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Abstract—Multi-camera networks are increasingly becoming pervasive in many monitoring and surveillance applications, and have
attracted much attention in distributed systems with collaborative, real-time decision-making capabilities. While in-network data
compression brings significant energy savings in camera nodes, signal representation using sparse approximations and overcomplete
dictionaries have been shown to outperform traditional compression methods. In this work, an end-to-end and real-time solution is
designed and implemented to enable energy-efficient and robust dictionary learning in distributed camera networks by leveraging the
spatial correlation of the collected multimedia data. Traditional distributed dictionary learning relies on consensus-building algorithms,
which involve communicating with neighboring nodes until convergence is achieved. Existing methods, however, do not exploit spatial
correlations in camera networks for improved energy efficiency. In contrast, low-computational-complexity metrics are employed in this
work to quantify and exploit the spatial correlation across camera nodes in a wireless network for efficient distributed dictionary learning
and in-network image compression. The performance of the proposed approach is validated through extensive simulations on public
datasets as well as via real-world experiments on a testbed composed of Raspberry Pi nodes.

Index Terms—Camera networks, dictionary learning, distributed consensus, image compression, mobile computing.
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1 INTRODUCTION

Motivation: Camera networks are real-time distributed systems
that cover large spaces and communicate over (wireless) net-
works to make decisions collaboratively. To enable surveillance
applications, in-network processing of the data captured by any
camera node is done using computationally cheap methods and
the data is transferred to the server when an event is detected. At
the centralized location the data is analyzed using computation-
intensive computer vision algorithms [2]. Distributed camera
networks have several advantages, including that the subject of
interest can be observed from several angles, which helps resolve
the problem of occlusion faced by individual cameras and avoid
single point of failure [3]. At the same time, for computation-
intensive applications, such as object detection on video data
captured by camera nodes, distributed camera networks often
move video data (generated throughout the time of operation at
30-60 fps) from battery-limited cameras in a network to a central
server. This operation is costly (in terms of time and energy),
reduces the mission lifetime of nodes, and is inherently unscalable.

These limitations call for efficient image-compression meth-
ods for transmission and storing of data in the network. Signal
representation using sparse approximations and overcomplete dic-
tionaries [4]–[7] have received considerable attention in recent
years in the area of image feature extraction, data compression,
and bit-rate reduction [8]–[10] for both storage and transmission.
This technique has been shown to achieve dramatic improvement
over JPEG/JPEG2000 compression techniques [9], [11], [12]. The
goal of dictionary learning is to learn an overcomplete dictionary
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D such that data samples, represented as a matrix Y , are well
approximated by no more than T0 columns of D. Mathematically,
the problem of dictionary learning can be expressed as,(

D,X
)
= argmin

D,X
‖Y −DX‖2F s.t. ∀s, ‖xs‖0 ≤ T0, (1)

where D ∈ Rn×K with K > n is an overcomplete dictionary
having unit l2-norm columns, Y ∈ Rn×S is the data available
at a centralized location, X ∈ RK×S are the sparse coefficients
of the data having no more than T0 � n nonzero coefficients
per sample, and xs represents the sth column in X . Note that,
while the dictionary-learning problem as formulated in (1) cannot
be efficiently solved due to the presence of the l0-norm, there
exist several computationally efficient and theoretically optimal
approximations of this formulation; see, e.g., [8], [13]–[18] and
the references therein.

Once a dictionary is learned, each node can obtain a sparse
approximation of the signal that can be used to compress the image
captured by the nodes and consequently help save significant
space when storing the data and energy when offloading data to
a centralized location or to neighboring nodes. Consensus forms
the communication primitive to be used between neighboring
camera nodes for dictionary learning in a setting where the data
is distributed such as in distributed camera networks [22]–[24].
In particular, consensus is an iterative process where the camera
nodes communicate with their neighbors for a fixed number
of iterations or until convergence. This iterative communication
introduces an additional overhead of energy consumption on nodes
in the network. Based on our experiments (discussed in more
detail later in the article), we observed that executing distributed
dictionary learning in a network of 10 nodes consumes 20% of
battery capacity per node in the network. This figure is based
on a lithium battery pack expansion board for Raspberry Pi with
maximum battery capacity of 3.8 Ah [25].

Novelty: Our focus in this paper is on proof-of-concept of an
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Fig. 1: Three different scenarios/environments where image compression using dictionary learning brings benefits in saving battery capacity of camera nodes in the network. Each
sensor node can serve as a Data Provider (DP) or a Resource Provider (RP). The RP nodes have sophisticated computational capabilities and higher battery capacity than DP nodes.
(a) Mars exploration with Curiosity rover [19]. (b) A network of Autonomous Underwater Vehicles (AUVs), which serve as DP and continuously capture raw data, while RPs—such as
Mesobot and Sentry [20]—create bathymetric maps and perform sidescan of the seafloor by processing images. (c) Deployment of multiview cameras in a smart home [21]. (d) Image
compression is a promising application for sparse representation in dictionary learning; as cameras are distributed, consensus algorithms are employed as the communication primitive
to reach the agreement among the cameras.

end-to-end and real-time solution for energy-efficient and robust
dictionary learning in distributed camera networks. To this end,
our main contribution is development of a real testbed-based
evaluation of a solution that exploits spatial correlation of the data
collected by camera sensors. Many solutions exist that make use
of dictionary learning at camera nodes for surveillance applica-
tions [26], [27]. In all these solutions, however, dictionary learning
is only executed locally at each node, which is energy draining for
the nodes. In our envisioned scenario, we consider a system of bat-
tery powered camera nodes communicating with each other over a
wireless network to learn the dictionary. The learned dictionary is
used to compress images captured by the cameras before sending
to the remote server. An object-detection algorithm is run on these
images at the server, where the object to be detected depends on
the purpose of surveillance by the camera nodes. Our focus was to
develop energy-efficient distributed dictionary-learning techniques
that can then be used for compressing images captured by camera
nodes and to increase the lifetime of the nodes. Figs. 1(a)–(c)
show examples of various futuristic applications of the proposed
distributed solution in various environments such as on Mars and
in underwater environments as well as for consumer applications
such as in smart home cameras. Our work lies at the intersection
of three domains—dictionary learning, image compression, and
consensus—and its goal is to bridge the gap between them to
support a real-world application, as depicted in Fig. 1(d).

Approach: Image sensing is done via directional sensors and
the visual area captured by these sensors is defined by the Field of
View (FoV) of the camera nodes. In this article we utilize the spatial
correlation in the data captured by camera nodes in the network to
reduce the energy consumption of the network during distributed
dictionary learning. To enable this approach we have to keep in
mind the constraints of distributed networks in a real-world set-
ting, i.e., the global knowledge of topology may not be available to
the nodes in the network and the interconnection between nodes in
the network cannot be described by a complete graph. We rely on
computationally cheap metrics to quantify the correlation of data
among camera nodes to enable long-term deployment of battery
limited camera nodes. Distributed dictionary learning can be used
to enable a variety of applications in a distributed camera network
such as background modeling, object classification, and image
denoising [23], [27]–[31]; in this article, we focus on in-network
image compression. Finally, we will quantify the performance of
images compressed using estimated dictionary on object detection
algorithms.

Contributions: The following are our main contributions.

• We design and implement an end-to-end system to enable

energy-efficient sensing of multimedia data at a local
distributed camera network and computation of the data
in a remote cloud infrastructure.

• We develop a novel protocol that identifies camera nodes
in the network with correlated image data by relying on
data-driven metrics and using only local knowledge of the
topology available to the camera nodes.

• We quantify the trade-off in energy savings and accuracy
loss of our solution on publicly available datasets and via
experiments on a testbed of Raspberry Pis.

Article Organization: In Sect. 2, we present our pipeline
and workflow for image compression using a dictionary-learning
framework. In Sect. 3, we detail the design of our protocol that is
proposed to bring energy savings to the distributed dictionary-
learning algorithm executed in a camera network. In Sect. 4,
we provide quantitative results that demonstrate the merits of
our contributions via both simulations and testbed experiments.
In Sect. 5, we cover the work done in the area of distributed
systems employing consensus and analyze the difference of these
approaches from ours. Finally, in Sect. 6, we conclude our article
and outline future work.

2 DICTIONARY LEARNING AND CONSENSUS IN A
DISTRIBUTED CAMERA NETWORK

In this section, we present our envisioned scenario in a distributed
surveillance system as shown in Fig. 1(c). We assume that the
network consists of a set of resource-constrained camera nodes
and limited battery capacity. Our scenario, as shown in Fig. 2, is
that a network of local nodes perform dictionary learning collab-
oratively. The estimated dictionary is then used for compression
of incoming images. The compressed images are then sent to the
cloud for storage and further analysis on these images are done on
the cloud (such as person or object detection) [32], [33]. We now
present two application workflows used in this article to realize our
above envisioned scenario, namely, distributed dictionary learning
and image compression, and the different tasks implemented
within these workflows.

Assume N camera nodes used for surveillance form an ad-
hoc network and communicate over a wireless network. Any
wireless communications technology such as Bluetooth, WiFi
Direct, 802.11 ad-hoc mode, or Near-field Communication (NFC)
can be used in this scenario without relying on any existing fixed
infrastructure. Two camera nodes are considered neighbors in a
certain time window if they can communicate with each other.
Each node is capable of storing some local data, performing
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Fig. 2: Our envisioned pipeline for image compression using a dictionary learned collaboratively and the compressed images being sent to the cloud for storage or further processing.
The figure shows different tasks of this pipleine and the location where they are implemented.

���������	�
������

���������	�����

�
�����������

�

�

��������
�

����
	���
���

�������������

�

�

�

�

�

(a) (b)

Fig. 3: (a) Workflow for distributed dictionary learning executed at each camera node
in the network. Task 1, 2, and 3 are executed locally at each node; whereas Task 4,
i.e., consensus, involves communication among nodes that are in communication range;
(b) Workflow for image-compression application that uses the estimated dictionary to
calculate the sparse coefficients; this workflow is executed locally at each node.

computations on it, and exchanging messages with its neighbors.
Next, we assume each node i, where i ∈ [1 · · ·N ], has a
collection of local data, expressed as a matrix Yi ∈ Rn×Si , with Si

representing the number of data samples at the ith node. In case of
distributed camera networks, each camera node is taking images
of a scene from a different angle, which form the data samples at
the ith node. We can express all this distributed data into a single
matrix Y = [Y1 · · ·YN ] ∈ Rn×S , where S =

∑N
i=1 Si denotes

the total number of data samples distributed across the N nodes.
We now cast the dictionary-learning problem: assume that data

Y is available at a centralized location, the problem of learning
an overcomplete dictionary D can be expressed as in (1), where
X ∈ RK×S are the sparse coefficients of the data having no
more than T0 � n nonzero coefficients per sample, and xs
represents the sth column in X . In a distributed setting, the goal
of dictionary learning is to have individual nodes collaboratively
learn dictionaries {D̂i}i∈N from global data Y such that these
dictionaries be close to a dictionary D that could be learned from
the global data Y in a centralized manner. We now present the
tasks of this algorithm, as described in [23]—see also Fig. 3(a).

Task 1–Sparse coding: Each node i uses the local estimate
D̂i of the centralized dictionary D and calculates the sparse
coefficients of its local data by solving the following equation
without collaborating with other nodes.

∀s, x̃(t)i,s = arg min
x∈RK

‖yi,s − D̂(t−1)
i x‖22 s.t.‖x‖0 ≤ T0, (2)

where yi,s and x̃(t)i,s represent the sth sample of the data and its
coefficients at node i at the tth dictionary learning iteration. It is
worth noting here that the sparse coding task as formulated in (2)

is known to be NP-hard. Nonetheless, there exist several variations
of this formulation, many of which are based on fast greedy
strategies, that approximate (2) in a computationally efficient
manner [34].

Task 2–Dictionary update: Dictionary update stage involves
computing the dominant left (u1)- and right-singular (v1) vectors
of the “reduced” error matrix Ê(t)

i,k,R. The Cloud K-SVD algorithm

of [23] defines d̂(t)i,k = u1 and x̂
(t)
i,k,R = d̂

(t)T

i,k Ê
(t)
i,k,R, where

u1 is the dominant vector of a matrix M̂ (t) that is formally
described in [23]. We need to only worry about calculating u1
collaboratively. To this end, at each node, M̂ (t)

i = Ê
(t)
i,k,RÊ

(t)
i,k,R

is calculated. Our goal now is computing the dominant eigenvector
of M̂ (t) in a collaborative manner. In order to estimate the
eigenvectors in the distributed network, Cloud K-SVD algorithm
uses the distributed power method.

Task 3–Power method: Power method is an iterative proce-
dure used to estimate the eigenvectors of a matrix. Power method
is run for a fixed number of iterations or until convergence.
Cloud K-SVD algorithm is interested in distributed power method
as Mi’s are distributed in the network. To this end, each site
calculates zi = M̂

(t)
i q̂

(tp−1)
i locally, where q̂(tp−1)i denotes an

estimate of the dominant eigenvector of M̂ (t) at ith site after
(tp − 1) power method iterations. We initialize each site with the
same value (qinit). In Cloud K-SVD, one of the ways that this
can be achieved is if each node uses the same seed for a random
number generator. Next, the sites collaborate to calculate v̂(tp)i =∑

i M̂
(t)
i q̂

(tp−1)
i at each site. The normalized v̂(tp)i is an estimate

of the dominant eigenvector of M̂ (t).

Task 4–Consensus averaging: To calculate the approxima-
tion of

∑
i M̂

(t)
i q̂

(tp−1)
i , nodes in the network make use of

the distributed consensus technique. Each node is initialized as
z
(0)
i = M̂

(t)
i q̂

(tp−1)
i at each node. We now give an example

of how the consensus-averaging problem in a network can be
defined. Let Z(0) = [z

(0)
1 , · · · , z(0)N ]> be the initial value at

each node. Each node achieves perfect consensus averaging as
tc → ∞, where tc is the number of consensus iterations, and
obtains Z(∞)>

i,T = 1
N

∑N
j=1 z

(0)
j = 1

N

∑N
j=1 M̂

(t)
j q̂

(tp−1)
j .

We take advantage of the wireless medium being inherently
broadcast and hence use a broadcasting-based consensus method
proposed in [35]. We use the asynchronous time model, which
is well matched to the distributed nature of sensor networks. In
this model, each sensor node is assumed to have a clock that
ticks independently according to a Poisson process; consequently,
the inter-tick times are exponentially distributed and independent
across nodes and over time [35]. The asynchronous broadcast
consensus assumes each node i broadcasts its own data to its Ni

neighboring nodes within its communication range. The neigh-
bors, which received the data, update their data according to the
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weighted average of their current data as follows,

z
(tc+1)
k = γz

(tc)
k + (1− γ)z(tc)i ,∀k ∈ Ni, (3)

where γ ∈ (0, 1) stands for the mixing parameter, which weights
the data values from each node, and Ni denotes the neighboring
nodes of the ith node. The remaining nodes in the network update
their values as,

z
(tc+1)
k = z

(tc)
k ,∀k /∈ Ni. (4)

Image compression: In Fig. 3(b), we show the workflow for
image compression algorithm. Once a dictionary has been learned
by the algorithm explained above, it can be used in an image com-
pression scheme in the following way. At the ith node, for a new
incoming image or an image that is to be sent to the remote server,
we first form the set of vectors from non-overlapping patches of
the image. This is denoted by {yj}Lj=1 or Y , where L is the
number of patches. Next, we estimate the sparse approximation X
of Y using the estimated dictionary D̂i. The non-zero coefficients
are quantized, for which a uniform quantization scheme along
with thresholding is used [36], [37]. The quantized X matrix is
then entropy coded to form a bit sequence. The compression is
done by finding the sparse coefficients, which are then vector
quantized before transmission. We can change the number of
sparse coefficients to impact the amount of data in terms of number
of bits transmitted.

3 ENERGY EFFICIENT DICTIONARY LEARNING

In the last section, we discussed the scenario of how local
distributed network and the remote cloud network can combine
their sensing (local camera nodes) and computational (remote
cloud) capabilities to implement a distributed surveillance system.
We also introduced a distributed dictionary learning algorithm to
accomplish this task. However, distributed dictionary learning is
an energy-intensive technique, which reduces the battery capacity
of cameras and consequently the mission lifetime of the network
nodes. Our goal in this section is to present a solution to reduce
the energy consumed by the nodes to perform dictionary learning
in a camera network. To this end, we utilize a low-computational
metric to identify nodes in the network with correlated data. We
design a novel protocol that identifies such nodes. We also explain
the challenges associated with identifying these nodes and provide
novel solutions to address these challenges.

3.1 Overview of the Proposed Solution
We now explain how our proposed solution is executed in a sensor
network to reduce the energy consumption of the network when
distributed dictionary learning algorithm is run at the nodes. The
aim of the proposed method is to reduce the energy consumption
of the network when distributed dictionary learning algorithm is
run at the camera nodes. To this end, we first identify only those
nodes in the network that have correlated multimedia data. In
Sect. 3.3 we present an algorithm that uses features of camera
sensors to identify camera nodes with correlated data by utilizing
the attributes of the camera nodes. However, choosing only a
certain subset of nodes and silencing or shutting down other nodes
can cause the network to be disconnected. This problem is further
exacerbated because, as explained in Sect. 3.4, global knowledge
of topology of the network may not be available to individual
nodes. To this end, we present an algorithm in Sect. 3.5 to select a
subset of nodes without disconnecting any node from the network.

(a) (b)

Fig. 4: (a) Field of View (FoV) and the communications range of the cameras for
scenario that was mentioned in Fig. 1(c)—as an example, the FoVs’ of nodes n1–n3

are overlapping, but the FoVs’ of n7–n8 have zero overlap although they are in the
communication range of each other; (b) Connectivity of the cameras, based on their
communication range and FoVs’ overlap. These overlapping FoV nodes are shown with
the dashed lines in the figure. The subsets of nodes are selected in such a way as to
leverage the overlap of the neighboring nodes.

With these subset of nodes we perform energy efficient distributed
dictionary learning.

3.2 System Model

We consider a scenario with a number of heterogeneous camera
nodes as in Fig. 1(c). We divide these camera nodes into two cate-
gories, namely, Data Provider (DP) and Resource Provider (RP).
The DP nodes are dumb nodes in the sense that they are severely
resource constrained and have limited computational capabilities.
The RPs, on the other hand, have sophisticated computational ca-
pabilities and higher battery capacity than DPs. In a homogeneous
environment, where there is no difference between the hardware
capabilities of devices, we can assume that the role of RPs can
be randomly selected or given to nodes that have residual battery
capacity over a certain value.

3.3 Quantifying Spatially-correlated Nodes

To reduce the energy consumption of the network during dis-
tributed dictionary learning, we identify nodes in the network that
have correlated data. Furthermore, we silence these nodes with
correlated data, i.e., these nodes do not participate in the consensus
process, which results in saving the battery capacity of the network
and will extend the mission lifetime of the camera network. To this
end, we utilize the Field of View (FoV) of the camera nodes, which
refers to the directional view of a camera sensor and is assumed
to be an isosceles triangle (two-dimensional approximation) [38].

To identify camera nodes with spatially correlated data we
utilize the following attributes of the camera nodes, (i) camera
configuration, i.e., area of overlap between FoV of two cameras
and (ii) data collected by the nodes. The former technique is more
helpful when the nodes have been deployed with known FoV
whereas the latter is helpful when the camera configuration is not
known in advance. We also allocate a fixed energy budget for the
RPs for this phase, i.e., we assume that each RP can only spend
a pre-defined Esetup [Wh] to identify spatially correlated nodes
in its neighborhood. This is done to keep the overhead of our
solution low. We now explain in detail how these two techniques
are implemented.

Field of View (FoV): Since the FoV of cameras is limited to
the area they observe, the information they get is directly related to
the directional sensing and configuration of the cameras. Assume
a camera’s FoV is described by (P,R, ~V , α) as in [38], in which
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P stands for the location of the camera, R represents the sensing
radius, ~V indicates the sensing direction (i.e., the center line of
sight of the camera’s FoV), and α is the offset angle. Focal length
of each camera, its location, and its sensing direction (shown by
f , P , and ~V , respectively) can be estimated as shown in [39]. A
model for the spatial correlation can be derived based on the above
parameters as can be seen in [38]. However, this information is not
always available or may change over time.

Similarity metric to identify correlated nodes: In
many cases, specially in unknown environments, the coordi-
nate/specification or configuration of the cameras is not known.
This can happen when camera nodes are deployed randomly
or if the configuration has changed over time. If the camera
configuration is not available we are motivated to use the data
captured by the camera to identify the nodes in the network that
have correlated data. Each DP identifies the RP node with which
it will communicate based on metrics such as max received signal
strength or residual battery capacity. Next, the RPs have to identify
which of the DPs are spatially correlated and for that the DPs send
a histogram of their collected online image data; such payload
would include {nodeID, HnodeID}. We choose a normalized
similarity metric S(i, j) that gives the intersection between the
histograms of two images [40]. This metric is used to quantify
data correlation between different camera nodes as,

S(i, j) =

∑b−1
k=0 min(Hk

i , H
k
j )∑b−1

k=0H
k
i

, (5)

where the histogram Hk
i of node i is a b-dimensional vector, and

b is the number of bins in the histogram with k as the index of
array H . The data collected by the cameras are in the RGB space.
Therefore, we calculate S(i, j) by first computing the histogram
with b equal to 10 bins of each color channel separately for
images of both nodes i and j. Now, by using (5), we calculate
the intersection of histogram of each channel separately for the
two images. This algorithm in [40] identifies the number of pixels
that are found in both images and then takes an average across the
channels.

3.4 Challenges for the Selection of Correlated Nodes
We now present challenges associated with selecting correlated
camera nodes in the network. These challenges mainly arise
because the global knowledge of the topology of the network may
not be available. To this end, we identify two types of nodes,
namely, critical nodes and nodes with overlapping field of view.

Critical nodes: A node is defined as a critical node if, when
removed from the network, it will cause any of its neighboring
nodes to be disconnected from the rest of the network. For
example, in Fig. 4(a) n7 is critical to node n8 because when
node n7 is removed, n8 cannot communicate with the rest of the
network. We identify the nodes that have only one neighbor as the
end nodes (ne). Any of the end nodes cannot be critical because
removing them will not make the network disconnected. A node
in the distributed camera network can qualify as either a critical or
non critical node. We would like to point out that when the spatial
correlation between camera nodes is 1, the proposed method can
be equivalent to the case where no data correlations exists among
the nodes, i.e., dictionary learning happens at each individual node
in the network.

Nodes with overlapping field of view: We make a note here
that the nodes that have overlapping FoVs have spatially correlated
data, but may not necessarily be within the communication range

of each other. The nodes that are in the same FoV but not in the
communication range of each other cannot know about each others
presence and hence both nodes will remain active to participate
in the consensus process. For example, in Fig. 4(b), we see that
nodes n1–n3 have overlapping FoVs; as a result these nodes have
correlated data and we can pick one of these nodes to participate
in the consensus process. Similarly, while nodes n4–n6 have
overlapping FoVs, they are not in the communication range of
each other and have only n5 as common node; as a result, they
know of each others presence only via node n5.

To identify the presence of nodes in communication range
of each other, each RP broadcasts the data packets that it has
received from its neighboring RP. This will be only done if the
RP has not exhausted its energy budget (Esetup). To reduce the
bandwidth and energy required to identify correlated nodes and
prevent flooding the network, each node will communicate with
only its neighbors. Also, identification of correlated nodes will
only be done once after the network is set up.

3.5 Selecting a Subset of Nodes
To save the battery capacity of the network we select a subset
of nodes in the network. To this end, we identify nodes in the
network that have correlated data. Since only a subset of nodes are
run, this leads to saving the energy of the network and increasing
the mission lifetime of the network. As discussed in the last
section, two challenges in distributed camera networks are that
nodes might not be in field of view of each other or they may not
be in communication range of each other. These two challenges
can exist together or individually at each node. Identifying nodes
with correlated data can only be achieved using local knowledge
of the topology available to the nodes because construction of
global topology of the network is energy and time consuming.
We will later also quantify the battery capacity that is saved by
using our proposed methodology of selecting of subset of nodes
to do distributed dictionary learning in comparison to existing
distributed dictionary learning approaches.

Neighborhood discovery: Neighborhood discovery is a two-
step process where each camera node identifies its own neighbors
as well as the neighbors of its neighbors. To this end, each node
broadcasts a packet with the following information: node ID and
residual battery capacity {nodeID, ResBatCap}. Once each node
receives the information from its neighbors, it updates the set
of neighboring nodes given by NnodeID. It then broadcasts this
packet payload given by: {nodeID, NnodeID} Upon receiving
this packet, the neighboring node updates its data structure, which
stores information about the neighbors of its neighbors.

Identifying critical nodes: We present three steps that each
node can use based on the available local information to identify
if it is a critical node. As mentioned earlier, the global knowledge
is not always available and our proposed approach focuses on
circumventing this constraint. For illustration, we consider two
neighboring nodes, ni and nj , and assume the following:

1) All RPs are considered critical nodes;
2) If a node has no neighbors other than critical nodes and

is not an ne node, then it is identified as a critical node;
3) If the neighbors of node nj are a subset of node ni’s

neighbors, then node ni becomes critical to node nj .

Various works have been done in this area that use distributed
depth first search (DFS) and other spanning tree-based algorithms
to find critical nodes in the network [41], [42]. These methods
require passing multiple messages and increase network traffic
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Fig. 5: Illustration of the proposed protocol to reduce energy consumption of the nodes
in the network to execute distributed dictionary learning. Tasks performed locally at each
node are shown using black dots. Task 1 identifies neighbor of each node in the network,
Task 2 involves critical node selection procedure at the DPs, Task 3 involves selecting the
nearest RP of each DP, and Task 4 involves identifying the spatially-correlated nodes.

and total energy consumed by the nodes. We, on the other hand,
use only local knowledge available to the nodes to find the set of
critical nodes. The conditions mentioned above may not identify
the critical nodes of the network as the global knowledge of the
topology of the graph is not available to the nodes. They, however,
help each node in making a local decision if it is a critical node to
its neighboring nodes and if removing the node, its neighbors will
become disconnected from the network.

Communication protocol: Fig. 5 illustrates the timing dia-
gram for the set of nodes and the corresponding tasks. We consider
two DPs that are exchanging data with the chosen RPs. A signal is
broadcast from RPs and the DPs acknowledge the signal with the
requested information. Our first goal is to identify nodes whose
collected data is highly correlated by utilizing the techniques
mentioned earlier. When each node has identified the node to
which it is spatially correlated, they inform each other. One of the
nodes among the pair of spatially-correlated nodes is considered as
the member of the subset of nodes selected to execute distributed
dictionary learning. The nodes among the group that is spatially
correlated are members of the subset. If there are multiple nodes
with data correlation higher than a threshold, then only one of
those is active and the others do not participate in the process. If
one or more nodes among the group of nodes is critical, then the
critical nodes are part of the subset of nodes that participate in the
process. This is because we have to make sure that the topology in
the subset remains connected, otherwise some of the nodes may
not be able to take part in the consensus process. If none of them is
critical, then the node with the highest number of neighbors within
its communication range is in the subset. The packets forwarded
by RP to its neighboring RP consists of {RPnodeID, DPnodeIDs,
Hi, Hj}.

4 PERFORMANCE EVALUATION

The goal of this section is to present the performance of distributed
dictionary learning algorithm in terms of energy consumed and
accuracy achieved using our proposed protocol. We present our

results on publicly available multiview camera datasets and dataset
collected via experiments. We also discuss experimental results
obtained on a testbed composed of Raspberry Pi nodes to study
the performance of the proposed solution in a real-world setting.

Metrics: Our goal in this paper is to understand the impact
of using dictionary learning algorithm for image compression on
a real-world application like object detection. To this end, we
have used two metrics, namely, mean squared error (MSE) and
precision. MSE is used as a metric to show the performance
of our algorithm after compressed image is reconstructed at the
server for object detection. Furthermore, we use “precision” to
measure the accuracy of running an object detection algorithm on
compressed images. We analyze dictionary-learning performance
using the following metrics.

• Mean Squared Error (MSE): The pixel-wise mean squared
difference between the image reconstructed via estimated
dictionary/sparse coefficients and the original one.

• Area Under Curve (AUC): The area under the Receiver
Operative Characteristic (ROC) curve, which measures the
object-detection accuracy.

• Energy: The energy consumed by the Raspberry Pi de-
vices, in Wh.

4.1 Public Dataset

We first present our results on a public dataset. We use the Multi-
camera Pedestrian Videos dataset [43] by The Ecole polytechnique
federale de Lausanne (EPFL). We will discuss the different steps
required to prepare the data for distributed dictionary learning, cost
of dictionary learning, and performance of distributed learning on
this dataset and using our proposed solution.

Datasets: The dataset [43] consists of three different scenarios
captured by four digital video cameras placed in different loca-
tions. The video format is DV PAL, downsampled to 360 × 288
pixels at 25 fps. The dataset consists of 4 different locations and
we show two example sequences from the dataset in Fig. 6. Un-
fortunately, the dataset does not provide any information about the
camera configuration; hence, we identify nodes that are spatially
correlated by executing (5) on data captured by these nodes.

Data preprocessing: We take non-overlapping 8 × 8 patches
from each image frame, convert each patch to a one-dimensional
vector. This vector becomes a column of data matrix Y . We take
multiple such samples from different image frames and place them
at random column indices. By taking a fixed number of patches
from the original image we create a new image that is lower in size
than the original one. Running dictionary learning algorithm on
this new image, instead of the original image, significantly reduces
the computational cost at a camera node. We also preprocess
images by first converting each of them to gray scale with pixel
values in the range 0 to 255, subtracting the mean from each
image, and normalizing each image using 2-norm.

Energy savings vs accuracy tradeoff: The existing work in
the development of dictionary learning algorithms have focused on
maximizing the performance of the algorithm in terms of accuracy
achieved by the algorithm. Our work, on the other hand, focuses on
identifying “good-enough” parameters, i.e., parameters that give
acceptable accuracy in each frame of the video with significant
savings in time and energy as these algorithms have to be run on
resource-constrained devices. To this end, we study the accuracy-
energy tradeoff of various parameters in the dictionary learning
algorithm and use it to select the parameters that can be used in
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6: Example scenarios—(a-d) room and (e-f) terrace—at a particular time slot taken from cameras with varying viewing angles and field of view. These images are part of a
multiview dataset [43] and are used in our experiments to study the energy-efficiency performance of distributed dictionary learning.
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Fig. 7: Public dataset: Accuracy-energy tradeoff of different parameters of distributed learning algorithm. (a) Accuracy obtained by varying number of atoms (K) in a dictionary. Left
y-axis is mean squared error and Right y-axis is the object detection accuracy in terms of area under curve of ROC curve; (b) Energy consumed by the dictionary learning algorithm by
varying number of atoms in a dictionary; (c) Accuracy obtained by varying number of training samples in the data (L). Left y-axis is mean squared error and Right y-axis is the object
detection accuracy in terms of area under curve of ROC curve.

# Training Samples (L)
100 200 300 400 500

C
o
n

s
u
m

e
d

 E
n

e
rg

y
 [

%
]

0

5

10

15

20

25

Computation

Communication

# Dictionary Learning Iteration (Td)
1 3 5 7 9

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0

0.2

0.4

0.6

A
re

a
  

U
n

d
e

r 
C

u
rv

e
 (

A
U

C
)

0.5

0.6

0.7

0.8

0.9

1

Mean squared error

Area under curve

# Dictionary Learning Iterations (Td)
1 3 5 7 9

C
o
n

s
u
m

e
d

 E
n

e
rg

y
 [

%
]

0

2

4

6

8

10

12

14

16

18

20

(a) (b) (c)

Fig. 8: Public dataset: (a) Energy consumed by the dictionary learning algorithm by varying number of training samples (L) in the data; (b) Accuracy obtained by varying the number
of dictionary learning iterations (td). Left y-axis is mean squared error and Right y-axis is the object detection accuracy in terms of area under curve of ROC curve; (c) Energy
consumed by the dictionary learning algorithm by varying the number of dictionary learning iterations.

the implementation of dictionary learning algorithm on a resource-
constrained device for a real-world application. To this end,
we study the impact of the following three parameters, namely,
dictionary size or number of atoms in the dictionary (K), number
of training samples (L), and dictionary learning iterations (td), on
the performance of these algorithms. We show the performance
of dictionary learning algorithm using the MSE metric. Since our
goal is to compress image and process them at the server for
detecting authorized or unauthorized objects of interests, we study
the object detection accuracy achieved at the server. To study the
performance of object detection algorithm, we use Single-shot
detector [44] convolution neural network and use AUC metric to
quantify its performance. To measure the energy consumed by
a Raspberry Pi device when running the distributed dictionary
learning algorithm, we use a power monitor, PortaPower 3−20 V
Dual USB Power Monitor. This device displays current, voltage,

and amount of current received by Raspberry Pi devices while our
dictionary learning algorithm runs.

Number of atoms: We observe that as we increase the number
of dictionary atoms, the performance of the dictionary learning
algorithm increases. Fig. 7(a), the left y-axis shows the MSE of
dictionary learning algorithm and right y-axis shows the object
detection accuracy. We see that the MSE reduces by 1.33% and
the object detection accuracy increases by 2% as the number of
dictionary atoms are increased from 100 to 300. At the same
time, however, there is significant increase in energy costs as
shown in Fig. 7(b). The energy cost increases by 45% as the
number of dictionary atoms are increased from 100 to 300. This
increase in energy costs is due to the increase in communication
cost that comes with the increase in number of dictionary atoms.
Recall that nodes in the network communicate with each other
to update each atom of the dictionary sequentially. Therefore, as
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Fig. 9: Public dataset: (a) Average mean squared error achieved in distributed dictionary learning when nodes with spatially correlated data (above a threshold) are identified and
one of them is selected along with nodes which do not have correlated data with any other node; (b) Energy savings obtained in the dictionary learning process by removing spatially
correlated nodes which have histogram intersection value above a threshold (given in the x-axis); (c) Average mean squared error (y-axis) achieved over incoming test frames (x-axis)
by using dictionaries learned by using training dataset that has removed data that is spatially correlated with other nodes;

the number of dictionary atoms increases, the communications
cost in the network also increases. Among the parameters we
have discussed above, the size of dictionary, i.e., number of atoms
in the dictionary, impacts the cost of image compression at run-
time, i.e., when the dictionary has been learned and is being used
for image compression. The other parameters explained above,
namely, number of training samples and number of dictionary
learning iterations impact only when we are estimating the dic-
tionary, which is not at run time.

Number of training samples: We observe that as we increase
the number of training samples, the performance of the dictionary
learning algorithm increases. In Fig. 7(c), we see that the MSE
reduces by 50% and the object detection accuracy increases by
10% as the number of training samples are increased from 100
to 400. The object detection rate rises steeply and then saturates.
However, since increasing the number of training samples only
impacts the sparse coding task and that is a task executed locally
at the sensor nodes (Task 1 in Fig. 3). This only impacts the
computation energy and does not impact energy required for
communication. As a result it does not significantly increase the
energy consumed, as can be seen in Fig. 8(a).

Number of dictionary-learning iterations: In Fig. 8(b), we
see that as we increase the number of dictionary learning iteration
from 1 to 9, the MSE decreases by 62% and the object detection
accuracy increases by 16%. However, this comes at the cost of
significant increase in energy as shown in Fig. 8(c). The increase
in cost is quantified in Fig. 8(c), which shows the cost increases by
50% as the number of dictionary learning iterations are increased
from 1 to 9. This increase in energy costs is due to increase in
communication costs with increase in number of iterations.

Spatial correlation: We consider the dataset in [43], which
consists of four cameras under different settings. In this scenario,
since no information is given about the camera configuration
and the nodes are located in an indoor environment, we assume
the nodes are fully connected. However, we do not make any
assumption about the spatial correlation of data captured by these
nodes. We vary the threshold of correlation coefficient and identify
the nodes that capture data with correlation above the threshold.
We use the intersection of histogram metric mentioned in (5) to
quantify the spatial correlation between training data at different
nodes. Each node creates a set that includes itself and the other
nodes with which it has correlated data above the threshold. We

randomly select one of the nodes from this set. Nodes that do not
have data correlated with any other node are also included in the
dictionary-learning process.

In Fig. 9(a), the left y-axis shows the MSE of dictionary
learning and the right y-axis shows the object-detection accuracy.
As the threshold for spatial correlation changes from 1.0 to 0.7,
we get an accuracy loss of 15% and the object-detection accuracy
falls by 2.3%. In Fig. 9(b), we show the performance when the
dictionary is estimated and the data is selected at each node
using different values of threshold for intersection of histogram
metric (5). We first identify nodes that have data with correlation
above a pre-defined threshold. Only one of the nodes among these
correlated nodes participate in the dictionary learning process. We
note that the dictionary created using lower threshold coefficient
performs worse in terms of MSE; interestingly, however, the
performance remains constant over the next 35 incoming frames
for which the tests are performed. In Fig. 9(c), we show the energy
consumption of the nodes reduces by 75% when the threshold for
spatial correlation changes from 1.0 to 0.7.

4.2 Testbed Experiments
We now give details for our experimental setup used to test
the performance of distributed dictionary learning algorithm in
terms of accuracy and energy consumption of the nodes. We also
study the benefits obtained by our proposed solution compared to
existing distributed dictionary learning methods. We now present
our envisioned scenario in a distributed surveillance systems as
shown in Fig. 1(c). We assume that a set of resource-constrained
nodes with cameras as sensors and limited battery capacities
are used. Our scenario as shown in Fig. 2 is that a network of
local nodes perform distributed dictionary learning. The estimated
dictionary is then used for compression of incoming images. The
compressed images are then send to the cloud for storage or person
detection or detection of unauthorized objects (such as detection
guns and alarming the building security).

Experimental setup: Our testbed consists of 10 Raspberry Pi
nodes, which are small single-board computers with the following
characteristics—Model 3B, 1.2 GHz 64-bit quad-core processor,
1 GB RAM and with Wireless LAN and Bluetooth capabilities.
For our experiments we use Raspberry Pi nodes that are equipped
with a built-in IEEE 802.11n wireless Network Interface Card
(NIC). The NIC can be used as a software access-point for
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Node Threshold
0.7 0.8 0.9

1 [2,3,4,5,6,7] [4] -
2 [1,4] - -
3 [1,4] - -
4 [1,2,3,7] - -
5 [1,6,7] [1] -
6 [1,5] - -
7 [1,4,5,8] - -
8 [1,7,9] - -
9 [1,8] - -
10 - - -

Fig. 10: (a) Testbed set up in the ECE Department at Rutgers University. The goal of the testbed is to simulate a surveillance system in which images that are sent to the server for
further processing are compressed using distributed dictionary learning. The testbed of 10 Raspberry Pi nodes and cameras cover a region in a hallway with three elevators and two
doors; (b) Preprocessing using frame differencing and thresholding of incoming images at local nodes is done to identify if there is a significant change in the consecutive images. If the
number of non-zero pixels in the difference image is above a pre-determined threshold value then the image is compressed and sent to the cloud. Frame differencing is a low-complexity
technique to identify that we are not sending frames with redundant information. (Top) High movement; (Below) Low movement; (c) Table showing correlation coefficient of image
data captured by of various nodes in our testbed.
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Fig. 11: Communication workflow implemented at the Raspberry Pi nodes our testbed.
The communication workflow is used to enable consensus in the network. Two separate
thread separate the receiving and transmission of data at each node

the wireless local-area network. Hence, we follow the standards
of IEEE 802.11n [45]–[47] to establish communication between
nodes in the testbed. The wireless performance of IEEE 802.11n
protocol is well established in the literature and has been shown
to achieve a high data-rate of up to 100 Mbits/sec to reliably
support wireless videos (e.g., two 20 Mb/s HTDV streams between
adjacent rooms). The cameras used in our testbed are Sony
IMX219 8-megapixel sensor 1080P, along with Picamera Python
library. To measure the power we use a power monitor, PortaPower
3-20V Dual USB Power Monitor that displays current, voltage,
and amount of current received by devices. Fig. 10 indicates our
setup and the communication workflow for a surveillance appli-
cation. Before we start estimating the dictionary collaboratively,
we use (5) to identify nodes in the network with correlated data.
We use the method illustrated in Sect. 3. To this end, each node
estimates histogram of the image collected by it and broadcasts it
to the nearby nodes.

Online image compression: In the online phase, we use the
dictionary we learned using the training images and apply it to
perform image compression on the incoming images. We want
cameras in the network to send a frame to the server for object
detection only when there is a significant change from the last
frame that was sent by the camera node. This will help in reducing

the energy required to compress and transmit images, which have
redundant information. To identify which image to send, we first
take the difference of consecutive images at each camera node
and use Otsu thresholding [48] to calculate a global threshold. See
Fig. 10(b) for visualized results. All pixels in the difference image
which are below the threshold are given a zero pixel value. In the
gray scale image, if the percentage of pixels that are above the
threshold (selected as 0.02 in experiments) are greater than 10%,
then we compress those frames using the learned dictionary and
send them to the remote server.

At the server we can use image decoding techniques to convert
the byte sequence to image data. Since we are using Huffman
coding at the local nodes, we used Huffman decoding at the server
to reconstruct images. Next, we execute object detection on these
reconstructed images. Dictionaries need to be transmitted to server
only once by the nodes in the network and can be reused for stream
of incoming images. Our solution assumes that, once the dictio-
nary has been learned by the camera nodes, the nodes continue
to use the learned dictionary for image compression unless the
approximation error between the sparsely coded image and the
original image is higher than an acceptable level (based on a pre-
defined threshold). In case of high approximation errors, which
can happen when the environment in which camera nodes are
situated changes significantly, the dictionary-learning algorithm
can be re-triggered. In such situations, our solution will be run
again and a new dictionary will be learned.

As the number of objects (since we are focusing on person
detection in the dataset, the objects here will be number of people
in the images) in the image is increased, the preprocessing algo-
rithm in our pipeline which is based on differencing of consecutive
images is triggered. And if the number of non-zero pixels in the
difference image is above a pre-determined threshold value then
the image is compressed and sent to the cloud. Hence, irrespective
of the number of people in the image this algorithm will be
triggered. Object detection will then be applied at the cloud.

Communication with remote server: We initialize an Ama-
zon EC2 compute instance (“t2.micro” instance) where the object
detection algorithm is run on the compressed image. We use
the public DNS of the created instance to securely transmit data
from each Raspberry Pi to the server. Once the images have been
received at the server, the object detection algorithm is executed.
To this end, we use single-shot detector [44] convolution neural
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Fig. 12: (a) Mean Squared Error (MSE) performance of our testbed; (b) Energy consumed by the nodes when we vary the threshold for histogram intersection coefficient. Only nodes
that have value above this participate in the dictionary learning algorithm; (c) Latency (time taken from the instant image is captured by the camera till the image reaches the server)
in our experimental testbed when estimated dictionary is used to compress images; (d) Precision of the object detection algorithm for various percentage of non-zero pixels in the
difference image of consecutive images.
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Fig. 13: Comparison of energy costs consumed by the network of Raspberry Pi nodes in the network (a) Raw images versus compressed images are sent to the cloud after compressing
using the estimated dictionary. We consider here two image resolutions: high-resolution (1920, 1080) and low-resolution (366, 288); (b) Images are compressed using dictionary learned
for a camera network in which nodes that have correlated data with other nodes are silenced; (c) MSE of consensus as the number of nodes participating in the consensus process is
varied; (d) MSE as the complexity of the image on which object detection is executed at the server is varied. These images in the network are compressed using learned dictionary
before transmitting to the cloud.

network for object detection. Two separate thread separate the
receiving and transmission of data at each node as shown in
Fig. 11.

Performance in the testbed: We study the performance of
our testbed in terms of mean squared performance, energy costs,
and latency incurred by processing images in our testbed. We
vary the threshold for histogram intersection from 1.0 to 0.7 and
see that in Fig. 12(a-b) the cost of dictionary learning falls by
75% and the MSE increases by 35%. We also study the latency
as the percentage of non-zero pixels vary in Fig. 12(c-d). The
non-zero pixels are achieved after taking a difference of pixel
values of consecutive images and in the new image obtained after
subtraction. We replace all the pixels that have value below a pre-
defined threshold with zero. Latency is the time taken to compress
the image by using the algorithm explained in Fig. 3(b) and to send
it to the server. We observe that, as we increase the percentage
of non-zero pixels after image differencing (which is done by
decreasing the threshold), the latency increases and the precision at
the server falls. This is because at high latency fewer images reach
the server. For the images that do not reach the server, the object-
detection algorithm does not detect the object in those frames, as
a result of which the precision decreases.

Energy costs: We now discuss the long term energy costs
of running image compression using estimated dictionary. In
Fig. 13(a), we see the impact of image resolution on energy cost
of compressing image using dictionary estimated via our proposed
methodology and sending to the cloud. We study two resolutions:
high-resolution Raspberry Pi with 1920× 1080 and EPFL images
with 366 × 288 resolution. In Fig. 13(b), we compress images us-

ing the dictionary learned via our proposed algorithm at different
thresholds of histogram intersection. We see that sending raw data
leads to more energy consumption for the nodes in comparison
with when compression using dictionary learning is performed.
This is because the energy cost of estimating the dictionary via
our proposed method is much lower; hence we see savings in the
energy consumed at the devices. We also observe that, for high
resolution images, the energy consumed at the camera nodes when
sending raw data images exceeds the energy consumed by images
compressed by dictionary after 200 images have been sent.

Distributed dictionary learning under non-ideal condi-
tions: We consider a scenario where a certain percentage of
randomly selected nodes from the network are not allowed to
participate in the consensus process. For these simulations we
considered there are 20 nodes in the network and we fix the
number of times a node can broadcast its data to be 20. We
again plot average mean square error which is the difference
between average of the data values under perfect consensus (tc
→ ∞) and the data values at the nodes after a fixed number of
consensus iterations, averaged over number of nodes. We observe
in Figs. 13(c-d), as the number of nodes that participate in the
consensus process reduces the mean squared error of the network
increases. We also see that the consensus process ends earlier as
fewer nodes are broadcasting in comparison to when all the nodes
are participating in consensus (0% inactive nodes).

Re-triggering dictionary learning algorithm: Our solution
assumes that, once the dictionary has been learned by the camera
nodes, the nodes continue to use the learned dictionary for image
compression unless the approximation error between the sparsely
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coded image and the original image is higher than an acceptable
level (based on a pre-defined threshold). In case of high approx-
imation errors—that can happen when the environment in which
camera nodes are situated changes significantly—the dictionary-
learning algorithm can be re-triggered. In such situations, our
solution will be run again and a new dictionary will be learned.

5 RELATED WORK

We compare here the work done in the area of distributed camera
networks, dictionary learning, and image compression. We cover
different communities in which distributed consensus has been
studied and consider works that tackled the problem of energy-
efficient consensus.

Mobile cloud computing: Various works exist in the domain
of mobile computing that solve the issue of limited computational
capability of devices. We now briefly reiterate some of these works
here. These works can be divided into two categories. First, where
the resource-constrained device offloads its tasks to a remote
cloud. This research involves code partitioning to determine which
tasks in the application will be executed locally and which in
the cloud [49]. COSMOS [50] suggests a system to fill the
gap between the demands for computing resources by individual
mobile devices and the ones cloud providers offer. Second, when
the resource-constrained device offloads tasks to mobile devices in
the vicinity, which execute the tasks in parallel and return results
back to the device. Authors have implemented a preliminary ad-
hoc distributed prototype to offload portions of a service from
a resource-constrained device to a nearby servers [51] or nearby
devices [52]. A participatory computing system is proposed in [53]
to derive the minimal workload for individual participating devices
to achieve the overall system performance requirement. Serendip-
ity [54] also exploits the computational resources available in other
mobile systems in a collaborative manner.

Similar solutions can be seen in the area of distributed camera
networks. These works have focused on conserving energy for
applications via, first, offloading or handover [55] of computation-
ally intensive tasks to other nodes and, second, using dynamic
power management schemes [56]. Our solution looks at the
problem of energy-efficient computation in distributed networks
from a different angle. Dictionary learning is an energy-intensive
algorithm because of the high communication between the nodes.
The computation cost of executing distributed dictionary learning
on nodes is much lower than the communication cost. In this paper,
we give more detail on the energy cost of both computation and
communication tasks in dictionary learning algorithm. To reduce
the energy cost in distributed dictionary learning we focus on
identifying a subset of nodes on which dictionary learning can
be executed. To identify these nodes we rely on the data captured
by the nodes as a result of which the lifetime of nodes is extended.

Distributed consensus: Many existing works have considered
consensus for ad-hoc networks via gossip algorithms where each
node uniformly at random contacts a neighbor within its trans-
mission range and exchanges data [57]. There have been a few
recent works that have focused on gossiping via broadcasting [35]
and geographic gossiping [58]. However, these works make some
unrealistic assumptions that are not consistent with real-world
deployment scenarios such as knowledge of topology, unit disk
graph models, uniform distribution of nodes, and homogeneous
battery capacity of nodes. In our work we do not make such
assumptions and rely on the local knowledge available to the
nodes to make decisions. Consensus algorithm has been applied to

two cooperative control problems including rendezvous and axial
alignment [59]. However, increasing the number of nodes may not
be feasible due to the limitations of the defined scenario. Our focus
in this paper is on proof-of-concept of an end-to-end and real-
time solution for energy-efficient and robust dictionary learning in
distributed camera networks. To this end, our main contribution
is development and a real testbed-based evaluation of a solution
that exploits spatial correlation of the collected multimedia data
for energy efficiency. Within the proposed solution, consensus is
just a small routine that can be replaced with any other distributed
message passing protocol.

Dictionary learning: Dictionary learning can be performed
in either centralized [4] or distributed environments [22]. Cen-
tralized dictionary learning is not efficient as (i) the nodes have
to communicate with a central node (usually at a far distance),
which imposes high communications costs, especially in extreme
environments; (ii) move the nodes in order to get closer to the
central node imposes extra delays, which challenges the real-
time processing; and (iii) the structure is likely to break if the
centralized node fails to provide the required support. This failure
can happen due to energy, communication, or computational
restrictions in a network. On the other hand, when there are
multiple sensors in the network, e.g., camera network, where
images are collected and stored in multiple geographic locations,
a distributed solution is energy efficient, avoids a single point of
failure, and provides more flexibility and robustness against the
topology variations of the network. Our focus in this paper is to
present a solution to make distributed dictionary learning energy
efficient so that it can be beneficial to run on resource-constrained
nodes.

Image compression: Image compression is a popular tool
for image data size reduction, so that data transmission becomes
feasible in bandwidth-limited and error-prone channels. Compared
to the traditional lossy compression methods—such as in Joint
Photographic Experts Group (JPEG) and Discrete Wavelet Trans-
form (DWT)—dictionary learning can be used to enhance image-
compression algorithms. A sparse model seems to fit natural
images as well as human visual perception of images [60]. An
improved sparse representation algorithm was proposed in [61],
in which dictionaries with overlapping atoms are generated in
the wavelet coefficient domain and in the pixel domain so as to
remove blocking artifacts. Dictionary learning has been shown to
achieve dramatic improvement over JPEG/JPEG2000 compression
techniques [9], [11], [12].

To the best of our knowledge, no works exist in the literature
that are similar to the framework of this work on distributed
image compression. We focused on dictionary learning in this
work for image compression because of the ability of a learned
dictionary to outperform JPEG in different scenarios and the
ability of dictionary learning to obtain an appropriate basis when
JPEG basis is not the best one for compression purposes. However,
there is value to also developing a JPEG-based distributed image
compression system and this would be investigated in the future.

We conclude by noting that the existing works on distributed
image compression [62], [63] in a wireless sensor network rely on
require partitioning of images to implement JPEG in a distributed
network. These work make strong assumptions that each nodes or
multiple cluster heads in the network have complete knowledge
of the topology of the wireless network and these works are
applicable to scenarios where low volume of data has to be
compressed. This is different from our work in which each nodes
assumes only knowledge of the neighboring nodes and also works
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with video-based data (as shown in our experimental section for
25 fps videos). Also, these work assume the wireless network to
be a multi-hop wireless network where nodes, where the image
data taken at the source node is compressed as it travels from the
source to base station. Our work on the other hand focuses on a
camera sensor network for surveillance where each camera node
captures an image rather than one image captured by the source
node in existing works.

6 CONCLUSION

We presented an energy-efficient technique to reduce the cost of
dictionary learning in a distributed camera network to support
real-time in-network image compression. We designed a protocol
that identifies spatially-correlated nodes using local knowledge
of the network available to the camera nodes. To this end, we
utilized low-computational-complexity metrics such as intersec-
tion of histograms to quantify the correlation of data among
camera nodes instead of using pixel-by-pixel cross-correlation
function (2D cross-correlation). Based on exhaustive experiments
and simulations, we have shown to be able to reduce the cost of
dictionary learning by 75%; because of this reduction in energy
we are able to send more image data to the cloud server and
consequently to extend the mission time of camera nodes. We
also presented via simulations performance results in terms of
accuracy and energy consumed by the nodes to run consensus
and dictionary-learning algorithms. The proposed approach was
validated through extensive simulations on public datasets as well
as via real-world experiments on a testbed of Raspberry Pi nodes.
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