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ABSTRACT The fundamental task of classification given a limited number of training data samples is
considered for physical systems with known parametric statistical models. The standalone learning-based
and statistical model-based classifiers face major challenges towards the fulfillment of the classification task
using a small training set. Specifically, classifiers that solely rely on the physics-based statistical models
usually suffer from their inability to properly tune the underlying unobservable parameters, which leads
to a mismatched representation of the system’s behaviors. Learning-based classifiers, on the other hand,
typically rely on a large number of training data from the underlying physical process, which might not be
feasible in most practical scenarios. In this paper, a hybrid classification method—termed HyPhyLearn—is
proposed that exploits both the physics-based statistical models and the learning-based classifiers. The
proposed solution is based on the conjecture that HyPhyLearn would alleviate the challenges associated
with the individual approaches of learning-based and statistical model-based classifiers by fusing their
respective strengths. The proposed hybrid approach first estimates the unobservable model parameters using
the available (suboptimal) statistical estimation procedures, and subsequently use the physics-based statistical
models to generate synthetic data. Then, the training data samples are incorporated with the synthetic data
in a learning-based classifier that is based on domain-adversarial training of neural networks. Specifically,
in order to address the mismatch problem, the classifier learns a mapping from the training data and the
synthetic data to a common feature space. Simultaneously, the classifier is trained to find discriminative
features within this space in order to fulfill the classification task. Two case studies from communications
systems (physical layer security and multi-user detection) are presented in order to highlight the usefulness
of HyPhyLearn. Numerical results demonstrate that the proposed approach leads to major classification
improvements in comparison to the existing standalone or hybrid classification methods.

INDEX TERMS Classification algorithms, data models, deep learning, wireless communication, physical
layer security.

I. INTRODUCTION
We revisit the problem of classification with limited number
of training data samples in this paper. The fundamental task
of classification comes up in various fields and is traditionally
tackled within two frameworks: 1) statistical setting, and 2)
fully data-driven setting. In the first case, the main assumption

is that data generation adheres to a known probabilistic model
of the underlying physical process. Subsequently, the clas-
sification problem is usually dealt with within a hypothesis
testing (HT) framework aimed at testing between two (or
more) hypotheses. Here, optimality in both the Bayesian sense
and the Neyman–Pearson sense relies on computation of the
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likelihood-ratio terms, which requires clairvoyant knowledge
of the probabilistic models under different hypotheses [3].
However, accurate modeling of the physical processes in in-
creasingly complex engineered systems is either not tractable
or it relies on a large number of unobservable parameters, es-
timation of which from limited number of data samples could
be a major hurdle [4], [5]. As a result, a mismatch between
the physics-based statistical models and the real physical pro-
cesses is inevitable. This precludes exact computation of the
likelihood-ratio values, which deteriorates the classification
performance [6]. The fully data-driven (i.e., learning based)
setting, on the other hand, relies on a large number of data
samples for finding an optimal mapping from the data samples
to the corresponding labels. But availability of such data in
many real-world problems, e.g., channel-based spoofing de-
tection [7] and signal identification [8], is generally limited,
which might lead to learning of a suboptimal map. Moreover,
one should always expect mislabeled data in many applica-
tions, since the employed labeling procedures might not be
error free. Consequently, classification performance of data-
driven models can be seriously limited for many real-world
applications.

The overarching objective of this paper is to develop an
algorithmic framework for classification from limited num-
ber of training data samples in applications in which nei-
ther model-based nor learning-based approaches alone result
in very good classification performance. To this end, note
that learning-based approaches traditionally tend to disregard
the physics-based models developed to describe the physical
phenomena through tractable mathematical analysis. For in-
stance, in the context of wireless communications, numerous
theoretical models for channels and resource management
have been developed over the years [4], [7], [9]. Despite
being approximations in many cases, these models provide
important prior information about the corresponding physical
systems that might be utilized to facilitate the subsequent
classification tasks. At the same time, physics-based models
consist of numerous unobservable parameters, the tuning of
which is a major hurdle for complex systems [5]. For exam-
ple, physical channel models in the multi-input multi-output
(MIMO) and 5 G communications scenarios rely on a large
number of multidimensional parameters that are defined over
a mixed set of discrete and continuous spaces [10], [11]. In
such cases, the maximum likelihood estimation (MLE) of the
parameters could incur a formidable computational cost [11]–
[13]. Our goal in this context is to develop a classification
framework that can deal with these practical considerations
through a hybrid approach that consolidates physics-based
and fully data-driven classification approaches. The expec-
tation is that the hybrid approach would fuse the strengths
of the two approaches towards achieving an overall superior
classification performance.

Our proposed hybrid approach first employs the (nec-
essarily) suboptimal parameter estimation methods to esti-
mate the unobservable parameters. Then, it utilizes them in
the physics-based models to generate synthetic data, which

enables us to leverage learning-based classification ap-
proaches. The mismatch between the physics-based models
and the underlying physical process is addressed in a learn-
ing setting. Specifically, a neural network is trained to map
the training and synthetic data to a common discriminative
feature space, which is often referred to as domain-invariant
space in the domain adaptation literature [14], [15]. Mean-
while, a neural network-based classifier is trained on the
mapped synthetic data to extract class-specific discriminative
features from them. The resulting classifier in this way is
expected to perform well on both synthetic and training data
distributions.

A. RELATION TO PRIOR WORKS
In the realm of statistical model-based classifiers, the difficul-
ties associated with estimating the parameters of the physics-
based models are recognized in various works [6], [16]. This
is mainly attributed to the inherent difficulties associated
with determining probability distributions from only a lim-
ited number of data samples. Along these lines, classification
under the assumption of mismatched models is considered in
several works [6], [16]–[18]. Specifically, [16], [18] derive
bounds on the probability of classification error in the pres-
ence of mismatch via the f -divergence between the true and
mismatched distributions. In contrast to these bounds that are
general in the sense that no assumption is made regarding the
underlying distributions, [6] considers data that are contained
in a linear subspace. This enables the authors to derive an
upper bound on the classification error of the mismatched
model that predicts the presence/absence of an error floor. The
analyses in these works, however, do not lead to a classifi-
cation algorithm for the mismatched setting as they merely
analyze the mismatch problem itself.

The mismatch problem for the learning-based classifiers
corresponds to the cases where the distribution of the available
training data is different from that of the test data. Such mis-
matches are primarily studied in the transfer learning (TL) and
the data-shift literature [15]. In particular, covariate shift [19],
which is also studied under the name of transductive TL [20],
refers to the case where the underlying data distributions for
the test and training data are different. Concept shift [21],
also known as inductive TL [20], on the other hand, deals
with situations in which the posterior distribution of the la-
bels given the data is not the same for the training and the
test data. A wide range of algorithms have been proposed
in order to alleviate the performance loss due to such shifts.
For example, importance-weighting technique [22], [23] is
proposed for the covariate shift scenario to remove the bias
from the training data. Furthermore, algorithms based on
subspace mapping [24] and learning domain-invariant repre-
sentations [14] have also been proposed in the literature to
address the mismatch problem. The authors in [24] propose
a transfer component analysis method aimed at finding a
transformation under which the maximum mean discrepancy
between the true and mismatched distributions is small. The
work in [14] aims at finding a representation that is invariant
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for the training and test distributions in order to mitigate the
effect of discrepancies in the subsequent learning tasks. For
the specific task of classification, the authors in [25] introduce
the domain-adversarial neural network (DANN) framework,
which extracts domain-invariant representations via (deep)
neural networks that are discriminative for the training data
in order to devise a classifier on the test data.

Deep transfer learning (DTL) is another prime subject re-
lated to our work that studies the transfer learning concept in
the context of deep neural networks (DNNs). DTL considers a
DNN that has been pre-trained on the training data as transfer-
able knowledge useful for the test data. This knowledge can
be transferred based on different strategies. The pre-trained
DNNs can either be used directly for the test data, or serve as
an intermediate feature extracting step that could facilitate the
subsequent learning process for the test data. In another DTL
strategy called fine-tuning, the pre-trained DNN or, certain
parts of it, is refined using the available test data to further
improve the effectiveness of transfer knowledge. We refer the
reader to [26], [27] for a survey on DTL methods.

Model-based deep learning is another related line of work
that aims at designing systems whose operation combines
physics-based models (domain knowledge) and data. To this
end, two main strategies are typically exploited in such works,
known as model-aided networks and DNN-aided inference.
The former results in specialized DNN architectures by iden-
tifying structures in a model-based algorithm; e.g., an itera-
tive structure for the case of deep unfolding [28]. The latter
primarily utilizes model-based methods for inference, but re-
places explicit domain-specific computations with dedicated
DNNs in order to facilitate operation in complex environ-
ments; e.g., using generative models for compressed sensing
applications [29]. We refer the readers to [30] and references
therein for the state-of-the-art strategies in model-based deep
learning methods.

There also have been previous attempts to incorporate
physics-inferred information in the fully data-driven setting.
In the field of wireless communications, for instance, the
authors in [4] employ DTL to solve a specific resource man-
agement problem. Similarly, the task of signal classification is
tackled via DTL under different practical assumptions, such as
real propagation effects [31], hardware impairments [32] and
weak received signal strength [33]. These works utilize abun-
dant data from an approximate model along with limited data
from the real-world model in the DTL fine-tuning approach.
More closely to the idea of physics-guided machine learning
(ML), a recurrent neural network (RNN) is modified in [34]
to incorporate information from the physics-based model as
an internal state of the RNN. Furthermore, parameters of the
physics-based models are combined with sensor readings and
used as input to a DNN to develop a hybrid prognostics model
in [5].

We note that the aforementioned works in domain adap-
tation literature do not employ any available physics-based
statistical models and, consequently, rely on large number of
training data samples for dealing with the mismatch problem.

In addition, model-based deep learning strategies might not be
applicable to the statistical classification problem in general
due to the lack of algorithmic structure such as an iterative
structure. Equally importantly, DTL fine-tuning and physics-
guided learning approaches do not consider the difficulties
associated with estimating the physics-based parameters,
which would indeed lead to inaccurate physics-based statisti-
cal models. The resulting discrepancy between the model and
the underlying physical process necessitates a learning-based
classifier that is capable of leveraging the data in a way to
alleviate this mismatch problem.

B. OUR CONTRIBUTIONS
The main contributions of this work are as follows.
� We focus on the task of classification for a physical

process assuming that a limited number of training data
samples, with possibly mislabeled instances, is available.
We consider the case where the physical process (or
its approximation) can be described by physics-based
parametric statistical models. As these models tend to be
complex in general, estimation of the unknown model
parameters using the maximum likelihood estimation
(MLE) procedure could be computationally prohibitive.1

We instead propose HyPhyLearn—a novel hybrid
classification method—as a solution, which exploits both
physics-based statistical models and learning-based clas-
sifiers. This approach makes use of (necessarily subop-
timal) parameter estimation algorithms/heuristics to ob-
tain (approximate) parameter estimates. Next, plugging
in these estimates in the physics-based statistical mod-
els enables us to generate synthetic data. HyPhyLearn
then relies on neural networks (NNs), which are power-
ful tools for finding a discriminative feature space, to-
wards obtaining a learning-based classifier. Specifically,
the learning process involves training a NN to map the
training and synthetic data to a common space under
which they are not distinguishable. In the mean time,
a learning-based classifier is trained on the synthetic
data mapped to the new space to find discriminative
class-level features. Indeed, learning the common fea-
ture space addresses the distribution mismatch problem
between the training data samples and the generated syn-
thetic data due to the errors in parameter estimation. It is
then expected that the classifier trained on the mapped
synthetic data will perform well on both data distribu-
tions. We repurpose theories from the domain adapta-
tion literature based on learning invariant representations
for our specific problem to justify the proposed hybrid
approach. A schematic of HyPhyLearn for a binary
classification example is illustrated in Fig. 1.

� We also consider two prototypical problems from the
wireless communications literature to investigate the

1As discussed later in Section II, even using the MLE does not always
provide any optimality guarantees in general for the classification problem in
a HT setting [35].
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FIGURE 1. A schematic of our proposed hybrid classification approach (HyPhyLearn) illustrated for a binary classification setting, which exploits both
physics-based statistical models and learning-based classifiers.

performance of our proposed approach and show its
superiority in comparison to the stand-alone statistical
model-based classifiers as well as the fine-tuning ap-
proach as the best existing hybrid approach applicable to
these problems. We first consider the problem of chan-
nel spoofing in the wireless communications setting,
where an adversary (Eve) spoofs a legitimate transmitter
(Alice) and sends a message to a legitimate receiver
(Bob) [7], [36], [37]. The spoofing detection at Bob
involves making a decision on whether an incoming mes-
sage corresponds to Alice or Eve. This can be cast as a
binary classification problem at Bob. Second, we revisit
the problem of multi-user detection (MUD) in the uplink
of a cellular network, where different users are asyn-
chronously sharing a channel with a base station [13].
For a K-user system, MUD is basically a 2K -ary classi-
fication problem in which the goal is to infer K binary
information bits from a given observation. By obtaining
likelihood ratio test (LRT) for each problem, we show
that statistical model-based classifiers rely heavily on
the wireless channel parameters in the above problems.
However, estimation performance of these parameters
suffers from both the paucity of training data and com-
plexity of the physics-based statistical models. In fact,
these models are complex in the sense that MLEs of the
corresponding parameters require an exhaustive search
over the space of the parameters, which is not feasible for
many communication scenarios including MIMO trans-
missions in a 5 G setting [10]. For both problems, nu-
merical results show that HyPhyLearn provides major
improvements in terms of the classification accuracy in
comparison to the best existing approaches.

C. NOTATION AND ORGANIZATION
Throughout the paper, vectors are denoted with lowercase
bold letters, while uppercase bold letters are reserved for
matrices. Furthermore, equality by definition is expressed

through the symbol
�=. Non-bold letters are used to denote

scalar values and calligraphic letters denote sets. Furthermore,
the cardinality of a set S is denoted by |S|. The spaces of real
and complex vectors of length d are denoted by Rd and Cd ,
respectively. The mth element of a vector u and the trace of
a matrix U are shown by u[m] and Tr(U), respectively. Also,

real and imaginary parts of a complex number a are denoted
by �{a} and �{a}, respectively. The probability density func-
tion and expectation of a random variable w are denoted by
p(w) and Ep(w), respectively, while P [·] is used to denote
the probability of an event. The Gaussian and circularly-
symmetric complex Gaussian distributions are denoted by N
and CN, respectively, while the uniform distribution supported
between two real numbers a and b is denoted by unif(a, b).
We denote the kth standard basis vector of length N in RN

by ek , and use ‖u‖ to refer to the Euclidean norm of the
vector u. We refer to identity matrix of size N and the indi-

cator function by IN and 1A(x)
�=
{

1, x ∈ A
0, x /∈ A , respectively.

Transpose and conjugate transpose of u are denoted by uT

and uH , respectively. Furthermore, en(y) refers to a one-hot
encoded version of a non-negative integer y, which equals to
an all-zero vector of length n except for the yth element which
is set to 1. Also, ◦ and � denote the Schur componentwise
and the Khatri-Rao product, respectively, while ⊗ is reserved
for the Kronecker product. Finally, given two vectors a and
b of length M, Toeplitz matrix of size M × M is defined as

toep(a,b)
�=

⎡⎢⎢⎢⎢⎢⎣
a[1] b[2] . . . b[M]

a[2]
. . .

. . . b[M − 1]
...

. . .
. . .

...

a[M] a[M − 1] . . . a[1]

⎤⎥⎥⎥⎥⎥⎦.

The rest of the paper is organized as follows. The problem
is formally posed in Section II. Our proposed solution is
described in Section III, which discusses various pieces of
HyPhyLearn approach. We introduce the first case study
involving the spoofing detection problem in Section IV. The
second case study, which concerns the multi-user detection
problem, is presented in Section V. We present numerical
results concerning the application of our proposed approach
in the above two case studies in Section VI, and contrast it
with the existing methods. Finally, the paper is concluded in
Section VII.

II. PROBLEM FORMULATION
Consider a physical process consisting of C distinct behav-
iors where the physics-based parametric statistical model for
the ith behavior is available in the form of a parametric
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probability density function (PDF) denoted by the condi-
tional prior pi(x; θi ) on observations x that belong to an
observation space X. Assuming the true underlying param-
eter for the ith behavior is θ∗i , the data for this behavior is
generated by drawing independent and identically distributed
(i.i.d.) samples from pi(x; θ∗i ). Assuming further that the ith
behavior is chosen with a prior probability πi, our goal is
to devise a decision rule to determine a given sample x =
[x1, . . . , xn]T is generated under which behavior. Clearly, this
can be cast as a C-ary classification problem via Hi : x ∼
pi(x; θ∗i ), i = 0, . . . ,C − 1. We consider the case where this
decision is made by a classifier hφ(·) parameterized by φ ∈
Rd , hφ(x) : X → {0, . . . ,C − 1}, which partitions X into C
disjoint sets, {Xi}, and decides in favor of Hi if x ∈ Xi. Defin-

ing θ∗ �=[θ∗0, . . . , θ
∗
C−1], we denote the probability of error

associated with hφ(x) by Pθ∗ [eφ], which can be computed as

Pθ∗ [eφ] =
C−1∑
i=0

πi

∫
X

pi(x; θ∗i )1{hφ (x)
=i}(x)dx, (1)

where eφ indicates the event that hφ(x) makes an erroneous
decision. The optimal classifier hφ∗ (x) that minimizes the
error probability is given by the Bayes decision rule, i.e.,
hφ∗ (x) = arg max i=0,...,C−1 πi pi(x; θ∗i ) [3]. For the specific
case of C = 2, this rule takes the famous form of the likeli-

hood ratio test,
p1(x;θ∗1 )
p0(x;θ∗0 )

y=1

�
y=0

π0
π1

, where y = i implies making a

decision in favor of the ith behavior.
We focus in this paper on the case where although the para-

metric model pi(x; θi ) is known for the ith behavior, one does
not have access to the corresponding underlying true parame-
ter θ∗i . Instead, only a small number of training data generated
in an i.i.d. manner from pi(x; θ∗i ),∀i, are available. Specif-
ically, we denote the available dataset by Dr = {xr,n}Nr

n=1,
where Nr is the total number of data samples. Also, the corre-
sponding ground-truth label for the nth sample is denoted by
yr,n which is only given for Nr,l number of data samples where
Nr,l ≤ Nr . Furthermore, we consider the case where the model
pi(x; θi ) under the ith behavior is a non-trivial function of
the underlying parameter for which conventional estimation
procedures such as maximum likelihood estimation (MLE)
are either not available or are computationally prohibitive to
implement. The implication of this aspect of the problem for-
mulation is that the performance of any suboptimal parameter
estimation method is bound to be limited. As a result, statis-
tical model-based classifiers, which plug-in these estimates in
pi(x; θi ), would have a deteriorated performance as well.

Unlike these classifiers that rely heavily on the knowledge
of the parametric statistical models and the estimated parame-
ters, a purely data-driven approach can result in a classifier
that disregards the available parametric models. However,
as the data generation processes are governed by non-trivial
models, a large number of data is needed in this case to extract
related patterns from each behavior that would lead to a highly
discriminative feature space. By noting that the performance

of the fully data-driven and the statistical model-based classi-
fiers is particularly curbed when they are used in a stand-alone
fashion, we conjecture that fusing the strengths of the two can
lead to a superior classification algorithm in our setting, as
described in the next section.

Before delving into the proposed solution for the described
problem setting, we discuss further two existing approaches
towards obtaining a statistical model-based classifier for the
benefit of the reader. Recall that within the framework of
statistical model-based classification, one would first estimate
the unknown model parameters as θ̂i’s, i = 1, . . . ,C, and
plug them in the available models to obtain pi(x; θ̂i ). The
resulting plug-in models are then used in practice in lieu of
the true models within the optimal Bayes decision rule. The
parameters, φ, of the resulting plug-in classifier consist solely
of the parameters of physics-based statistical models, i.e.,
φ = θ = [θ0, . . . , θC−1].2 Based on this fact, we denote the
plug-in classifier by hθ (x) in the remainder of this section. The
unknown model parameters can be estimated using numerous
approaches. In the following, we discuss two of the most
popular ways to estimate them as well as the shortcomings
of these approaches that warrant a new approach to classifica-
tion.

Empirical error minimizer: Given a set of training
data with their corresponding labels, {xr,n, yr,n}Nr

n=1, the
most natural approach for parameter estimation corresponds
to the setting in which the resulting plug-in classifier,
hθ (x), minimizes the empirical error probability defined by

P̂ Nr [eθ]
�= 1

Nr

∑Nr
n=1 1{hθ (xr,n )
=yr,n}. Specifically, for the case

of C = 2 consider the family of the classifiers hθ (x) ={
0, π pθ0 (x) > (1 − π )pθ1 (x),

1, otherwise,
for which the parameter

values θ0 and θ1 are chosen from a space�. The parameter es-
timates that minimize the empirical error are obtained as θ̂ =
[̂θ0, θ̂1] ∈ arg min θP̂

Nr [eθ]. The following lemma, which is a
direct result of Corollary 16.1 in [38], presents an upper bound
on the performance of the Bayes decision rule in terms of that
of the plug-in classifier that is obtained using empirical error
minimization.

Lemma 1: If θ∗0, θ
∗
1 ∈ �, then the error probability of the

Bayes decision rule, with the probability at least 1 − δ, is
bounded by

Pθ∗ [eθ∗ ] ≤ P̂ Nr [ê
θ
] + 8

√
2

Nr
log

8b

δ
, (2)

where b denotes the Vapnik–Chervonenkis (VC) dimen-
sion [38] of the family of classifiers, hθ (x), defined above.

The above lemma guarantees a O(
√

log Nr/Nr ) rate of con-
vergence to the Bayes error for hθ̂ (x) when θ̂ is chosen to
minimize the empirical error. However, obtaining such θ̂ is
computationally expensive in general as the empirical error
probability might be a non-trivial function of the parameters.

2For notational simplicity and without loss of generality, we have not in-
cluded the priors as part of the unknown parameters in the current discussion.
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Maximum likelihood estimator: In practice, the unknown
model parameters are commonly replaced with their corre-
sponding MLEs under each beahvior; the resulting plug-in
classifier gives rise to the well-known generalized likelihood
ratio test (GLRT) for the binary case (C = 2) [3]. Specifically,
assuming the training data and their corresponding labels are
available in the form of {xr,n, yr,n}Ni

n=1 for the ith hypothesis,

the MLE of θi is obtained by θ̂
MLE
i = arg max θi

L(Di|θi ),
where L denotes the likelihood function. For the binary case
where π p1(x;θ1)

(1−π )p0(x;θ0 )+π p1(x;θ1) is continuous in (θ0, θ1, π ), as
the parameters’ estimates converge to the true values, the
error of the plug-in classifier also converges to that of the
Bayes decision rule. However, not only no optimality condi-
tion can be stated in general for the plug-in classifier relying
on MLEs [35], obtaining such estimates might also be com-
putationally prohibitive for system with complex likelihood
functions.

III. PROPOSED SOLUTION: HyPhyLearn
The main deciding factor in superiority of a solution for the
problem setup introduced in Section II is the extent to which
it exploits the available information, i.e., training data and the
parametric statistical models. In particular, the plug-in classi-
fiers tend not to exploit this information in the most optimal
fashion as performance of the parameter estimation proce-
dures can be curbed due to the complexity of the underlying
models and lack of the corresponding ground-truth labels. We
instead propose a novel hybrid classification method to make
use of the available information in learning-based classifiers,
which are powerful tools for finding discriminative feature
spaces. Specifically, our proposed solution relies on the para-
metric models to generate synthetic data and incorporate them
with the training data in a classifier that makes use of adver-
sarial training between NNs. Next, we describe the various
steps of the proposed solution that is termed HyPhyLearn
in detail.

Step 1—Imperfect labeling: As the available data are not
assumed completely labeled in our problem setup, the first
step in our solution deals with assigning labels to the un-
labeled data samples in Dr . This involves a clustering step
that partitions the dataset Dr into C distinct groups. Then, the
groups are labeled using the available Nr,l labels. For example,
a label can be assigned to a group based on the number of
labeled training data it includes from each behavior; If the
majority of such samples corresponds to the ith behavior, the
group is labeled as i. Subsequently, we refer to a group as-
signed with the label i by Dr,i for i = 0, . . . ,C − 1. Denoting
this imperfect labeling process by g(x) : X → {0, . . . ,C − 1},
a non-trivial labeling error over Dr is associated with g(x)
that can be computed via er = 1

Nr

∑Nr
n=1 1{g(xr,n )
=yr,n}. In the

remainder of this paper, we refer to the number of samples
in the cluster labeled as i by Nr,i. The function g(x) may
be obtained based on any one of the simple clustering algo-
rithms from the ML literature, such as the Gaussian mixture
model [39], or it may be a decision rule obtained based on

the statistical analysis of the parametric models. For instance,
for the problem of channel spoofing detection, a hypothesis
test is proposed in [7] that assigns labels to unlabeled samples
based on their similarity, measured in terms of the Euclidean
distance, to a reference data sample.

Step 2—Parameter estimation: Based on the labels assigned
in Step 1 to the unlabeled data samples, we estimate the
parameters of the physics-based statistical models under each
behavior. To this end, we utilize Dr,i to estimate the parameter
vector θ∗i corresponding to the ith behavior. Furthermore, the
priors are estimated as π̂i = Nr,i/Nr . We note that the proce-
dure for estimating θ∗i depends on the available parametric
models corresponding to the ith behavior, i.e., pi(x; θi ). We
recall from our problem setup that the MLE, which is usually
utilized for parameter estimation purposes, might not be em-
ployed here due to the formidable complexity of optimizing
pi(x; θi ) over θi. Instead, a (necessarily) suboptimal estimator,
T (·), built upon either heuristics or optimization techniques
like alternate maximization (see Sections IV-C and V-B) could
be utilized to estimate the parameters as θ̂i = T (Dr,i ) for
all the behaviors. The parameter estimation performance is
therefore limited here due to both the suboptimality of T (·)
and presence of the mislabeled samples in Dr,i,∀i.

Step 3—Forming a synthetic dataset: The paucity of avail-
able data in our problem formulation seems to preclude uti-
lization of a learning-based classifier as part of the solution.
However, we note that the available physics-based statistical
models, in the form of parametric PDFs, enable us to generate
synthetic data to augment the available data, and make it
possible to exploit the discriminative power of learning-based
classifiers. Having access to the estimated parameter θ̂i ob-
tained in Step 2, we plug it in the available physics-based sta-
tistical model to obtain a PDF pi(x; θ̂i ) for the ith behavior. In
order to generate a synthetic dataset, we first sample w from a
categorical distribution parameterized by π̂ = [π̂0, . . . , π̂C−1]
over the sample space of {0, . . . ,C − 1}. Then, we sample
a data point xs,i according to xs,i ∼ pw(x; θ̂w ) with the as-
sociated label ys,i = w. Repeating this process Ns number
of times, we obtain a synthetic dataset Ds = {xs,i, ys,i}Ns

i=1 in
which the data samples are generated in a statistically inde-
pendent fashion.

Step 4—Incorporating synthetic and training data in a
learning-based classifier: The synthetic data generated in Step
3, besides retaining essential information about the underly-
ing physics-based statistical models, enables us to utilize the
discriminative power of learning-based classifiers. However,
the errors introduced during the labeling and the parameter
estimation steps that precede the synthetic data generation
process incur a mismatch between the distributions corre-
sponding to the training and synthetic datasets. This mismatch
is bound to deteriorate the performance of a classifier trained
on the synthetic data alone, when utilized in a real-world
setting. Then the question is how a learning-based classifier
can be trained to alleviate this problem. For example, in the
fine-tuning approach [4], a NN-based classifier will be trained
on the synthetic data first, and then, training data are used to
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refine the weights of the corresponding NN. However, we con-
jecture that such learning strategies that utilize the training and
synthetic data in the separate stages of training are not the best
solution here; rather, synthetic and training data should jointly
be incorporated in a learning-based classifier. To this end,
inspired by the works in the domain-adaptation literature and
specifically feature space mapping [14], we propose to map
the synthetic and training data through a data-driven function
Mψ : X → Z, which is parameterized by a real vector ψ, into
a common feature space Z. Consequently, a classifier hφ1 (z),
parameterized by φ1, which is trained on the synthetic data
within the space Z is expected to perform well on both train-
ing and synthetic data. To this end, we choose Mψ and hφ1 to
be NNs, which are powerful tools for finding discriminative
features from a given dataset. We discuss this step in detail in
the following subsection.
HyPhyLearn: We now present our final solution as an

algorithmic framework composed of the aforementioned four
steps. In a nutshell, HyPhyLearn generates synthetic data
based on the physics-based parametric statistical models and
utilizes them along with the available data in a learning-based
classifier powered from the adversarial training of the NNs
(see the following subsection). In order to train the NNs based
on their specific loss functions, described in the following sub-
section, we utilize the stochastic gradient descent method [39]
along with mini-batches consisting of random samples from
the training and synthetic datasets in an iterative manner. The
details of the whole process is presented in Algorithm 1.

A. INCORPORATING SYNTHETIC AND TRAINING DATA IN A
LEARNING-BASED CLASSIFIER FOR HyPhyLearn

To elaborate further on Step 4, we first denote the dis-
tributions corresponding to the real and synthetic data as
pθ∗ (x) = ∑C−1

i=0 πi pi(x; θ∗i ) and p̂θ (x) = ∑C−1
i=0 π̂i pi(x; θ̂i ),

respectively. We refer to pθ∗ (x) and p̂θ (x) as the true and
estimated distributions, respectively. For each distribution, ap-
plying the mapping Mψ(·) to the input space X would induce
a distribution over the feature space Z. Specifically, we denote
the mapping of the true distribution pθ∗ (x) to Z by pψ,θ∗ (z),
where z = Mψ(x), x ∼ pθ∗ (x). Assuming that X and Z are
topological spaces, for any A ⊂ Z the probability of A in
space Z is

Pz[A]
�= Px

[
M−1
ψ

(A)
]

=
C−1∑
i=0

πi

∫
M−1
ψ

(A)
pi(x; θ∗i )dx, (3)

where the pre-image M−1
ψ

(A) belongs to the Borel σ -algebra
over X. Subsequently, the probability of error corresponding
to a classifier hφ1 (z), parameterized by a real vector φ1, with
respect to the mapping of the true distribution to the Z space
is computed via

Pψ,θ∗[eφ1
] =

C−1∑
i=0

πi

∫
Z

pψ,θ∗i (z)1{hφ1
(z)
=i}(z)dz, (4)

where the dependence of P on πi’s is suppressed for nota-
tional simplicity. Similarly, mapping of the estimated distribu-
tion to the space Z is characterized by a distribution denoted
by pψ,̂θ (z). Furthermore, the probability of error for a classi-
fier hφ1 (z) with respect to pψ,̂θ (z) can be computed similar to
(4), which we refer to as P

ψ,̂θ
[eφ].

Our main goal is to learn a map Mψ(·) and a classifier
hφ1 (z) in a way that the probability of error of hφ1 (z) with
respect to the mapping of the true distribution to Z, i.e.,
Pψ,θ∗[eφ1 ], is small. To this end, we repurpose theories from
the domain-adaptation literature in the following to obtain
an upper bound on Pψ,θ∗ [eφ1 ], which leads to explicit loss
functions for the joint learning of Mψ and hφ1 (z) using both
the training and synthetic datasets. Specifically, it is desired
for the mapping Mψ(·) from X to Z to transform the true and
estimated distributions in a way that pψ,θ∗ (z) and pψ,̂θ (z),
which are defined in the feature space Z, are similar. Math-
ematically, this similarity should be measured in terms of a
distance metric. However, as there are only a limited number
of samples available from pψ,θ∗ (z), we need to be able to
approximate this distance from a finite number of samples.
We expand further on this idea by primarily focusing on
binary classification in this section, although the results are
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extendable to the classification task in general. We begin with
the following distance definitions.

Definition 1: For a family of binary-valued functions
H� = {hφ : Z → {0, 1}}, in which every member hφ ∈ H�

is parameterized by a real vector φ ∈ �, and the set Aφ =
{z|hφ (z) = 1, z ∈ Z}, the A�-distance between pψ,θ∗ (z) and
pψ,̂θ (z) is defined as

dA�
(

pψ,θ∗ (z), p
ψ,̂θ

(z)
) �=2 sup

hφ∈H�

∣∣∣∣∫
Aφ

(pψ,θ∗ (z) −p
ψ,̂θ

(z))dz

∣∣∣∣.
(5)

Similarly, for Bφ1,φ2 = {z|hφ1 (z) 
= hφ2 (z), z ∈ Z}, the B�-
distance refers to 3

dB�
(

pψ,θ∗ (z), pψ,̂θ (z)
)

�= 2 sup
hφ1 ,hφ2 ∈H�

∣∣∣∣ ∫
Bφ1,φ2

(pψ,θ∗ (z) − pψ,̂θ (z))dz

∣∣∣∣. (6)

The A�-distance is also referred to via other names like
A-distance and H-distance in [25], [40]. By looking at the
following extreme choices of H�, these distances are clearly
a function of richness of the class H�. For a very restrictive
choice of only constant functions, i.e., H� = {hφ|hφ(z) =
0,∀z}⋃{hφ|hφ(z) = 1,∀z}, dA� is always zero as the only
possible choice for Aφ is either the empty set or Z. On the
other hand, for H� = {hφ|hφ(z) = 0 or hφ(z) = 1,∀z}, which
represents all the binary functions, dA� is identical to def-
inition of the total variation distance [41] as the sup in (5)
will effectively be over the σ -algebra of subsets of the Z
space. This dependence of dA� on the underlying family of
functions makes it possible to obtain an expression for the
A�-distance based on the finite set of samples from each
distribution. Specifically, consider two sets Zψ,θ∗ = {zr,i}Nr

i=1
and Zψ,̂θ = {zs,i}Ns

i=1 sampled from the distributions pψ,θ∗ (z)
and p

ψ,̂θ
(z) in an i.i.d. fashion, respectively. In this case, for a

family H� that satisfies the condition that if hφ ∈ H� then
1 − hφ ∈ H�, the A�-distance can be approximated from
Zψ,θ∗ and Zψ,̂θ using [40]

d̂A� (Zψ,θ∗ ,Zψ,̂θ )

= 2

(
1− inf

hφ∈H�

(
1

Nr

Nr∑
i=1

1{hφ (zr,i )=0}+ 1

Ns

Ns∑
i=1

1{hφ (zs,i )=1}

))
.

(7)

As the bound on Pψ,θ∗[eφ1 ] should be obtained based on
a finite number of training and synthetic samples, it is then
of interest to see how far d̂A� is from dA� . To answer this
question, one needs to rely on a measure of complexity for
a given class of functions such as the VC dimension [38] and
Rademacher complexity [42]. As we have chosen the mapping
function Mψ(x) and the classifier hφ1 (z) to be NNs, we present
the results based on the Rademacher complexity defined as

3Similar to the total variation distance, it can be readily verified that dA�

and dB� are also distance metrics.

follows, which can be computed for certain classes of neural
networks in a closed-form fashion [42].

Definition 2: Let Z1 = {zi}N
i=1 be a set of i.i.d. samples

drawn from a distribution p(z) that is supported on Z. For
H�, a family of real-valued functions over Z, the empirical
Rademacher complexity of H�, given a dataset Z1, is defined
as

RZ1 (H�)
�= E
σi∼{−1,+1}

i=1,...,N

[
sup

hφ∈H�

(
1

N

N∑
i=1

σihφ (zi )

)]
, (8)

where the expectation is over all the σi’s, each taking a binary
value with equal probability.

Lemma 2 ([42]): Consider a family of functions H� =
{hφ : Z → {0, 1}} and a distribution p(z) over Z. For a set
Z1 = {zi}N

i=1 of N i.i.d. samples from p(z) and any 0 < δ < 1,
the following holds ∀hφ ∈ H� with probability at least 1 − δ:

Ez∼p(z)[hφ(z)] ≤ 1

N

N∑
i=1

hφ(zi ) + 2RZ1 (H�) + 3

√
log(2/δ)

2 N
.

(9)

Now, the difference between dA� and d̂A� can be bounded
in terms of the complexity of the underlying family of func-
tions and the number of available samples as stated in the
following lemma.

Lemma 3: Let Zψ,θ∗ = {zr,i}Nr
i=1 and Zψ,̂θ = {zs,i}Ns

i=1 be
sets of i.i.d. samples corresponding to the distributions
pψ,θ∗ (z) and p

ψ,̂θ
(z) on the space Z, respectively. Then, for

any 0 < δ < 1 and a family of functions H� = {hφ : Z →
{0, 1}}, we have

dA�
(

pψ,θ∗ (z), p
ψ,̂θ

(z)
)

≤ d̂A� (Zψ,θ∗ ,Zψ,̂θ ) + 2RZψ,θ∗ (H�)

+ 2RZ
ψ,̂θ

(H�) + 3
√

(log 2/δ)/2Nr + 3
√

(log 2/δ)/2Ns

(10)

with probability at least 1 − δ.
Proof: See Appendix A. �
The above lemma enables us to bound the A� distance

between two distributions in terms of the collected samples
from each. Equipped with this result, we are able to bound the
probability of error Pψ,θ∗[eφ1 ] via the following theorem.

Theorem 1: Assume that the training and synthetic datasets
are mapped into the feature space Z through the map-
ping function Mψ(x), with the resulting samples denoted by
Zψ,θ∗ = {zr,i}Nr

i=1 and Zψ,̂θ = {zs,i}Ns
i=1, respectively. Then, for

any 0 < δ < 1 and a family of functions H� : Z → {0, 1},
Pψ,θ∗ [eφ1 ],∀hφ1 ∈ H� is bounded by

Pψ,θ∗ [eφ1 ] ≤ Pψ,̂θ[eφ1 ] + 1

2
d̂A� (Zψ,θ∗ ,Zψ,̂θ ) + RZψ,θ∗ (H�)

+ RZ
ψ,̂θ

(H�) + 3

2

√
(log 2/δ)/2Nr + 3

2

√
(log 2/δ)/2Ns).

(11)

Proof: See Appendix B. �
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The above theorem bounds the probability of error with
respect to pψ,θ∗ (z) associated with a classifier hφ1 (z) in terms
of the quantities that do not depend on the the unknown true
parameters θ∗. As our primary goal is to make Pψ,θ∗ [eφ1 ] as
small as possible, the mapping function Mψ(x) and the classi-
fier hφ1 (z) should be chosen in a way to minimize the above
upper bound. We note that the complexity related terms in the
above bound are fixed for a chosen family of the functions
and the bound is primarily controlled by the first two terms. In
other words, Mψ(x) and hφ1 (z) should be chosen such that the
probability of classification error with respect to the mapping
of the estimated distribution in the Z space, i.e., Pψ,̂θ[eφ1 ],
and the approximated A�-distance between the synthetic and
training datasets are minimized simultaneously. To achieve
this goal, we restrict ourselves to Mψ(x) and hφ1 (z) that cor-
respond to NNs that are trained to minimize a loss function
in accordance with the first two terms of the above bound.
One can efficiently solve the resulting optimization problem
via the stochastic gradient descent method as described in the
following.

Joint learning of the feature map and the classifier: In terms
of specifics, we assume Mψ(x) and hφ1 (z) belong to the class
of feed-forward (deep) NNs whose parameters, i.e., ψ and
φ1, correspond to the weights and biases of each network.
The input and output layers of the NNs corresponding to Mψ

have nx and nz number of neurons, respectively, which denote
the dimensions of the spaces X and Z, respectively. We note
that nx is chosen according to the length of the observation
vector as part of the problem formulation, while nz can be
picked as a hyper-parameter to facilitate the training process.
Subsequently, the input layer of hφ1 has nz neurons while its
output layer contains C neurons whose activation function
is chosen to be the softmax function σ(z) for which the ith
element is given by ez[i]∑nz

i=1 ez[i] . In this way, the ith component

of the vector yψ,φ1,x
�= hφ1 (Mψ(x)) denotes the probability

that the classifier assigns to the input x that it belongs to
the ith class for i = 0, . . . ,C − 1. Consequently, the averaged
cross-entropy loss, minimizing of which leads to minimizing
the classification error associated with hφ1 , over the synthetic
dataset Ds equals

Ls(ψ,φ1|Ds) = 1

ns

ns∑
n=1

C∑
i=1

ls,n[n] log yψ,φ1,xs,n [n], (12)

where ls,n = eC (ys,n) denotes the one-hot encoded version of
the label ys,n corresponding to the nth sample. Regrading the
computation of d̂A� between the two sets Zψ,θ∗ and Zψ,̂θ , it
is suggested by the authors in [25], [40] that the classification
accuracy corresponding to a classifier trained to distinguish
between the samples from the two sets can be used as a surro-
gate for the inf part in (7) that can be readily computed during
the learning process. To train such classifier, we consider a NN
dζ with nz input neurons and 2 output neurons with softmax
activation function, which is trained to distinguish between
Zψ,θ∗ and Zψ,̂θ labeled as 0 and 1, respectively. Consequently,

by defining a two-dimensional vector dψ,ζ,x
�= dζ (Mψ(x)),

the d̂A� term can be approximated by the cross-entropy loss
associated with dζ as follows:

Ld (ψ, ζ|Ds,Dr ) = 2 (1 − 2Lc(ψ, ζ|Ds,Dr )) , (13)

Lc(ψ, ζ|Ds,Dr ) = 1

nr

nr∑
i=1

log dψ,ζ,xr,n [1]

+ 1

ns

ns∑
n=1

log dψ,ζ,xs,n [2]. (14)

Now, using Theorem 1 the training goal for the constituent
NNs is set to simultaneously minimize the classification error
corresponding to the synthetic data and the distance between
the real and synthetic data, both measured in the mapped space
Z. Specifically, the NNs Mψ and hφ1 should be trained to mini-
mize the sum of the losses in (12) and (13), while the classifier
dζ is trained to minimize (14). As Mψ is trained to maximize
Lc(ψ, ζ) despite dζ’s goal to minimize Lc(ψ, ζ), the learning
process involves adversarial training between these two NNs.
Based on the approach taken in [25] for adversarial training
in the context of domain adaptation, we train the above three
NNs for finding the saddle points ψ̂, φ̂1 and ζ̂, such that

ψ̂, φ̂1 = arg min ψ,φ1
Lt (ψ,φ1, ζ̂|Ds,Dr ), (15)

ζ̂ = arg min ζ − Lt (ψ̂, φ̂1, ζ|Ds,Dr ), (16)

Lt (ψ,φ1, ζ|Ds,Dr ) = Ls(ψ,φ1|Ds) + Ld (ψ, ζ|Ds,Dr ),
(17)

which can be achieved by utilizing the stochastic gradient
descent algorithm for each minimization task. To this end, the
minimization is performed over the NN’s parameters, ψ, φ1

and ζ, that are real vectors whose dimensions are determined
by the architecture of each network.

B. AN ILLUSTRATIVE EXAMPLE: THE CASE OF
TWO-DIMENSIONAL GAUSSIAN DATA
Next, we show how the learning-based classifier in Sec-
tion III-A performs on simple training and synthetic datasets
in an illustrative manner. To this end, we consider a toy exam-
ple where the true and estimated distributions are a mixture of
two bivariate Gaussian distributions with full-rank covariance
matrix each. In particular, we focus on the problem of binary
classification where the distribution for the ith class is denoted
by pi(x; θ∗i ) = N(μi,
) for i = 0, 1, μi ∈ R2×1, 
 ∈ R2×2,
and equal priors. In order to investigate the effect of mismatch
between only mean parameters, the corresponding estimated
distributions are assumed to have the same covariance but
different means, i.e., pi(x; θ̂i ) = N(μ̂i,
) for i = 0, 1 and
equal priors. For two multivariate Gaussian distributions, the
authors in [41] have proposed a bound for the corresponding
total variation as part of the following theorem.

Theorem 2 ([41]): Consider two d-dimensional Gaussian
distributions N(μ1,
1) and N(μ2,
2) where μ1 
= μ2 and

1 and 
2 are positive definite. Let v = μ1 − μ2 and �
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FIGURE 2. Visualization of the true and estimated distributions and their mappings to the space Z for the case of 2D Gaussian datasets. (a) Samples
corresponding to the true and estimated distributions in space X . (b) Mapping of the samples via the function Mψ to the space Z. (c) Position of the
means in the original space X and the space Z .

be a d × (d − 1) matrix whose columns form a basis for
the subspace orthogonal to v. Denote the eigenvalues of
(�T
1�)−1�T
2�− Id−1 by ρ1, . . . , ρd−1. Then, the total
variation between the two distribution can be bounded as

1

200
≤ TV (N(μ1,
1),N(μ2,
2))

min(1,V )
≤ 9

2
(18)

where V
def= max

{
|vT (
1−
2 )v|

vT
1v , vT v√
vT
1v

,

√∑d−1
i=1 ρ

2
i

}
.

We note that a bound on total variation would also bound
the A� distance following the discussion after Definition 1.
Using the above result, we can bound the total variation dis-
tance between pi(x; θ∗i ) and pi(x; θ̂i ) as follows, which will
provide useful insights in the remainder of this section about
the learning process described in Section III-A.

Corollary 1: For two Gaussian distributions N(μ0,
) and
N(μ̂0,
) with the same positive definite covariance matrix
,
the corresponding total variation is bounded from the above

by 9
2 min(1, (μ0−μ̂0 )T (μ0−μ̂0 )√

(μi−μ̂0 )T
(μ0−μ̂0 )
).

Regarding the specific architecture for the NNs utilized
in Section III-A, let us now choose the mapping function
Mψ to be Mψ(x) = Wψ,2Wψ,1x parameterized by ψ =
{Wψ,1 ∈ R20×2,Wψ,2 ∈ R2×20}. In particular, we have set
the dimension of the space Z to nz = 2 in order to be able to
readily visualize it within the 2D coordinate system. For each
hφ1 and dζ , we choose a two-layer NN with softmax activation
function. Specifically, for hφ1 we have hφ1 (Mψ(x)) =
softmax(Vφ1,2(Vφ1,1Mψ(x) + bφ1,1) + bφ1,2) where
φ1 = {Vφ1,1 ∈ R20×2,bφ1,1 ∈ R20,Vφ1,2 ∈ R2×20,bφ1,2 ∈
R2}. Similarly, dζ is chosen to be dζ (Mψ(x)) =
softmax(Uφ1,2(Uφ1,1Mψ(x) + bφ1,1) + bφ1,2) for ζ =
{Uφ1,1 ∈ R20×2,bφ1,1 ∈ R20,Uφ1,2 ∈ R2×20,bφ1,2 ∈ R2}.
Training of these NNs involves finding the saddle points of
(15) based on the available training and synthetic datasets
which would lead to the learning-based classifier hφ1 . We
note that the above simple choice of the mapping function

maps pi(x; θ∗i ), i = 0, 1 to Gaussian distributions in the Z
space which allows us to utilize Corollary 1 for analyzing
the total variation distance between these mappings in the
following.

We now resort to numerical results for further illustration
of this example. To this end, we set μ0 = [2.9, 4.4], μ1 =
[5, 6.4], μ̂0 = [2, 3], μ̂1 = [4, 5] and 
 =

[
0.15 0.11

0.11 0.15

]
.

Also, we generate nr = 40 samples from the true distribution,
while ns = 2000 samples are generated from the estimated
distribution. The Figs. 2(a) and 2(b) depict the samples from
the true and estimated distributions and their mapping through
the function Mψ into the Z space, respectively. Furthermore,
the positions of the means corresponding to the samples from
the real and estimated distributions in both space X and Z are
illustrated in Fig. 2(c). An important observation in relation
to the Corollary 1 can be made by noting that the total varia-
tion between N(μi,
) and N(μ̂i,
) is bounded by the term

||v|| eT
v ev√

eT
v 
ev

where v = μi − μ̂i and ev = v/||v||. Assuming

λ1 and λ2 are eigenvalues of 
 with corresponding eigenvec-
tors u1 and u2 such that λ1 > λ2, it is straightforward to show
that the maximal value of eT

v 
ev = λ1(uT
1 ev ) + λ2(uT

2 ev ) is

achieved when ev ⊥ u2. Therefore, for ||v|| eT
v ev√

eT
v 
ev

to be min-

imized ev ought to be in the same direction of u1 while ||v||
become minimum. Notably, Figs. 2(b) and 2(c) highlight the
fact that finding the saddle points in (15) in part corresponds
to mapping the datasets to a feature space Z that satisfy both
these two criteria.

IV. CASE STUDY I: DETECTION OF CHANNEL-BASED
SPOOFING FOR PHYSICAL LAYER SECURITY
We now present the first case study concerning channel spoof-
ing detection, which arises in a wireless communication envi-
ronment where a legitimate transmitter (Alice) is transmitting
signals to a legitimate receiver (Bob) in the presence of an
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adversary (Eve). Eve aims at spoofing the Alice–Bob’s chan-
nel by using Alice’s MAC address [7], [9]. Bob’s goal, in
this setting, is to distinguish between the signals coming from
Alice and Eve based on the corresponding channel frequency
responses (CFRs)

A. SYSTEM MODEL
We envision the communication parties in a 5 G propagation
setting relying on MIMO-OFDM wideband communications,
where the number of antennas are set to NT x and NRx at the
transmitter (Tx) and the receiver (Rx), respectively. We as-
sume Bob measures and stores CFR samples corresponding to
a transmitting terminal (either Alice or Eve) at M tones, across
an overall system bandwidth of W . We consider a generalized
time-varying channel model for a transmitting terminal, where
each measured CFR sample is made up of three components:
1) specular paths (h), 2) time-varying part du, and 3) noise n,
all of which are complex vectors of size M × 1. The specular
paths model the dominant portion of the channel, which re-
mains unchanged within a coherence time. The time-varying
part models the dense multipath components, which accounts
for the diffuse scattering between two transceivers. Finally, the
noise part models the measurement noise. The measured CFR
at Bob at time t = uT for a sampling interval T and u ∈ N is
denoted by hu, which is a M × 1 vector such that

hu = h + du + n. (19)

We first introduce the dominant paths model suitable for
MIMO-OFDM communications under a frequency-dependent
array response [43]. For this scenario, the NRx × NT x channel
matrix associated with the nth subcarrier (n = 1, . . . ,Nf ) is
expressed as

H[n] = AR[n]�[n]AH
T [n], (20)

where Nf denotes the total number of subcarriers. In this
way, the size of the vector hu equals M = Nf × NRx × NT x .
We further denote the subcarrier width and carrier frequency
with � f and f0, respectively. Here, the antenna steering and
response vectors are, respectively, defined as

AT [n] = [aT,n(ψT,0), . . . , aT,n(ψT,K−1)] and (21)

AR[n] = [aRx,n(ψR,0), . . . , aR,n(ψRx,K−1)], (22)

where K is the total number of dominant paths. Also,ψT,k and
ψR,k denote the azimuth angles corresponding to the trans-
mit and receive sides for the kth path. The structure of the
frequency-dependent antenna steering and response vectors
aT,n(ψT,K−1) and aR,n(ψR,K−1) depends on the specific array
structure. For the case of a uniform linear array (ULA), which
we consider in this work, we have

aT,n(ψT,k ) = 1

NT x
[e− j

NT x−1
2 ψT,k , . . . , e j

NT x−1
2 ψT,k ], (23)

where ψT,k = 2π
λn

d sin(θT x,k ), λn = c(Nf T + fc)/n denotes
the signal bandwidth at the nth subcarrier, c is the speed of

light, and d refers to the distance between two antenna ele-
ments. Similarly, aRx,n(ψRx,k ) can be defined for the receiver’s
antennas. The path gain matrix is obtained by

�[n] = √
NRxNT x

diag

{
ρ0e− j2πnτ0/(Nf Ts ), . . . , ρK−1e− j2πnτK−1/(Nf Ts )

}
,

(24)

where ρk and τk denote the complex channel gain and delay
associated with the kth path, while Ts is the sampling interval.
Then, h̄ is defined as concatenation of the vectorized version
of H[n] for all the subcarriers n = 1, . . . ,Nf , i.e.,

h̄ = [
vec{H[1]}T , . . . , vec{H[Nf ]}T ]T

, (25)

where vec{·} denotes the column-wise vectorization operator.
We denote the parameters associated with the specular paths
contribution, h, which remain constant during a coherence
time Tc corresponding to the coherence bandwidth Bc, via a
4K × 1 vector θsp defined as

θsp = [ψT ,ψR, τ, ρ]T , (26)

where ψT = [ψT,0, . . . , ψT,K−1], ψR = [ψR,0, . . . , ψR,K−1],
τ = [τ0, . . . , τK−1] and ρ = [ρ0, . . . , ρK−1].

For modeling the variable part of the channel we first
assume that the wide-sense stationary uncorrelated scatter-
ing (WSSUS) assumption holds, and then use a multipath
tapped delay line, h(t, τ ) = ∑L−1

l=0 Al (t )δ(τ − l�τ ), to model
the impulse response at time t between any pair of transmit
and receive antennas. Here, Al (t ) and �τ = 1/W denote the
(complex) amplitude of the lth virtual path4 and the delay
between two consecutive paths, respectively. Sampling the
impulse response at time t = uT , followed by taking the
Fourier transform with respect to τ would result in a vector
qu whose nth element is denoted by

qu[n] = F{h(uT, τ )}| f = f0−W/2+n� f

=
L−1∑
l=0

Au,l e
− j2π ( f0−W/2+n� f )l/W , n = 1, . . . ,Nf ,

(27)

where Au,l denotes the lth channel gain at time uT , respec-
tively. Following the exponential decay model, which holds
for the power delay profile of qu based on various experi-
mental observations [7], we model Au,l to be a zero-mean
Gaussian random variable with variance Var(Au,l ) = α2(1 −
e−2πβ )e−2πβl . Here, α2 and β denotes the average power of
Au,l over all taps and the normalized coherence bandwidth,
i.e, Bc/W , respectively. The distribution of qu is given in the
following lemma.

4We note that the diffuse spectrum contribution arises from superposition
of infinite number of diffuse paths. We use the term virtual path to account
for superposition of large number of diffuse paths with similar physical layer
characteristics.
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Lemma 4: The vector qu has a multivariate Gaussian dis-
tribution CN(0,Rq) with a Toeplitz covarinace matrix Rq =
toep(νq, ν

H
q ) assuming

νq
�=
[
κ (θq, 0), κ (θq,

1

Nf
), . . . , κ (θq, 1 − 1

Nf
)

]
, (28)

where κ (θq, n)
�= α2(1−e−2πβ )(1−e−2πL(β−n j) )

(1−e−2π (β−n j) )
and θq =

[α2, β,L].
Proof: See Appendix C. �
Next, the contribution of measurement noise n is modelled

with a zero-mean complex multivariate Gaussian random vari-
able as n ∼ CN(0, σ 2I) where σ 2 denotes the variance of
the noise. We then follow the Kronecker model to obtain
the covariance matrix of the CFR (19), which holds when
the diffuse spectrum contribution in the angular domains is
independent from that in the frequency domain [11], [44].
Under the Kronecker model, the covariance matrix of the CFR
can be decomposed as R = INRx ⊗ INT x ⊗ Rq,n where Rq,n =
toep(νq,n, ν

H
q,n) and νq,n

�= νq + [σ 2, 0, . . . , 0]. Therefore,
the distribution of the CFR in (19) within the above model
can be given as hu ∼ CN(h,R). We denote the parameters
associated with the covariance matrix by θvn = [α, β,L, σ ],
which corresponds to the variable part of the CFR and noise.
As mentioned earlier, the mean h solely depends on the spec-
ular paths parameters θsp.

B. CHANNEL SPOOFING DETECTION PROBLEM
Channel-based spoofing detection [7], [9] is generally studied
in the “snapshot” scenario where Bob receives a new message
claiming to be sent by Alice, and one needs to check whether
the claim is true. To this end, we assume that Bob is able to
measure and store a noisy version of the CFR correspond-
ing to a transmitting terminal (Alice or Eve). Based on the
CFRs associated with the incoming messages, and given a
reference message hA

u from Alice at time t = uT ,5 the goal
in this scenario is to determine whether a message at time
t = (u + 1)T belongs to Alice or Eve. In this setup, we use
the terms message and CFR interchangeably. One can pose the
spoofing detection problem as a binary classification problem
for which two hypotheses can be stated

H0 : hu+1 = hA
u+1, (29)

H1 : hu+1 = hE
u+1. (30)

Under the null hypothesis, H0, the message at time t = (u +
1)T belongs to Alice, while under the alternative hypothesis,
H1, a spoofing attack has occurred, i.e., the message belongs
to Eve.

From a statistical perspective, likelihood ratio test (LRT) is
the main approach for deciding between the two hypotheses,
which relies on knowledge of the unknown channel param-
eters. The likelihood ratio test at time t = (u + 1)T for the

5In the remainder of this section, we use A or E in the superscript of a
vector or a scalar to indicate that it corresponds to Alice or Eve, respectively.

snapshot scenario is given by

L
(
hu+1|hA

u

) = p(hu+1 − hA
u |H0)

p(hu+1 − hA
u |H1)

H1

�
H0

ζ , (31)

for a predefined threshold ζ , where the conditional probability
distribution of hu+1 − hA

u [7] serves as the likelihood function
under each behavior. In the following, we obtain closed-form
expressions for these likelihood functions assuming qA

u+1 and
qE

u+1 are the statistical dependence on qA
u . Specifically, we

consider a case where the dependence of qA
u+1 on qA

u is char-
acterized through channel gains of the corresponding virtual
paths in terms of an order-1 auto-regressive (AR-1) model [7],
i.e.,

AA
u+1,l = aAAA

u,l +
√

(1 − (aA)2)Var(AA
u+1,l )wu+1,l (32)

where aA denotes the similarity parameter between AA
u+1,l and

AA
u,l , and wu+1,l ∼ CN(0, 1) is independent of Au,l . Similarly,

gains of the lth virtual path corresponding to qE
u+1 and qA

u
are related to each other according to an AR-1 model with
similarity parameter aE .

The likelihood functions associated with the above LRT
depend on the unknown channel parameters that needs to be
estimated from finite number of training CFRs. These training
data are collected by Bob during finite number of snapshots
within a coherence time. In order to label a training data hu+1

at time t = (u + 1)T in the snapshot setting, we use a heuristic
(and error prone) method given by

‖hu+1 − hA
u ‖2

H1

�
H0

η. (33)

which does not rely on the unknown channel parameters. As
noted in [9], the threshold η can be chosen such that the
resulting false alarm probability is below a predefined target
value, e.g., 0.1. This method can be viewed as an imperfect la-
beling mechanism that decides in favor of H0 if the Euclidean
distance between an incoming CFR and the reference CFR is
smaller than a predefined threshold η.

Lemma 5: Under the null hypothesis, p(qu+1 − qA
u |H0) =

CN(0,Rq,H0 ) for

Rq,H0 = toep(νH0 , ν
H
H0

), (34)

νH0

�=
[

2(1 − aA)κ (θA
q, 0), 2(1 − aA)κ

(
θA

q,
1

Nf

)
, . . .

2(1 − aa)κ

(
θA

q,
Nf − 1

Nf

)]
, (35)

where θA
q

�= [αA, βA,LA] and the κ function is defined in
Lemma 4.

Proof: This can be proved in a similar fashion to Lemma 4.
See Appendix D of the long version of the current paper [1]
for details. �
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Lemma 6: Under the alternative hypothesis, p(qu+1 −
qA

u |H1) = CN(0,Rq,H1 ) for

Rq,H1 = toep(νH1 , ν
H
H1

), (36)

νH1

�= [κ ′(aE , θA
q , θ

E
q , 0), κ ′(aE , θA

q , θ
E
q ,

1

Nf
), . . . ,

κ ′(aE , θA
q , θ

E
q ,

Nf − 1

Nf
)], (37)

κ ′(aE , θA
q , θ

E
q ,m)

�= κ (θE
q ,m) − 2aEκ (θA

q ,m) + κ (θA
q ,m),

(38)

where θA
q

�= [αA, βA,LA], θE
q

�= [αE , βE ,LE ], and the κ func-
tion is defined in Lemma 4.

Proof: See Appendix E of the long version of the pa-
per [1]. �

The above two lemmas enable us to obtain the likelihood
functions for (31), both of which are given by a Gaussian
distribution. Regarding the null hypothesis H0, using the
Kronecker model for the covariance matrix [11], we ob-
tain the covariance matrix of hu+1 − hA

u as RH0 = INRx ⊗
INT x ⊗ Rq,H0 + 2(σA)2IM , where Rq,H0 is given in Lemma
5. Furthermore, the contribution of the specular paths to

the CFRs remains the same (h
A

) between two consecutive
times within a coherence time. Therefore, under H0 the
likelihood function is CN(0,RH0 ). Similarly, for the alter-
nate hypothesis H1, the likelihood function can be obtained

as CN(h
E − h

A
,RH1 ), where RH1 = INRx ⊗ INT x ⊗ Rq,H1 +

(σA)2IM + (σE )2IM and Rq,H1 is given in Lemma 6.

C. PARAMETER ESTIMATION
In order to employ the likelihood ratio test in (31) or generate
synthetic data for utilizing the HyPhyLearn algorithm, Bob
requires knowledge of the parameters θsp, θvn corresponding
to the Alice–Bob and Eve–Bob channels as well as the similar-
ity parameters. These parameters need to be estimated based
on the training data collected from finite number of snapshots.
We denote the training CFRs associated with Alice and Eve by
DA = {xA

i }NA
i=1 and DE = {xE

i }NE
i=1, respectively. Recall from

Lemma 4 that entries of these datasets follow Gaussian distri-
bution of the from CN(hθsp,Rθvn ) where the subscripts in the
mean and covariance are used to signify the dependence on a
set of parameter. Based on the available likelihood function,
we describe how the parameters θsp, θvn associated with the
Alice–Bob and Eve–Bob channels can be estimated from DA

and DE , respectively, in Section IV-C1. We further consider
training datasets corresponding to the difference between an
incoming CFR and the reference CFR from the observed snap-
shots. We denote the datasets consisting of the difference of
the CFRs by DAA = {xAA

i }NA
i=1 and DEA = {xEA

i }NE
i=1 for Alice

and Eve, respectively. The data samples in DAA and DEA

follow the Gaussian distribution of the forms described in
Lemmas 5 and 6, respectively. Subsequently, these likelihood

functions are utilized to estimate the similarity parameters
given the estimates of θsp, θvn as described in Section IV-C2.

1) ESTIMATING THE PARAMETERS θsp AND θvn

Here, we discuss how the parameters θA
sp and θA

vn can be
estimated for the Alice-Bob channel. The same procedure
also holds for estimating the parameters associated with the
Eve-Bob channels, i.e., θE

sp and θE
vn. The ML estimates of these

parameters for a sample CFR h can be obtained via

θ̂
A
sp, θ̂

A
vn∈arg max θA

sp,θ
A
vn
L
(

h|θA
sp,RθA

vn

)
, (39a)

L
(

h|θA
sp,RθA

vn

)
= −M ln π − ln det RθA

vn

−
(

h − hθA
sp

)H
R−1
θA
vn

(
h − hθA

sp

)
, (39b)

which amounts to jointly maximizing the arguments of a non-
linear objective function. It can be proved that (39b) is not
a convex function of θA

sp, and as a result there is no unique
solution set for the optimization problem in (39a). In practice,
solving such a problem is far from trivial, especially since the
objective function is a non-linear function of large number of
parameters where multidimensional exhaustive search is not
feasible. As a workaround, the authors in [11], [44] propose
a suboptimal procedure to break the problem into two sub-
problems and estimate θA

sp and θA
vn via alternate maximiza-

tion. Each sub-problem involves numerically maximizing the
objective function of the form (39b) with respect to θA

sp or
θA
vn via an iterative local optimization technique such as the

Gauss–Newton algorithm. In other words, the maximization
processes are done sequentially over the dataset DA and in
an alternating manner between the two sets of parameters till
convergence is achieved. In the following, we elaborate on
each sub-problem for the specific channel model we described
earlier.

We first describe how one can obtain an estimate of θA
sp that

maximizes (39b) for a given estimate of θA
vn. In the following,

we use the N-exponential basis function defined as

Uv
N =

⎡⎢⎢⎢⎣
e
− j

(
− N−1

2

)
v[1]

. . . e
− j

(
− N−1

2

)
v[n]

...
. . .

...

e
− j

(
N−1

2

)
v[1]

. . . e
− j

(
N−1

2

)
v[n]

⎤⎥⎥⎥⎦ , (40)

for a vector v of length N . The partial derivative of Uv
N with

respect to v is readily computed as Dv
N = ∂Uv

N
∂v = − j�N Uv

N ,

where �N = diag([−(N − 1)/2, . . . , (N − 1)/2]). Further-
more, we recall that for arbitrary matrices A ∈ CN×P, B ∈
CM×P, QP×P = diag(q) and a vector q ∈ CP×1, one can
write vec{BQAT } = (A � B)q. Utilizing this result along
with the exponential basis function we can rewrite the spec-
ular path contribution introduced in (25) for the CFR model
as

h =
(

UψT
NRx

� UψR
NT x

� Uτ
Nf

)
ρ, (41)
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which greatly simplifies the calculation of the first and second
derivatives of h with respect to θA

sp. Specifically, the Jacobian
matrix for the above model is obtained via J(θsp) = JψT �
JψR � Jρ � Jτ where the Jacobian matrix’s components are
given by

JψT =
[
DψT

NT x
UψT

NT x
UψT

NT x
UψT

NT x
UψT

NT x

]
, (42a)

JψR =
[
UψR

NRx
DψR

NRx
UψR

NRx
UψR

NRx
UψR

NRx

]
, (42b)

Jτ =
[
Uτ

Nf
Uτ

Nf
Dτ

Nf
Uτ

Nf
Uτ

Nf

]
, (42c)

Jρ =
[
ρT ρT ρT 1T 1T j

]
. (42d)

The authors in [44] compute the first-order partial deriva-
tive, qθA

sp
(h|RθA

vn
), and the Fisher information matrix (FIM),

F(θA
sp|RθA

vn
), of the log likelihood function (39b), with respect

to the parameter θA
sp for a given observation h, as the following

qθA
sp

(
h|RθA

vn

)
= 2�

{
JH (θA

sp)R−1
θA
vn

(h − hθA
sp

}
, (44)

F
(
θA

sp|RθA
vn

)
= 2�{JH (θA

sp)R−1
θA
vn

J(θA
sp)}. (45)

Based on the above computations, a local optimization
technique is utilized in [44] to obtain an iterative rule for
estimating θA

sp. For the experiments we present in Section VI,
we employ the Gauss–Newton algorithm as

θ̂
A,i+1
sp = θ̂

A,i
sp + ζ F−1

(̂
θ

A,i
sp |Rθvn

)
q̂
θ

A,i
sp

(
h|Rθvn

)
(46)

for a step length ζ that should be chosen such that
L(h|θA,i+1

sp ,RθA
vn

) > L(h|θA,i
sp ,RθA

vn
). By applying this proce-

dure to all the training CFRs in DA, we obtain NA estimates

as {̂θA
sp,i}NA

i=1 whose average value is denoted by θ̄
A
sp in the

following.
After obtaining θ̄

A
sp, the maximization process alternates in

order to estimate θA
vn. To this end, first the contribution of the

specular paths from the CFRs in DA is removed by subtracting
h
θ̄

A
sp

from each training data. Subsequently, these new data

entries are stacked up to form an M × NA matrix H which,

in the following, will be used in order to estimate θA
vn. We first

note that all the parameters in θA
vn are continuous values except

for the number of diffuse virtual paths LA that takes on integer
values. As a result, the objective function in (39b) is not
continuous in LA and the partial derivative of (39b) does not
exist with respect to LA. In order to overcome this challenge,
we further take a sub-optimal approach and estimate LA in
a separate manner from the rest of the parameters in θA

vn. To
this end, we use an eigenvalue ratio method described in [45]
that estimates the number of harmonics present in a given
set of observations. Following this approach, we first obtain
the MLE of the covariance of H and denote it by CH. The
eigenvalues of CH are further denoted by ei, i = 1, . . . ,M.

Then, we choose L̂A in a way that
∑L̂A

i=1 ei∑M
i=1 ei

≥ η, for a predefined

value of η commonly chosen to be in the range [0.85,0.95].
We plug-in the estimated value of LA in the parameter vec-

tor to obtain θA
vn = [σA, αA, βA, L̂A]. Then, the log-likelihood

function for the zero-mean CFRs can be written as

L(H|θA
vn) = −MNA ln π − NA ln det RθA

vn
− Tr

(
HH R−1

θA
vn

H
)
.

(47)

The first-order partial derivative of L(H|θA
vn) with respect to

each parameter can be computed as [44]

∂L(H|θA
vn)

∂θA
vn[i]

= NA Tr

(
R−1
θA
vn

∂RθA
vn

∂θA
vn[i]

R−1
θA
vn

(R̂ − RθA
vn

)

)
(48)

for i = 1, 2, 3. Subsequently, the (i, j)th element of the FIM
corresponding to L(H|θvn) equals [44]

−E

[
∂2L(H|θA

vn)

∂θA
vn[i]∂θA

vn[ j]

]
= NA Tr

(
R−1
θA
vn

∂RθA
vn

∂θA
vn[i]

R−1
θA
vn

∂RθA
vn

∂θA
vn[ j]

)
.

(49)

To obtain explicit expressions for (48) and (49), one needs
to compute the partial derivative terms

∂Rθvn
∂θvn[i] . Considering

the Toeplitz structure of the covariance model described in
Lemma 4, we can write

∂Rq,n(θvn)

∂θA
vn[i]

= toep

(
∂νq,n

∂θA
vn[i]

,
∂νH

q,n

∂θA
vn[i]

)
, (50)

∂νq,n

∂σ
=
[
2σ, 0, . . . , 0

]
(43a)

∂νq,n

∂α
= 2α

[
1 − e−2πLβ,

(1−e−2πβ )

(
1− f L ( 1

N f
)

)
1− f ( 1

N f
)

, . . . ,
(1−e−2πβ )

(
1− f L (1− 1

N f
)

)
1− f (1− 1

N f
)

]
(43b)

∂νq,n

∂β
=
⎡⎣2πα2Le−2πβL,

2πe−2πβ
(

f L ( 1
N f

)−1

)
f ( 1

N f
)−1

+
2Lπ f L ( 1

N f
)(e−2πβ−1)

f ( 1
N f

)−1
−

2π f ( 1
N f

)

(
f L ( 1

N f
)−1

)
(e−2πβ−1)(

f ( 1
N f

)−1

)2

. . . ,
2πe−2πβ

(
f L (1− 1

N f
)−1

)
f (1− 1

N f
)−1

+
2Lπ f L (1− 1

N f
)(e−2πβ−1)

f (1− 1
N f

)−1
−

2π f (1− 1
N f

)

(
f L (1− 1

N f
)−1

)
(e−2πβ−1)(

f (1− 1
N f

)−1

)2

⎤⎦ (43c)
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∂RθA
vn

∂θA
vn[i]

= INRx ⊗ INT x ⊗ ∂Rq,n(θA
vn)

∂θA
vn[i]

, (51)

where the partial derivative for each parameter is obtained
in (43a)–(43c) shown at the bottom of previous page, for
f (m) = e−2π (β− jm). Plugging this in (48) and (49) leads to
computation of first-order partial derivative and the FIM of
the likelihood function. Then, an iterative approach like the
Gauss–Newton algorithm can be employed for estimating θA

vn
in a similar fashion to the case of θsp in (46). Afterwards,
the maximization process further alternates to estimate the

parameters θ̂
A
sp,i using θ̂vn.

2) ESTIMATING THE SIMILARITY PARAMETERS
We now describe how aA can be estimated based on the
available dataset DAA and the likelihood function in Lemma 5.
Similar approach can be taken for estimating aE based on DEA

and Lemma 6. Assuming an M × NA matrix HAA is formed
out of the dataset DAA, the MLE of aA given HAA can be
obtained via

âA∈arg max aA

(
NA ln det RH0 − Tr

(
HH

AAR−1
H0

HAA

))
.

(52)

We note that the estimates of the parameters θA
sp and θA

vn are
plugged in RH0 which makes RH0 a function of only aA in
the above maximization problem. Specifically, as aA appears
in the covariance matrix of a Gaussian distribution, a similar
estimation procedure to that of θvn can be employed here as
well. In fact, the expressions for the first-order partial deriva-
tive and the FIM of the likelihood function in this case are
similar to those in (48) and (49), respectively, except for the
fact that there is only one parameter to estimate in this case.
By considering the Toeplitz structure of the covariance model
described in Lemma 5, we can write

∂Rq,H0 (aA)

∂aA
= toep

(
∂νH0

∂aA
,
∂νH

H0

∂aA

)
, (53)

∂RH0 (aA)

∂aA
= INRx ⊗ INT x ⊗ ∂Rq,H0 (aA)

∂aA
, (54)

where the partial derivative can be obtained as

∂νH0

∂aA
= −2

[
(αA)2(1 − e−2πβA

)(1 − f LA
(0))

1 − f (0)
,

(αA)2(1 − e−2πβA
)(1 − f LA

( 1
Nf

))

1 − f ( 1
Nf

)
, . . . ,

(αA)2(1 − e−2πβA
)(1 − f LA

(1 − 1
Nf

))

1 − f (1 − 1
Nf

)

⎤⎦ , (55)

for f (m) = e−2π (β− jm). Subsequently, using the first-order
partial derivative and the FIM of the likelihood function, the
Gauss–Newton algorithm can be employed to estimate aA.

D. HyPhyLearn FOR CHANNEL SPOOFING DETECTION
As an alternative to the likelihood ratio-based approach of
Section IV-B for channel spoofing detection problem, we pro-
pose to utilize HyPhyLearn algorithm, listed in Algorithm
1. This problem is an instance of the setting introduced in
Section II as the statistical parametric models are available
for each behavior, the high complexity of which makes one to
resort to suboptimal parameter estimation procedure. As men-
tioned in Section IV-B the data corresponding to Alice and
Eve are collected in the snapshot setting, and subsequently
(imperfectly) labeled according to (33). Then, using these
collected CFRs, the underlying parameters of each likelihood
function in (31) are estimated. Next, the estimated parameters
are plugged in the available parametric models CN(0,RH0 )

and CN(h
E − h

A
,RH1 ), which subsequently are used to gen-

erate synthetic CFRs. Finally, the collected and synthetic
CFRs are incorporated in Step 4 of Algorithm 1 for the joint
learning of the classifier, utilized as a spoofing detector, and
the feature map. In Section VI, we present numerical results to
show the superiority of HyPhyLearn compared to the other
existing methods through various experiments.

V. CASE STUDY II: MULTI-USER DETECTION
As the second case study, we consider the optimum cen-
tralized demodulation of the information sent simultaneously
by several users through a Gaussian multiple-access channel
which is an important problem in multipoint-to-point digital
communication networks (e.g., radio networks, local-area net-
works, and uplink satellite channels). Even though the users
may not employ a protocol to coordinate their transmission
epochs, effective sharing of the channel is possible because
each user modulates a different signature signal waveform.
In this section, we consider the uplink of a cellular commu-
nication system where K users are asynchronously sharing a
channel to communicate with a base station (BS). The prob-
lem of multi-user detection (MUD) in this setting amounts to
inferring the information bit associated with each user from a
received signals in the multiple access channel.

A. MULTI-USER DETECTION PROBLEM
Consider the uplink of an asynchronous direct-sequence (DS)
Code Division Multiple Access (CDMA) system shared by
K users, employing long spreading codes, bandlimited chip
pulses and operating over a frequency-selective fading chan-
nel. Baseband equivalent of the received signal may be written
as

r(t ) =
P−1∑
p=0

K−1∑
k=0

Akbk (p)s′
k,p(t − τk − pTb) ∗ ck (t ) + w(t ),

(56)

where ∗ denotes the convolution operation, P is the number of
transmitted packets and s′

k,p(t ) denotes the kth user signature
waveform. Furthermore, Tb is the bit-interval duration, Ak

and τk denote the respective complex amplitude and timing
offset of kth user, and bk (p) is the kth user’s information bit
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in the pth signaling interval, whereas w(t ) is the complex
envelope of the additive noise term, which is assumed to be
a zero-mean, wide-sense stationary complex white Gaussian
process. Moreover, ck (t ) is the impulse response modeling
the channel effects between the BS and the kth user. We
assume the channel impulse response (CIR), ck (t ), takes the
form of a time-invariant multipath channel with L paths, i.e.,
ck (t ) = ∑L−1

l=0 αk,lδ(t − τ ′
k,l ), which is parameterized by the

complex path gains αk,l and the corresponding path delays
τ ′

k,l . Note that ck (t ) is assumed to be time-invariant over each
transmitted frame under the assumption that the channel co-
herence time exceeds the packet duration PTb. Regarding the
kth user signature waveform, we have

s′
k,p(t − τk − pTb) =

N−1∑
n=0

β
(n)
k,phSRRC (t − nTc), (57)

where {β (n)
k,p}N−1

n=0 is the pseudo-noise (PN) code employed by
user k for spreading its data bit on the pth symbol interval,
N is the processing gain, and Tc = Tb/N is the chip interval.
Furthermore, hSRRC (t ) denotes the square root raised-cosine
waveform as the bandlimited chip pulse which is, follow-
ing [46], time-limited to [0, 4T c].

At the BS, chip-matched filtering and chip-rate sampling
is done in order to convert the received signal to discrete time
domain. To this end, r(t ) is convolved with chip-matched filter
hSRRC (4Tc − t ) followed by sampling at a rate 2/Tc (Nyquist
rate). This results in

y(t ) = r(t ) ∗ hSRRC (4Tc − t )

=
P−1∑
p=0

K−1∑
k=0

bk (p)hk,p(t − pTb, τk ) + n(t ), (58)

where hk,p(t, τk ) = Aksk,p(t − τk )∗ck (t ) is called the effective

signature waveform for sk,p(t ) = ∑N−1
n=0 β

(n)
k,phRC (t − nTc),

and hRC (t ) represents a raised cosine chip waveform time-
limited to [0, 8T c). As hk,p(t − pTb, τk ) has a time-domain
support of [pTb, (p + 2)Tb + 7Tc] during the pth symbol in-
terval Ip = [pTb, (p + 1)Tb], the contribution from at most
three bits for each user, i.e., the pth, the (p − 1)th and the
(p − 2)th ones, is relevant assuming that τk + Tm < Tb, where
Tm stands for the maximum delay spread among all the K
users. Therefore, sampling the waveform y(t ) at rate M/Tc,
the MN-dimensional vector y(p) collecting the data samples
of the interval Ip can be expressed as

y(p) =
K−1∑
k=0

[bk (p − 2)hk,p−2(p) + bk (p − 1)hk,p−1(p)

+ bk (p)hk,p(p)] + n(p), (59)

where hk,p−i(p) and n(p) comprise the MN samples of
hk,p−i(t − (p − i)Tb, τk ), i ∈ {0, 1, 2}, and n(t ), respectively,
during Ip. We set M = 2 in the following discussion.
A compact representation of y(p) can be obtained by
relying on the notion of effective chip pulse defined

as gk (t, τk ) = AkhRC (t − τk )∗ck (t ), which is supported
on the interval [0,Tb + 8Tc]. Noting that hk,p(t, τk ) =∑N−1

i=0 βn
k,pgk (t − nTc, τk ), and defining gk ∈ CMN+8M−1×1

as gk = [gk (Tc/M, τk ), gk (2Tc/M, τk ), . . . , gk (Tb + (8M −
1)Tc/M, τk )]T , one can write hk,p−i(p) = Ck,p−i(p)gk , where
Ck,p−i(p) is a MN × (MN + 8 M − 1) dimensional matrix
that is a function of βn

k,p, obtained in details in (9)–(11)
of [46]. Then, we have

y(p) =
K−1∑
k=0

Ak (p)gk + n(p) = A(p)g + n(p), (60)

for Ak (p) = bk (p − 2)Ck,p−2(p) + bk (p − 1)Ck,p−1(p) +
bk (p)Ck,p(p), A(p) = [A0(p), . . . ,AK−1(p)], and g =
[gT

0 , . . . , gT
K−1]T . The elements of the noise vector, n(p), are

independent and identically distributed (i.i.d.) as a zero-mean
Gaussian with a variance N0/2, which lead to a signal to noise
ratio (SNR) of A2

k/N0 for the kth user.
It follows from this discussion that the MUD problem can

be cast as 2K -ary classification problem where the goal is to
find the vector of information bits b = [b0(p), . . . , bK−1(p)]
given an observation vector y(p). Assuming all the vectors
b ∈ {0, 1}K are a priori equiprobable the minimum distance
rule gives the maximum a posteriori decision [47]. Mathe-
matically, the MUD is equivalent to solving the minimiza-
tion problem arg min b∈{0,1}K y(p) −∑K−1

k=0 Ak (p)gk . How-
ever, the complexity of such detector is exponential in the
number of users [47] and in practice sub-optimal methods
like minimum mean square error (MMSE) detector [47] are
utilized in practice. We consider a case where the BS has
access to NK number of training data from the users in the
form of D = {yi,bi}NK

i=1, where yi has the form of (60) and bi

denotes the corresponding information bits vector. We further
assume that BS does not have access the perfect knowledge of
the true spreading codes from all the users in a similar scenario
to blind MUD [48].

B. PARAMETER ESTIMATION
The performance of the above MUD algorithms relies heav-
ily on the estimation of the channel parameters. It is shown
in [49] the joint MLE of these parameters requires an exhaus-
tive search over the continuous K-dimensional space [0,Tb)K ,
which imposes an exponentially increasing complexity in K
when the conventional grid search-based scheme is utilized.
As a workaround, alternative sub-optimal estimation meth-
ods of low-complexity are proposed to be used for practical
systems. Notably, the authors in [46] propose a two-step ap-
proach that first estimates the samples of effective chip pulse
g using the Least Squares (LS) criterion, and then extracts
the underlying channel parameters. In particular, given the
knowledge of the spreading codes and information bits for
all the users in the training dataset, the vector g may be
directly estimated by invoking the LS estimation procedure
ĝ = arg min x

∑NK
i=1 ||yi − A(i)x||2. Relying on ĝ. the authors

in [46] propose an ad-hoc algorithm to estimate the chan-
nel parameters. Specifically, the explicit parameters to be
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estimated include delays τk,l = τ ′
k,l + τk , amplitudes ak,l =

Ak |αk,l | and the phases φk,l = arg(ak,l ) for k = 0, . . . ,K − 1
and l = 0, . . . ,L − 1. We refer to the readers to Appendix F
of the long version of the current paper [1] for details of this
parameter estimation method.

C. HyPhyLearn FOR MULTI-USER DETECTION
As an alternative to classical methods, we can utilize
HyPhyLearn to solve the problem of MUD as a 2K -ary
classification problem. In particular, since we have access to
precise statistical parametric models for each class and we
lack access to an estimation procedure for the underlying
channel parameters that is both optimal and tractable, the
MUD can be framed within the setting described in Section II.
Indeed, we can use the available training data corresponding
to the users in the suboptimal estimation method described
in Section V-B to obtain the estimates of the channel
parameters for K users τ̂ = [̂τ0,0, . . . , τ̂0,L−1, . . . , τ̂K−1,L−1],
â = [â0,0, . . . , â0,L−1, . . . , âK−1,K−1] and �̂ =
[φ̂0,0, . . . , φ̂0,L−1, . . . , φ̂K−1,L−1]. Using these estimates
along with the imperfect knowledge of spreading codes for
the training data, we can then employ the parametric model
(60) to generate a synthetic data example associated with the
sequence of utilized information bits b. This synthetic data
sample is subsequently added to a synthetic dataset along with
its corresponding label b. Here, the learning-based classifier
in HyPhyLearn has 2K output neurons, each corresponding
to a specific information bits vector, which enables it to to
serve as a MUD method for the K-user system.

VI. NUMERICAL RESULTS
In this section, we numerically evaluate the performance of
our proposed solution, HyPhyLearn, described in Algo-
rithm 1 for the two case studies described in Sections IV
and V. This involves comparing the resulting performance
against that of the existing statistical classifiers and other
hybrid classification methods, and highlighting the superiority
of our proposed solution for the problems under study.

A. SPOOFING DETECTION PROBLEM
In the Alice–Eve–Bob setting, we begin with a scenario where
the coherence time of the Alice–Bob and the Eve–Bob chan-
nel are very large, and therefore the corresponding channel
parameters are fixed between the training and testing stages.
As mentioned in Section IV-B, the training data in this prob-
lem are collected by observing finite number of snapshots by
Bob. The training CFRs from each snapshot are subsequently
labeled using the heuristic test (33). The number of received
antennas and transmit antennas at Alice and Bob is set to
2. Also, following the discussion in [9] we assume Eve also
uses the same number of antennas to impersonate Alice. The
number of subcarriers is set to Nf = 20, which makes the total
number of samples associated with each CFR equal M = 80.
We assume the Alice–Bob parameters are σ 2

A = 20, α2
A =

200, βA = 0.02 and aA = 0.85, while σ 2
E = 26, α2

E = 250,
βE = 0.08 and aE = 0.65 are used for the Eve–Bob channel.

FIGURE 3. Spoofing detection accuracy for different classification
algorithms as a number of available training data for the case when
training and test stage belong to the same coherence time.

Furthermore, we set LA = 20 and LE = 16 as the number of
diffuse spectrum virtual paths, while the number of specular
paths are set to 4 for both channels in accordance with the
experimental measurements reported in [10].

Fig. 3 illustrates the spoofing detection performance of dif-
ferent methods for the above scenario averaged over 105 CFRs
from each Alice-Bob and Eve-Bob channel at the test stage,
where the x-axis denotes the number of snapshots observed
during the training stage. In particular, we have evaluated the
performance of HyPhyLearn for this problem, as described
in Section IV-D, and compared it with other classifiers de-
signed based on the likelihood ratio test with plug-in estimates
or existing ML algorithms. By looking at the resulting spoof-
ing detection accuracy, it can be seen that the performance of
the ML algorithms based on support vector machine (SVM)
and Gaussian mixture model (GMM) is limited in this case
due to limited (and mislabeled) training data. We note that
the GMM is used as a classifier here by assigning labels to
the clusters using the available labels corresponding to the
reference CFRs. Specifically, we have used the radial basis
function kernel [39] for the SVM and two components for the
GMM for these simulations. Furthermore, one can see that
the LRT method obtained in Section IV-B can improve upon
the performance of these ML algorithms by plugging the es-
timated parameters, as in Section IV-C, in the statistical para-
metric models. In these experiments, we also use the shrink-
age method [50] which improves the covariance matrix esti-
mation for each likelihood function. For this method, a perfor-
mance gain can be observed for this approach in comparison
to the no shrinkage case, assuming the shrinkage parameter
α is clarivoyantly chosen to maximize the spoofing detection
accuracy over the test dataset. This method is labeled as ‘LRT
(best shrinkage)’ in Fig. 3. However, in practice the parameter
α has to be estimated from the training data, which—as shown
in the figure with label ‘LRT (shrinkage)’—could deteriorate
the LRT performance as the available data includes mislabeled
samples.

VOLUME 3, 2022 65



NOORAIEPOUR ET AL.: HYBRID MODEL-BASED AND LEARNING-BASED APPROACH FOR CLASSIFICATION USING LIMITED NUMBER

Furthermore, we evaluate the performance of an existing
hybrid classification approach known as fine tuning [4], [26]
in DTL literature for this problem. In this method, we first
generate 5 × 105 synthetic data samples using the available
likelihood parametric functions with plugged-in estimates.
Then, a neural network with 3 hidden layers of 400 neurons
each is trained to classify the synthetic data for this example.
The training data are used afterwards to refine the weights
of this neural network. Notably, HyPhyLearn is shown to
outperform the aforementioned existing classification meth-
ods by relying on both available and synthetic data and jointly
using them in a learning-based classifier.

For the sake of comparison, we have also considered a
variation of HyPhyLearn that relies on a generative adver-
sarial network (GAN) for generating synthetic data, i.e., it
disregards the available physic-based models. We have ob-
served that the performance of this approach is impacted in
the limited data regime as GANs rely merely on the available
training data for generating further synthetic data of similar
distribution. In fact, for this example, we have verified that
HyPhyLearn based on GAN needs to be trained on 20000
data samples in order to achieve the same level of spoofing
detection accuracy as HyPhyLearn based on physics-based
models with 4000 samples. Regrading the specifics of GAN,
we have used a DNN of two hidden layers with 200 neurons
each as the generator, and a DNN with three hidden layers
with 300 neurons each as the discriminator. In our implemen-
tation of HyPhyLearn, the number of generated synthetic
data samples is set to 4 × 105. We have also used NNs with
3 hidden layers of 400 neurons each for Mψ and hφ1 , while
a NN with one hidden layer of 40 neurons is used for dζ . For
all hidden layers, the ReLU activation function is used. Fur-
thermore, Adam optimizer [39] with a learning rate of 0.0001
is used for training in this example. We also note that the
optimal Bayes decision rule, which relies on the knowledge of
the true parameters, results in the spoofing detection accuracy
of 0.996.

Next, we consider a more realistic scenario where the chan-
nels’ variations cause the training and test stage to not fall in
the same coherence time. In this case, Bob uses the heuristic
test (33) for some time as it does not have access to the
channel parameters in this period. Afterwards, it uses the data
collected in the previous coherence times to estimate the chan-
nel parameters for the current one. Fig. 4 depicts this setting
where the training stage consists of nc coherence times corre-
sponding to the Alice–Bob channel. Furthermore, in contrast
to Alice, Eve’s transmissions are assumed to be intermittent
due to the uncertainty associated with Eve’s behaviour. During
each coherence time corresponding to the Alice-Bob channel,
it is assumed that Bob collects 100 training data. Then, the
estimation technique described in Section IV-C is utilized to
estimate the channel parameters under each coherence time.
Fig. 5 demonstrates the system performance as a function of
number of coherence times in the training stage. Regarding
the physical setup, we have used the same system parameters
as those in Fig. 3, and assumed that the coherence time of the

FIGURE 4. Training and testing stages for the spoofing detection problem.
T AB
C and T EB

C denote the coherence time corresponding to the Alice-Bob
and Eve-Bob channels, respectively. The green bar indicates the time
interval within which a snapshot is observed by Bob.

FIGURE 5. Spoofing detection accuracy for the case where Bob collects
training data during certain number of coherence times before employing
a classification algorithm.

Alice–Bob channel is 4 times that of the Eve–Bob channel
for illustrative purpose. For DTL fine-tuning approach and
HyPhyLearn, the number of synthetic data generated for
each behavior in a coherence time is set to 20000. For these
two learning-based approaches, the training specifications for
are chosen to be the same as the ones used in Fig. 3. The
performance comparison again highlights the superiority of
HyPhyLearn in comparison to the existing statistical and
data-driven methods.

B. MULTI-USER DETECTION PROBLEM
In this section we present results of numerical simulations to
investigate the effectiveness of HyPhyLearn described in
Section V-C for the MUD problem. We choose the simulation
parameters based on the setting described in [46] and consider
a system with processing gain of N = 32 where the number
of users is either K = 3 or K = 5. Golden codes of length
32 are used by the BS as the pseudo-noise code in (57) and
the users’ amplitudes (Ak’s) are set to 2. In addition, a chip
interval of length Tc = 0.001 and a sampling rate of 2/Tc is
employed. A near-far ratio (NFR) of 10 dB is assumed, which
means the users’ amplitude are randomly unbalanced around
2 with a variance of ±5 dB. The fading channel between the
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FIGURE 6. BER performance of the MMSE multi-user detector and
HyPhyLearn as a function of SNR. The results are provided for two
different parameters, i.e., the number of users (K) and the mismatch
parameter (ρ).

users and the BS consists of 3 paths, which makes the total
number of unknown parameters in Section V-B to be 9 K .
We further consider a setting where the BS might not have
access to the perfect knowledge of the pseudo-noise sequences
for all the users at the time of detection, which would lead
to a mismatched situation. To account for this phenomenon,
we introduce a parameter ρ that in order to quantify the av-
eraged error in the pseudo-noise sequences at the BS while
decoding.

As the performance metric, we consider the bit error rate
(BER) at the BS while decoding the users’ information bits,
which is of major interest in digital communication systems.
As the MUD algorithm we employ the minimum mean square
error (MMSE) decoder introduced in [51], which is shown
to outperform other existing detection methods including
matched filter receiver and box-constrained maximum likeli-
hood detector [46]. As mentioned in Section V, MUD can be
also solved by a classifier aiming at distinguishing between 2K

different classes each representing a unique decoded sequence
of information bits. In this case, BER is directly related to
the classification accuracy of the trained classifier. For the
asynchronous system discussed in Section V, the interval
I2p = [pTb, (p + 2)Tb] contains most of the energy content of
the information symbol bk (p). Therefore, it is sufficient for the
MUD detector to process the data in the interval I2p in order
to obtain estimates of the symbols bk (p), ∀k = 0, . . . ,K − 1.

We present simulation results for the performance of the
MMSE detector in the above setting in Fig. 6, and compare
it with our proposed approach in Section V-C. Specifically,
the parameter estimation procedure for HyPhyLearn is done
under two different levels of model mismatch, i.e., ρ = 0.2

FIGURE 7. BER performance of the MUD as a function of the number of
training data available at each user.

and ρ = 0.25. Furthermore, the number of training data avail-
able from each user NT is set to 40. As a general observation,
Fig. 6 demonstrates that the performance of all the detectors
is deteriorated as the number of users and the value of ρ is
increased. The perfect MMSE is referred to the case where
the true pseudo-noise sequences are assumed to be known as
part of the implementation of the decoder. In particular, huge
performance gap between the perfect MMSE and the MMSE
decoder indicates the high sensitivity of the MMSE detector
to the mismatch. On the other hand, it is also highlighted that
our proposed approach can achieve a substantial gain over a
wide range of SNRs by dealing with the mismatch problem.
For HyPhyLearn, the number of generated synthetic data
is set to 106 for this example. We have also used NNs with
4 hidden layers of 300 neurons each for Mψ and hφ1 here.
Also, a shallow NN with one hidden layer of 40 neurons is
used for dζ , while ReLU activation function is used for all
the hidden layers. During training, Adam optimizer with a
learning rate of 0.0001 is utilized as the stochastic gradient
descent algorithm. In Fig. 7, the BER performance of the
multi-user detectors is investigated as a function of number
of available training data. For this example, SNR at the BS
is assumed to be fixed at the BS according to 8 dB. It is
demonstrated that increasing the number of data samples does
not lead to substantial performance improvements in the case
of MMSE method. This is attributed to the aforementioned
mismatch phenomenon in the pseudo-noise sequences which
prevents the MMSE detector from benefiting from the larger
amount of data considerably. Furthermore, it is further shown
that the performance gap between HyPhyLearn and the per-
fect MMSE shrinks as the number of data increases. However,
the degree to which this gap decreases is higher for the case
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of ρ = 0.1 in comparison to that of ρ = 0.25. Indeed, Hy-
PhyLearn gets more benefit from the data at lower levels of
mismatch where the parameter estimates enjoy higher levels
of accuracy.

VII. CONCLUSION
We have considered the problem of hypothesis testing in the
context of parametric classification where there is a known
model for each behavior but the corresponding parameters
are unknown. Towards designing a classifier in this setting,
we have taken into account several practical considerations,
including the assumptions that available training data are
limited and there could be labeling errors associated with
them. Furthermore, the model under each hypothesis is as-
sumed to be complex such that the MLEs of its parameters
are computationally intractable. In this vein, we have pro-
posed to use sub-optimal parameter estimation algorithms and
generate synthetic data leveraging the knowledge of statis-
tical models. Then, we have utilized the domain adversar-
ial framework for learning a classifier using these synthetic
data and the empirical training data. We have shown the ap-
plicability of our proposed approach in two tangible com-
munication scenarios, i.e., spoofing detection and multi-user
detection problems, where detailed models are available for
the training data. We have also shown through numerical re-
sults the superiority of our proposed approach in designing a
classifier under the aforementioned practical limitations with
respect to several existing statistical and machine learning
methods.

APPENDIX A
PROOF OF LEMMA 3
We apply Lemma 2 to the distributions pψ,θ∗ (z) and p

ψ,̂θ
(z)

for functions of the form 1{hφ (z)=1} where hφ ∈ H�. The
resulting inequality for pψ,θ∗ (z), for instance, would
be 2RZψ,θ∗ (H�) + 3

√
(log 2δ)/2Nr ≥ ∫

Aφ
pψ,θ∗ (z)dz −∑Nr

i=1 1{hφ (z)=1} where Aφ = {z|hφ(z) = 1, z ∈ Z, hφ ∈ H�}.
By summing the corresponding sides of the resulting
inequalities, we can write (61a)–(61e), shown at the bottom of

this page where (61c) and (61d) follows from the inequalities
|C| + |D| ≥ |C − D| ≥ |C| − |D|.

APPENDIX B
PROOF OF THEOREM 1
Starting from adding and subtracting the terms, Pψ,̂θ[eφ1 ] to
one side of Pψ,θ∗ [eφ1 ] = Pψ,θ∗[eφ1 ], we get

Pψ,θ∗[eφ1 ] = Pψ,θ∗ [eφ1 ] + Pψ,̂θ[eφ1 ] − Pψ,̂θ[eφ1 ] (62a)

≤ Pψ,̂θ[eφ1 ] + ∣∣Pψ,̂θ[eφ1 ] − Pψ,̂θ[eφ1 ]
∣∣ (62b)

≤ Pψ,̂θ[eφ1 ] + 1

2
dB� (pψ,θ∗ (z), pψ,̂θ (z)) (62c)

≤ Pψ,̂θ[eφ1 ] + 1

2
d̂A� (Zr,Zs) + RZr (H�) + RZs (H�)

(62d)

+ 3

2

√
(log 2/δ)/2Nr + 3

2

√
(log 2/δ)/2Ns), (62e)

where (62c) stems from the definition of dB� . Also, (62e) is a
result of Lemma 3 and noting that dA� is an upper bound for
dB� .

APPENDIX C
PROOF OF LEMMA 4
Note that the elements of qu in (27) are a linear combination of
L Gaussian random variables Au,l ∼ CN(0,Var(Au,l )) where
E[Au,l1Au,l2 ] = 0 for ∀l1 
= l2 under the WSSUS assumption.
Therefore, qu is also Gaussian with the following mean and
variance

E
[
qu[m]

] =
L−1∑
l=0

E
[
Au,l e

− j2π ( f0−W/2+m� f )l/W
]

=
L−1∑
l=0

E
[
Au,l

]
e− j2π ( f0−W/2+m� f )l/W = 0,

(63)

2RZψ,θ∗ (H�) + 2RZ
ψ,̂θ

(H�) + 3
√

(log 2δ)/2Nr + 3
√

(log 2δ)/2Ns (61a)

≥ sup
hφ∈H�

∣∣∣∣ ∫
Aφ

pψ,θ∗ (z)dz −
Nr∑

i=1

1{hφ (zr,i )=1}
∣∣∣∣+ sup

hφ∈H�

∣∣∣∣ ∫
Aφ

pψ,̂θ (z)dz −
Ns∑

i=1

1{hφ (zs,i )=1}
∣∣∣∣ (61b)

≥ sup
hφ∈H�

∣∣∣∣ ∫
Aφ

pψ,θ∗ (z)dz −
Nr∑

i=1

1{hφ (zr,i )=1} −
(∫

Aφ

pψ,̂θ (z)dz −
Ns∑

i=1

1{hφ (zs,i )=1}
)∣∣∣∣ (61c)

≥ sup
hφ∈H�

∣∣∣∣ ∫
Aφ

pψ,θ∗ (z)dz −
∫

Aφ

pψ,̂θ (z)dz

∣∣∣∣− sup
hφ∈H�

∣∣∣∣ Nr∑
i=1

1{hφ (zr,i )=1} −
Ns∑

i=1

1{hφ (zs,i )=1}
∣∣∣∣ (61d)

= dA�
(

pψ,θ∗ (z), pψ,̂θ (z)
)

− d̂A� (Zψ,θ∗ ,Zψ,̂θ ) (61e)
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Var
[
qu[m]

] =
L−1∑
l=0

Var
[
Au,l e

− j2π ( f0−W/2+m� f )l/W
]

=
L−1∑
l=0

Var
[
Au,l

] = α2(1 − e−2πβL ). (64)

The diagonal elements of R equal to Var[qu[m]]. For the
(m, n)th element (m 
= n), on the other hand, we can write

Cov[qu[m],qu[n]] = E
[
qu[m]qu[n]∗

]
(65a)

=
L−1∑
l=0

E
[
Au,l Au,l

]
e− j2π[( f0−W/2+m� f )l−( f0−W/2+n� f )l]/W

(65b)

=
L−1∑
l=0

Var
[
Au,l Au,l

]
e j2π (n−m)� f l/W (65c)

=
L−1∑
l=0

σ 2(1 − e−2πβ )e−2πβLe j2π (n−m)� f l/W (65d)

= α2(1 − e−2πβ )(1 − e
−2πL(β− (n−m) j

N f
)
)

(1 − e
−2π (β− (n−m) j

N f
)
)

. (65e)

As Cov[qu[m],qu[n]] only depends on the difference n −
m, and it equals to complex conjugate of Cov[qu[n],qu[m]],
the proof is completed.
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