSION

In this paper we provided a minimax lower bound on the
low-rank matrix-variate LR problem in the high-dimensional
setting. We constructed a packing set of low-rank structured
matrices with finite energy. Using the construction, we derived
bounds on the conditional mutual information defined in our
problem, in order to obtain a lower bound on the minimax
risk. Compared to the vector case, such as in [6], the result
in Theorem 1 shows a decrease in the lower bound from



O(m1m2) to O(r(m1 + m2)). The result also shows that
the lower bound on the minimax risk is proportional to the
intrinsic degrees of freedom in the coefficient matrix LR,
(i.e., r(m1 +m2 + 1)), and decreases with increasing sample
size n. This suggests that we can develop algorithms that
take advantage of the low-rank structure of the coefficient
matrices. Moreover, the result in (9) can be generalized from
low-rank matrices to low-rank tensors. Imposing a rank-r
decomposition on a coefficient tensor, B, holds the same
conveniences as those discussed above of low-rank matrices.
This low-rank structure on B is a special case of the well-
known Canonical Polyadic Decomposition or Parallel Factors
(CANDECOMP/PARAFAC, or CP) [17], formally defined as,

B :=

r∑
h=1

λhb
(h)
1 ◦ · · · ◦ b(h)

K , (23)

where b
(h)
k ∈ Rmk is a column vector along the kth mode

of B, ◦ is the outer product, and λhb
(h)
1 ◦ · · · ◦ b

(h)
K , for

any rank h, is a rank-1 tensor weighted by λh. The rank-
r CP-decomposition expresses tensors as a sum of r rank-1
tensors. Equivalent to (23) is the following expression of a
CP-structured tensor:

B = G×1 B1 ×2 · · · ×K BK , (24)

where the tensor G ∈ R

K-times︷ ︸︸ ︷
r × · · · × r is simply a higher-order

analogue of the diagonal matrix G in (3) (where only the
elements along the super-diagonal of G are non-zero), and
the mode-k factor matrices Bk ∈ Rmk×r, ∀k ∈ [K] are rank-
r matrices with orthonormal columns. Thus, the setup and
construction proposed in this paper can be extended to the
tensor case, where B is simply a special case of B, with K =
2 factor matrices.

VI. APPENDIX

Proof of Lemma 1: Consider the set of F vectors {sf ∈
Rr−1 : f ∈ [F ]}, in (1). For indices f, f ′ ∈ [F ], f ̸= f ′,
define the vector s̃ ≜ sf ⊙ sf ′ as the point-wise product of sl
and sl′ , and s̃i as the ith entry of s̃, for i ∈ [r − 1]. Define
also the function

h(s̃) ≜ (r − 1)

r−1∑
i=1

s̃i. (25)

We use s̃ ≈ s̃′ to say that s̃i = s̃′i for all entries i ∈ [r − 1],
except one.

We require a minimum packing distance

∥sf − sf ′∥0 =
1

2

[
(r − 1)− (r − 1)

r−1∑
i=1

s̃i

]
>

r − 1

20
. (26)

The probability that the requirement in (26) is not satisfied is
defined as

P

(
(r − 1)

r∑
i=1

s̃i ≥ (r − 1)(1− 1

10
)

)
. (27)

The function h(·) satisfies

sup
s̃≈s̃′

|h(s̃)− h(s̃′)| = |(r − 1)
1

r − 1
+ (r − 1)

1

r − 1
| = 2.

(28)

According to McDiarmid’s inequality in [21], for (r−1)(9)
10 > 0,

and since Es̃[h(s̃)] = 0, we have,

P
(
(r − 1)

r−1∑
i=1

s̃i ≥ (r − 1)
9

10

)

≤ exp

[
−1

2

(
1− 1

10

)2

(r − 1)

]
. (29)

The probability in (29) is for any two distinct pairs (f, f ′) ∈
[F ] × [F ]. We take a union bound over all

(
L
2

)
distinct pairs

and upper bound the probability as:

P(∃(f, f ′) ∈ [F ]× [F ], f ̸= f ′ : (r − 1)

r−1∑
i=1

s̃i ≥
(r − 1)9

10
)

≤ F 2

2
exp

[
−1

2

(
1− 1

10

)2

(r − 1)

]

= exp

[
2 log(F )− log(2)− 1

2

(
1− 1

10

)2

(r − 1)

]
. (30)

Proof of Lemma 2: Fix the following arbitrary
real orthogonal bases: Q of Rr, the set of distinct r
bases,

{
U1,j

}r
j=1

of Rm1 , and the set of distinct r bases,{
U2,j

}r
j=1

of Rm2 .
Next, consider the following hypercubes or subsets thereof:

1) The set of F vectors {sf} from Lemma 1:

sf ∈
{

−1√
r − 1

,
+1√
r − 1

}
⊂ Rr−1, (31)

2) Two sets of P1 and P2 matrices, from Corollary 1:

Sp1
∈
{

−1√
(m1 − 1)r

,
+1√

(m1 − 1)r

}
⊂ R(m1−1)×r, (32)

and

Sp2 ∈
{

−1√
(m2 − 1)r

,
+1√

(m2 − 1)r

}
⊂ R(m2−1)×r, (33)

respectively.
From Lemma 1 we have the following bounds on the

probability that the minimum distance condition is violated
for the set (31):

P
(
∃(f, f ′) ∈ [F ]× [F ], f ̸= f ′ : ∥sf − sf ′∥0 <

r − 1

20

)
≤ exp

[
log(

F 2

2
)− (r − 1)

2

(
1− 2

20

)2
]
.

(34)



Likewise, from Corollary 1, we have the following bounds
on the probability that the minimum distance conditions are
violated for the sets (32) and (33), respectively:

P
(
∃(p1, p′1) ∈ [P1]× [P1], p1 ̸= p′1 :

∥∥Sp1
− Sp′

1

∥∥
0

<
(m1 − 1)r

20

)
≤ exp

[
log
(P1

2

2

)
− (m1 − 1)r

2

(
1− 2

20

)2
]
, (35)

and

P
(
∃(p2, p′2) ∈ [P2]× [P2], p2 ̸= p′2 :

∥∥Sp2
− Sp′

2

∥∥
0

<
(m2 − 1)r

20

)
≤ exp

[
log
(P2

2

2

)
− (m2 − 1)r

2

(
1− 2

20

)2
]
. (36)

We require the set of coefficient matrices BL from the sets
in (31), (32) and (33) to exist simultaneously. Hence, using a
union bound on (34), (35) and (35), we can choose parameters
to guarantee the existence of a construction. This is satisfied
if the following conditions on the cardinalities F , P1 and P2

hold:

0 < F <
log2(e)

4

(
1− 1

10

)2

(r − 1)− 1

2
log2(

3

2
), (37)

0 < P1 < 2
log2(e)

4 (1− 1
10 )

2
(m1−1)r− 1

2 log2(
3
2 ), (38)

and

0 < P2 < 2
log2(e)

4 (1− 1
10 )

2
(m2−1)r− 1

2 log2(
3
2 ). (39)

Note that (37), (38) and (39) are sufficient conditions for the
simultaneous existence of sets in (31), (32) and (33), such that
the minimum distance condition between any two elements in
each set is satisfied.

We proceed with the following steps in order to construct the
final set BL of coefficient matrices. Without loss of generality,
we assume that the energy of any Bl is upper bounded by d2.
We will construct diagonal matrices Gf , and matrices with
orthonormal columns, namely B1,p1 and B1,p2 , all of which
will be used to construct each Bl ∈ BL. In other words, due
to our LR model, any matrix Bl will have a rank-r singular
value decomposition. Thus, a bound on the matrix norm of Bl

gives a bound on the norm of the matrix of singular values.
Firstly, we construct vectors g

(1)
f ∈ Rr for f ∈ [F ], using

Q and sf , as follows:

g
(1)
f = Q

[√
1

r−1

sf

]
,∀f ∈ [F ]. (40)

From (40), since ∥sf∥2 = 1 we have:∥∥∥g(1)
f

∥∥∥2
2
=

∥∥∥∥∥Q
[√

1
r−1

sf

]∥∥∥∥∥
2

2

=
r

r − 1
.

Similarly, we construct matrices B(1)
1,p1

∈ Rm1×r, for p1 ∈ [P1]

and B
(1)
2,p2

∈ Rm2×r, for p2 ∈ [P2], respectively. Define b
(1)
1,p1,j

as the jth column of B(1)
1,p1

, and b
(2)
1,p1,j

as the jth column of
B

(1)
2,p2

. Let the columns be constructed as follows:

b
(1)
1,p1,j

= U1,j

[
1

sp1,j

]
,∀p1 ∈ [P1], (41)

and

b
(1)
2,p2,j

= U2,j

[
1

sp2,j

]
,∀p2 ∈ [P2]. (42)

From (41) and (42), we have:∥∥∥b(1)
1,p1,j

∥∥∥2
2
=
∥∥∥b(1)

2,p2,j

∥∥∥2
2
=

∥∥∥∥[ 1
sp1,j

]∥∥∥∥2
2

=
r + 1

r
.

Secondly, we construct an r-sparse vector g
(2)
f ∈ Rr2 ,

element-wise, from g
(1)
f . Define g

(2)
f,i as the ith element of

g
(2)
f , where i ∈ [r2] and use the following construction:

g
(2)
f,i =

{
|g(1)f,i | i = i′ + r(i′ − 1), i′ = {1, . . . , r}
0 otherwise

, (43)

and we note that∥∥∥g(2)
f

∥∥∥2
2
=
∥∥∥g(1)

f

∥∥∥2
2
=

r

r − 1
. (44)

We also construct matrices B
(2)
1,p1

∈ Rm1×r, for p1 ∈ [P1]

and B
(2)
2,p2

∈ Rm2×r, for p2 ∈ [P2]. We show the construction
of B

(2)
1,p1

only: the construction of B
(2)
2,p2

follows the same
procedure. Define b

(2)
1,p1,j

∈ Rm1 as the jth column of B(2)
1,p1

,
for j ∈ [r]. We set

b
(2)
1,p1,1

=
b
(1)
1,p1,1∥∥∥b(1)
1,p1,1

∥∥∥
2

, (45)

and define

aj+1 ≜b
(1)
1,p1,j+1 −

j∑
j′=1

⟨b(1)
1,p1,j+1,b

(2)
1,p1,j′

⟩b(2)
1,p1,j′

, (46)

and

b
(2)
1,p1,j+1 ≜

aj+1

∥aj+1∥2
, (47)

for j ∈ [r − 1].
The steps in (45), (46) and (47) constitute the well-known

Gram-Schmidt Process. Thus, set of vectors b
(2)
1,p1,j

, for j ∈

[r − 1], p1 ∈ [P1] are orthonormal, i.e,
∥∥∥b(2)

1,p1,j

∥∥∥2
2

= 1

and b
(2)
1,p1,j

⊥ b
(2)
1,p1,j′

, for any two distinct j, j′ ∈ [r].

Consequently,
(
B

(2)
2,p2

)T (
B

(2)
2,p2

)
= Ir.

Finally, we define the vector gf and matrices B1,p1 and
B1,p2

as:

gf =
ε

r
g
(2)
f ,∀f ∈ [F ], (48)



and

B1,p1
= B

(2)
1,p1

, B1,p2
= B

(2)
2,p2

, (49)

respectively, for some positive number ε.
We also define the diagonal matrix Gf ∈ Rr×r, where

vec(Gf ) = gf .
Now, by designating

L ≜ {(f, p1, p2) : f ∈ [F ], p1 ∈ [P1], p2 ∈ [P2]} , (50)

as the set of possible tuples (f, p1, p2), we have

L = |L|
(a)
< 2

[
log2(e)

4 (c1(r(m1+m2−2)+(r−1)))−( 3
2 ) log2( 3

2 )
]
,

(51)

where (a) follows from (37), (38) and (39). We define the set
of coefficient matrices, BL as,

BL ≜

{
Bl = BT

1,p1
GfB1,p2

, l ∈ [L], f ∈ [F ], (52)

p1 ∈ [P1], p2 ∈ [P2]

}
, (53)

and we restrict ε such that√
8(r − 1)

r
< ε < d

√
r − 1

r
, (54)

in order to guarantee ∥G∥22 < d2

r2 . We make the final note that,
due to the Kronecker product, we can express vec(Bl) as:

vec(Bl) = (B1,p1
⊗B1,p2

)gf . (55)

We have the following remaining tasks at hand: 1) We must
show that they energy of any Bl is less than d2. 2) We must
derive upper and lower bounds on the distance between any
two distinct Bl,Bl′ ∈ BL

(
∥Bl −Bl′∥2F

)
.

We begin by showing ∥Bl∥2F < d2:

∥Bl∥2F = ∥(B1,p2
⊗B1,p1

)gf∥22
≤ ∥B1,p2

⊗B1,p1
∥2F ∥gf∥22

(b)
= ∥B1,p1∥

2
F ∥B1,p2∥

2
F ∥gf∥22 =

rε2

r − 1

(c)
< d2,

where (b) follows from the fact that the matrix norm of the
Kronecker product is the product of the matrix norms, and (c)
holds due to (54).

We proceed with deriving lower and upper bounds on
∥Bl −Bl′∥2F , for any two distinct Bl,Bl′ ∈ BL. For finding
lower bounds on ∥Bl −Bl′∥2F , it can be shown that the closest
pair Bl,Bl′ occurs for p1 = p′1, p2 = p′2 and f ̸= f ′. Thus
we have the following:

∥Bl −Bl′∥2F =
∥∥(B1,p2

⊗B1,p1
)gf −

(
B1,p′

2
⊗B1,p′

1

)
gf ′
∥∥2
2

≥ ∥(B1,p2
⊗B1,p1

) (gf − gf ′)∥22
(d)
=

ε2

r2

∥∥∥g(2)
f − g

(2)
f ′

∥∥∥2
2

>
rε2

r − 1

4

20

where (d) follows from the fact that the Kronecker product of
orthogonal bases is an orthogonal basis.

Finally, for finding upper bounds on ∥Bl −Bl′∥2F , we have:

∥Bl −Bl′∥2F
(e)

≤
[
∥(B1,p2

⊗B1,p1
)gf∥F +

∥∥(B1,p′
2
⊗B1,p′

1

)
gf ′
∥∥
F

]2
≤
[
∥B1,p2

⊗B1,p1
∥F ∥gf∥2 +

∥∥B1,p′
2
⊗B1,p′

1

∥∥
F
∥gf ′∥2

]2
=
[
2 ∥B1,p1

∥F ∥B1,p2
∥F ∥gf∥2

]2
(56)

≤ 4
rε2

r − 1
(57)

where (e) follows from the triangle inequality.
Proof of Lemma 3: Consider the set BL defined in

Lemma 2, where the bounds in (56) and (57) hold. Consider
the matrix LR model in (2). For n i.i.d samples, consider
covariate matrices Xi ∈ Rm1×m2 ,∀i ∈ [n], where vec(Xi) ∼
N (0, σ2Im1m2). According to (2), observations yi follow a
Bernoulli distribution when conditioned on Xi, ∀i ∈ [n].
Consider y and Xc defined in Section II, and define I(y; l|Xc)
as the mutual information between observations y and index l
conditioned on side-information Xc. From [20], [23], we have

I(y; l|Xc) ≤ 1

L2

∑
l,l′

EXcDKL(fl(y|Xc)||fl′(y|Xc), (58)

where DKL(fl(y|Xc)||fl′(y|Xc) is the Kullback-Leibler
(KL) divergence of probability distribution fl(y|Xc) of y
given Xc for some Bl ∈ BL. Denote σl ≜ 1

1+exp−⟨Bl,Xi⟩ ,
and σl′ ≜ 1

1+exp−⟨B
l′ ,Xi⟩

, We evaluate the KL divergence as
follows:

DKL(fl(y|Xc)||fl′(y|Xc))

=
∑
i∈[n]

σl log

(
σl

σl′

)
+ (1− σl) log

(
1− σl

1− σl′

)
.

=
∑
i∈[n]

σl⟨Bl,Xi⟩ − σl⟨Bl′ ,Xi⟩ − ⟨Bl,Xi⟩+ ⟨Bl′ ,Xi⟩

+ log(1 + exp−⟨Bl,Xi⟩)− log(1 + exp−⟨Bl′ ,Xi⟩). (59)

Now, considering the distribution on covariates
Xi,∀i ∈ [n], we take the expectation of (59)
with respect to the side-information Xc. We have
EXc(log(1 + exp−⟨Bl,Xi⟩)) = EXc(log(1 + exp−⟨Bl′ ,Xi⟩)),
and EXc(⟨Bl,Xi⟩) = EXc(⟨Bl′ ,Xi⟩) = 0. We are left with:

EXcDKL(fl(y|Xc)||fl′(y|Xc)

=
∑
i∈[n]

EX

[
σl · ⟨Xi,Bl⟩ − σl⟨Xi,Bl′⟩

]
=
∑
i∈[n]

EX

[
σl · ⟨Xi,Bl −Bl′⟩

]
=
∑
i∈[n]

EX

[
⟨Xi,Bl −Bl′⟩
1 + exp−⟨Xi,Bl⟩

]

≤ nEX

[
|⟨vec(Xi), vec(Bl −Bl′)⟩|

]
. (60)



Define the random variable X̃ ≜ ⟨Xi,Bl − Bl′⟩. X̃ is a
normally distributed random variable with mean µ{X̃} = 0

and variance σ2
X̃

= σ2vec(Bl − Bl′)
T Im1m2vec(Bl − Bl′).

Now, define the half-Normal random variable X̄ ≜ |X̃|. X̄ is
a half-Normal distribution with mean:

EX̄ [X̄] = σ
√
vec(Bl −Bl′)Tvec(Bl −Bl′)

√
2

π

= σ ∥Bl −Bl′∥F

√
2

π
. (61)

Plugging in (61) and (60) into (58) gives us,

I(y; l|Xc) ≤ nσ ∥Bl −Bl′∥F

√
2

π

(f)

≤ nσ

√
4r

r − 1

√
2

π
ε,

where (f) follows from (57).
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