
PAC LEARNING FROM DISTRIBUTED DATA IN THE PRESENCE OF MALICIOUS NODES

Zhixiong Yang and Waheed U. Bajwa

Department of Electrical and Computer Engineering
Rutgers University–New Brunswick, NJ 08854 USA

{zhixiong.yang, waheed.bajwa}@rutgers.edu

ABSTRACT

When data is distributed over a network, statistical learning needs
to be carried out in a fully distributed fashion. When all nodes in
the network are faultless and cooperate with each other, it is un-
derstood that the objective is probably approximately correct (PAC)
learnable. However, when there are malicious nodes trying to sab-
otage learning by injecting false information in the network, PAC
learnability of the objective remains an open question. In this paper,
we discuss the distributed statistical learning problem when the risk
function is strictly convex. We show that the model is PAC learnable
in the presence of malicious nodes by proposing and analyzing a dis-
tributed learning algorithm. Experiments in non-convex settings are
also performed to further discuss the PAC learnability of non-convex
statistical learning problems from distributed data.

1. INTRODUCTION

Machine learning (ML) tasks involve statistically minimizing a risk
function f(w, z) with respect to the model variable w, where z de-
notes random data drawn from some unknown distributionD. While
ML problems are traditionally solved by empirical risk minimization
(ERM) techniques, the problems can be fit into a more general prob-
ably approximately correct (PAC) learning framework [1, 2]. The
understanding of PAC learnability of a ML problem gives more in-
sights into its generalization capabilities over unseen data.

When the training data is available at a single location, it is un-
derstood that the hypothesis/model w is PAC learnable [2]. In the
modern world, the scenarios in which the datasets are distributed
over a network frequently appear due to reasons such as storage and
computation constraints, privacy concerns, and engineering needs.
Learning tasks in such cases have to be completed by nodes coop-
erating with each other over the network, with numerous distributed
learning algorithms developed over the years to solve the resulting
distributed problems [3–5]. It can also be shown that the hypothesis
w is PAC learnable in the distributed setting. However, unlike the
centralized setting, it is more often than not that not all the nodes
in the network can be trusted. Indeed, nodes may undergo unde-
tected failures or even become malicious in the distributed setting.
One consequence of this is that the aforementioned PAC learnability
analysis is no longer valid in a malicious environment.

In this paper, we discuss the PAC learnability under distributed
settings in the presence of malicious nodes. Specifically, we consider
a graph (network) of M nodes of which at most b nodes are mali-
cious. Each node can independently perform some computations on
its local dataset and the nodes can communicate with each other over

This work is supported in part by the NSF under awards CCF-1453073
and CCF-1907658, by the ARO under award W911NF-17-1-0546, and by the
DARPA Lagrange Program under ONR/NIWC contract N660011824020.

graph edges. Our goal is to show the PAC learnability of the hypoth-
esis w in this setting when the risk function is strictly convex with
respect to w and has Lipschitz gradients.

Related work. The PAC learnability of machine learning
models in centralized settings has been well understood in the last
few decades [1, 2]. With the increasing need for fully distributed
learning, researchers have been developing distributed learning al-
gorithms [3–5]. It has in particular been shown that, when data is
distributed over a network, the class of machine learning hypothe-
ses is also PAC learnable over a faultless network [6, 7]. Recently,
researchers have looked for ways to improve the robustness of dis-
tributed learning against malicious attacks. In this regard, several
robust optimization algorithms have been developed to counter
the presence of potential malicious nodes in the network [8–13].
Nonetheless, the topic of PAC learnability in the presence of mali-
cious nodes remains relatively open.

Our contribution. One of the classic ways to accomplish ML
tasks is via the ERM framework. Intuitively, centralized ERM finds
the minimizer of the empirical risk and the empirical minimizer can
then be shown to converge to the minimizer of the statistical risk
function. It can then be deduced from such convergence analysis that
the class of ML hypotheses is PAC learnable. Distributed ERM finds
the minimizer of the distributed empirical risk function. When the
distributed dataset is created by distributing the centralized dataset
over a network, it can be shown that the solution of the distributed
ERM problem is equivalent to the solution of the centralized ERM
problem. Consequently, taking advantage of the analysis for central-
ized ERM, it can be concluded that the class of ML hypotheses is
also PAC learnable from data distributed over a faultless network.

Unfortunately, it has been shown in previous work [14] that the
distributed ERM problem cannot be exactly solved when there is
even one malicious node in the network. The infeasibility of the
distributed empirical minimizer leads to the consequence that the
convergence analysis from distributed ERM to centralized ERM and
then to the true (i.e., statistical) minimizer is no longer applicable
under the malicious settings; this then makes the PAC learnability
questionable. In this paper, we establish for the first time in the liter-
ature that, for a limited number of malicious nodes, the true hypothe-
sis is PAC learnable in the presence of malicious nodes when the risk
function is strictly convex. We provide a distributed learning algo-
rithm that is easy to implement and show the PAC learnability based
on the given algorithm. As we will show later, the algorithm and its
analysis—as opposed to the classic distributed ERM framework—do
not involve exactly finding the empirical minimizer.

Paper organization. The rest of the paper is organized as the
following. The problem is formulated in Section 2. We present our
algorithm and analysis in Section 3. Numerical results are given in
Section 4 and we conclude the paper in Section 5.

2. PROBLEM FORMULATION

Consider a set of independent and identically distributed (i.i.d.) sam-
ples of random variables z that follow distributionD, which are sep-
arated into M datasets, each of size N . The datasets are distributed
among M nodes over a network. The network is expressed as a di-
rected, static graph G(J , E). Here, the set J := {1, . . . ,M} repre-
sents nodes in the network, while the set of edges E represents com-
munication links between different nodes. Specifically, (j, i) ∈ E if
and only if node i can receive messages from node j. We denote the
dataset at node j as Zj of which the n-th sample is denoted as zjn.

Let the class of hypotheses be {w ∈ RP } and consider a risk
function f(w, z) that describes the correctness of any hypothesis w.
In this paper, we focus on the class of strictly convex risk functions
with Lipschitz gradients, which is formally stated as the following.

Assumption 1. The risk function f(w, z) satisfies:

1. ∀w1,w2, ∀a ∈ (0, 1),
f(aw1 + (1− a)w2, z) < af(w1, z) + (1− a)f(w2, z);

2. ∀w1,w2, ‖f(w1, z)− f(w2, z)‖2 ≤ L‖w1 −w2‖2;

3. ∀w1,w2, ‖∇f(w1, z)−∇f(w2, z)‖2 ≤ L′‖w1 −w2‖2.

Since we deal with finite values in the real world, we make an-
other assumption on both the hypothesis w and the risk function.

Assumption 2. For any hypothesis w and any sample z ∈
⋃
j∈J Zj ,

f(w, z) is bounded almost surely over all training samples: 0 ≤
f(w, z) ≤ C <∞.

We want to learn a good hypothesis w in a distributed fashion.
To achieve this goal, we need nodes to cooperate with each other by
communicating over network edges. Specifically, define the neigh-
borhood of node j asNj := {i ∈ J : (j, i) ∈ E}. We say that node
i is a neighbor of node j if i ∈ Nj . Distributed learning algorithms
proceed iteratively. In each iteration (r + 1) of the algorithm, node
j is expected to accomplish two tasks:

1. Update a local variable wr
j according to some (deterministic

or stochastic) rule gj(·), and

2. Broadcast the updated local variable to other nodes, where
node i can receive the broadcasted information from node j
only if j ∈ Ni.

To discuss PAC learnability in the presence of malicious nodes,
we assume there are at most b malicious nodes in the network. We
model the behavior of malicious nodes as broadcasting arbitrary
messages in each iteration (i.e., as Byzantine nodes [15]). Note that
a malicious node can choose to follow the algorithm so that the exact
number and identity of malicious nodes stay unknown. Let J ′ ⊂ J
denote the set of nonfaulty nodes and define M ′ := |J ′|. Without
loss of generality, we assume the nonfaulty nodes are labeled from
1 to M ′. Since distributed learning relies on message passing, it
is obvious that if the presence of malicious nodes cuts the network
into pieces, learning cannot take place. Therefore, we also need
to assume that there is enough connectivity-based redundancy in
the network so that it is possible to tolerate a certain number of
malicious nodes. To this end, we provide dome definitions and an
assumption that are common in the literature [8, 16, 17].

Definition 1. A subgraph Gr of G is called a reduced graph if it
is generated by (i) removing all malicious nodes along with their
incoming and outgoing edges, and (ii) removing additionally up to
b incoming edges from each nonfaulty node.

Definition 2. A “source component” of a graph is a collection of
nodes such that each node in the source component has a directed
path to every other node in the graph.

Assumption 3. All reduced graphs Gr generated from G(J , E) con-
tain a source component of cardinality at least (b+ 1).

In this paper, we will show that one can learn a hypothesis from
distributed data in the presence of malicious nodes that is probably
approximately correct. More specifically, under Assumptions 1, 2
and 3, we will show that one can learn a hypothesis w̄ at each non-
faulty node such that, for arbitrarily small ε and δ, P(‖E[f(w̄, z)]−
E[f(w∗, z)]‖2 < ε) ≥ 1 − δ can be achieved as a function of
N , where w∗ is the minimizer of the statistical risk, i.e., w∗ =
arg minw∈RP E[f(w, z)].

3. PAC LEARNING UNDER MALICIOUS SETTINGS

In this section, we first give our main result of PAC learnability from
distributed data under malicious settings. Then we introduce a dis-
tributed learning algorithm and prove the result by showing that the
output of the algorithm is probably approximately correct.

Theorem 1. Let Assumptions 1, 2, and 3 be satisfied. There exists
an algorithm that can learn a hypothesis w̄ at each nonfaulty node
that is probably approximately correct. Specifically, with probability
at least 1−O(exp(−Nε2)), ‖E[f(w̄, z)]− E[f(w∗, z)]‖2 < ε.

3.1. A robust distributed learning algorithm

Since the malicious nodes try to sabotage the algorithm by send-
ing false information, classic non-resilient distributed learning al-
gorithms, e.g., distributed gradient descent (DGD) and distributed
alternating direction method of multipliers (D-ADMM), cannot ac-
complish the learning task. We now introduce a robust learning
algorithm termed Byzantine-resilient distributed coordinate descent
(ByRDiE) and then we show that the output of ByRDiE is probably
approximately correct.

ByRDiE involves splitting the distributed learning problem into
a sequence of one-dimensional subproblems using coordinate de-
scent and then approximately solving each scalar-valued subproblem
using the approach described in [8]. The exact implementation is de-
tailed in Algorithm 1. The algorithm can be broken into an outer loop
(Step 2) and an inner loop (Step 4). The outer loop is the coordinate
descent loop, which breaks the vector-valued optimization problem
in each iteration r into P scalar-valued subproblems. The inner loop
solves a scalar-valued optimization problem in each iteration t and
ensures robustness against malicious behaviors. We assume the to-
tal number of iterations r̄ for coordinate descent are specified during
initialization. We use [wr

j (t)]k to denote the k-th element of wj at
the r-th iteration of the coordinate descent loop and the t-th itera-
tion of the k-th inner loop. Without loss of generality, we initialize
[w1

j (1)]k = 0, ∀k = 1, . . . , P .
We now fix some r and k, and focus on the implementation

of the inner loop (Step 4). Every node has some [wr
j (1)]k at the

start of the inner loop (t = 1). During each iteration t of this loop,
all (nonfaulty) nodes engage in the following: broadcast, screening,
and update. In the broadcast step (Step 6), all nodes i ∈ J broad-
cast [wr

i (t)]k’s and each node j ∈ J receives [wr
i (t)]k, ∀i ∈ Nj .

During this step, a node can receive values from both nonfaulty and
malicious neighbors. The main idea of the screening step (Step 7) is
to reject values at node j that are either “too large” or “too small” so
that the values being used for update by node j in each iteration will

Algorithm 1 Byzantine-resilient distributed coordinate descent
Input: Z1,Z2, . . . ,ZM , {ρ(τ)}∞τ=1, b ∈ N, r̄ ∈ N, T ∈ N

1: Initialize: r ← 1, t← 1, and ∀j ∈ J ′,w1
j (1)← 0

2: for r = 1, 2, . . . , r̄ do
3: for k = 1, 2, . . . , P do
4: for t = 1, 2, . . . , T do
5: for j = 1, 2, . . . ,M ′ do (in parallel)
6: Receive [wr

i (t)]k from all i ∈ Nj
7: Find N s

j (r, k, t), N l
j (r, k, t), N ∗j (r, k, t) ac-

cording to (1), (2), and (3)
8: Update [wr

j (t+ 1)]k as in (4)
9: end for

10: end for
11: end for
12: wr,T

j ← wr
j (T + 1), ∀j ∈ J ′

13: wr+1
j (1)← wr,T

j ,∀j ∈ J ′
14: end for
Output:

{
wr̄,T
j

}
j∈J ′

be upper and lower bounded by a set of values generated by non-
faulty nodes. To this end, we partitionNj into 3 subsetsN ∗j (r, k, t),
N s
j (r, k, t) andN l

j (r, k, t), which are defined as following:

N s
j (r, k, t) = arg min

X:X⊂Nj ,|X|=b

∑
i∈X

[wri (t)]k, (1)

N l
j (r, k, t) = arg max

X:X⊂Nj ,|X|=b

∑
i∈X

[wri (t)]k, (2)

N ∗j (r, k, t) = Nj \ N s
j (r, k, t) \ N l

j (r, k, t). (3)

The step is called screening because node j only uses [wr
i (t)]k’s

from N ∗j (r, k, t) to update its local variable. Note that there might
still be [wr

i (t)]k’s received from malicious nodes inN ∗j (r, k, t). We
will see later, however, that this does not effect the workings of the
overall algorithm.

The final step of the inner loop in ByRDiE is the update

step (Step 8). Define f̂(w,Zj) = 1
N

N∑
n=1

f(w, zjn). Then, let

[∇f̂(wr
j (t),Zj)]k be the k-th element of ∇f̂(wr

j (t),Zj), we can
write this update step as follows:

[wr
j (t+ 1)]k =

1

|Nj | − 2b+ 1

∑
i∈N∗j (r,k,t)∪{j}

[wr
i (t)]k

− ρ(r + t− 1)[∇f̂(wr
j (t),Zj)]k, (4)

where {ρ(τ)}∞τ=1 are square-summable (but not summable), dimin-
ishing stepsizes: 0 < ρ(τ + 1) ≤ ρ(τ),

∑
τ ρ(τ) = ∞, and∑

τ ρ
2(τ) < ∞. Notice that [wr

j (T + 1)]k is updated after the
k-th subproblem of coordinate descent in iteration r finishes and it
stays fixed until the start of the k-th subproblem in the (r + 1)-th
iteration of coordinate descent. An iteration r of the coordinate de-
scent loop is considered complete once all P subproblems within
the loop are solved. The local variable at each node j at the end of
this iteration is then denoted by wr,T

j (Step 12). We also express
the output of the whole algorithm as {wr̄,T

j }j∈J ′ . Note that while
Algorithm 1 cycles through P coordinates of the optimization vari-
ables in each iteration r in the natural order, one can use any permu-
tation of {1, . . . , P} in place of this order. The parameter T can take
any value between 1 and∞ which trades off consensus among the

nonfaulty nodes and the convergence rate. We conclude by pointing
out that ByRDiE has certain limitations such as stringent topology
constraints, low communication efficiency and high local computing
cost. As the goal of this paper is to establish the PAC learnability,
we leave such improvements of the algorithm to future works.

3.2. PAC output of the algorithm

We now show that the output of the algorithm is probably approxi-
mately correct. Due to space limitations, here we only give the key
steps of the analysis and intuitively explain the results. Readers may
refer to an extended version [18] for more details.

The idea of coordinate descent is to sequentially minimize a
function along one dimension at a time and eventually reach the min-
imum of that function. The main structure of ByRDiE is similar to
the coordinate descent process, so we first fix an r and k and analyze
the algorithm’s behavior in one dimension. Here we introduce a con-
cept that is common in distributed processing, namely, consensus. In
this problem, consensus means that all nonfaulty nodes (eventually)
agree on the same variable w. When consensus is achieved, the out-
puts at all nonfaulty nodes are equally valid and can be considered as
the output of the algorithm. We can show that consensus is guaran-
teed in a single dimension at the end of each inner loop. Moreover,
the algorithm finds the minimum of a convex combination of local
empirical risks among all nonfaulty nodes. The following lemma
shows that the algorithm can guarantee consensus and optimality at
the end of each inner loop.

Lemma 1. Let Assumptions 1 and 3 hold, and let the k-th sub-
problem of the coordinate descent loop in iteration r of ByRDiE
be initialized with some {wj}j∈J ′ . Then, as T → ∞, for some
αj(r, k) ≥ 0 such that

∑
j∈J ′ αj(r, k) = 1,

∀j ∈ J ′,
[
wr,T
j

]
k
→ arg min

w′∈R

∑
j∈J ′

αj(r, k)f̂(wj |[wj]k=w′ ,Zj).

Note that the weights αj(r, k) are unknown and usually differ-
ent for different r and k. In particular, we are not minimizing the
global empirical risk along one dimension in each inner loop. So,
as much as the process is similar to coordinate descent, we are not
going to reach the minimum of the empirical risk as r → ∞. In-
stead, we are going to show that it is uniformly true for all r and
k that the output of each inner loop is probably approximately cor-
rect. As a consequence, although the minimum of the empirical risk
is not achievable, the final output of the algorithm is still probably
approximately correct.

Since the algorithm reaches consensus at the end of each inner
loop, for any r and k, all nodes can initiate each inner loop with the
same w. We denote the identical initial value at the r-th outer loop
and the k-th inner loop as w̃r

k. Then we denote the statistical risk
and convex combination of local empirical risk along one dimension,
respectively, as:

hrk(w′) := E[f(w̃r
k|[w̃r

k
]k=w′ , z)], and (5)

Hr
k(w′) :=

∑
j∈J ′

αj(r, k)f̂(w̃r
k|[w̃r

k
]k=w′ ,Zj) (6)

for some αj(r, k) ≥ 0 such that
∑
j∈J ′ αj(r, k) = 1. Now

for fixed r and k, define w? := arg min
w′∈R

hrk(w′), and ŵ :=

arg min
w′∈R

Hr
k(w′). Before going to the next step, we first make a

claim that all iterates w stay in a bounded set for all iterations.

Specifically, ∀r, t ‖wr
j (t)‖∞ < Γ. Readers may refer to [18] for

proof of this claim. We then give the next lemma, which shows the
PAC convergence along one dimension.

Lemma 2. Let P and M ′ be fixed, r̄ be any (arbitrarily large)
positive integer, and {αj(r, k) ≥ 0, j ∈ J ′}r̄,Pr,k=1 be any ar-
bitrary collection satisfying

∑
j∈J ′ αj(r, k) = 1. Define ā :=

max(r,k)

√∑
j∈J ′ α

2
j (r, k). Then, as long as Assumptions 1 and

2 hold, we have ∀ε > 0, supr,k [hrk(ŵ)− hrk(w?)] < ε with
probability exceeding

1− 2 exp

(
− 4M ′Nε2

c21M
′ā2 + ε2

+M ′ log
(c2
ε

)
+ P log

(c3
ε

))
,

(7)

where c1 := 8C, c2 := 24CM ′, and c3 := 24LΓP .

Lemma 2 shows that we can approximately minimize the statis-
tical risk with high probability along one coordinate for each sub-
problem in the process of coordinate descent. Since the probability
bound is uniformly true for all subproblems, we can then show the
final output of ByRDiE is also probably approximately correct.

Lemma 3. Let Assumptions 1, 2, and 3 hold. Then ∀j ∈ J ′, ∀ε >
0, and T →∞, we have

lim
r̄→∞

[
E[f(wr̄,T

j , z)]− E[f(w∗, z)]
]
< ε (8)

with probability exceeding

1− 2 exp

(
− 4M ′Nε2

c′1
2M ′ā2 + ε2

+M ′ log

(
c′2
ε

)
+ P log

(
c′3
ε

))
,

where c′1 := c1c4, c′2 := c2c4, and c′3 := c3c4 for c4 := 2PLΓ,
and (ā, c1, c2, c3) are as defined in Lemma 2.

Theorem 1 now follows from Lemma 3 by using w̄ to denote the
output of the algorithm when T →∞ and r̄ →∞. Note that Theo-
rem 1 does not only indicate the PAC learnability in the presence of
malicious node but it also shows the value in discussing PAC learn-
ability in such setting. Centralized learning can be shown to have
a sample complexity of O(1/

√
N). When having M nodes and N

samples at each node, distributed learning in a faultless network can
have a sample complexity ofO(1/

√
MN). Theorem 1 gives a sam-

ple complexity of O(
√
ā2/N). Since 1/M ≤ ā2 ≤ 1, there is an

improvement in sample complexity compared to local training, even
though some nodes cannot be trusted.

4. NUMERICAL EXPERIMENTS

We now present the results for two sets of experiments to assess
PAC learnability from distributed data in the presence of malicious
nodes. We compare the performance of centralized learning, dis-
tributed learning over a faultless network, and distributed learning
in the presence of malicious nodes. The goal is to show that a good
hypothesis can be learned even in the presence of malicious nodes.

The first experiment involves learning a linear classifier for
MNIST dataset [19]. Note that the risk function in this case fully
satisfies the assumptions we made during the analysis. We randomly
distribute 40K data samples evenly onto a network of 20 nodes. Each
pair of nodes has a probability of 0.5 to be connected to each other.
We randomly pick two nodes to be malicious nodes, which broadcast

Table 1. Outcomes of experiments on MNIST and Iris datasets
Algorithm Sample Size

MNIST / Iris
MNIST

Acc. 78%
Iris

Acc. 95%

Centralized GD 40K / 150 100% 99%
Local GD 2K / 15 0% 55%

Faultless DGD 40K / 150 95% 97%
DGD 40K / 150 0% 0%

ByRDiE 40K / 150 80% 96%

a random matrix of the same size as the classifier to all their neigh-
bors during each iteration. We check and make sure that the network
satisfies Assumption 3. We run five types of experiments: (i) collect
all 40K data samples together and perform centralized learning via
gradient descent; (ii) run centralized gradient descent on one of
the local datasets; (iii) perform distributed learning via DGD while
we replace the malicious nodes with nonfaulty nodes; (iv) perform
distributed learning via DGD in the presence of malicious nodes;
and (v) run ByRDiE algorithm over the network while keeping the
two malicious nodes in the network. We perform 20 rounds of each
experiment and evaluate the performance by counting the number of
times each algorithm reaches 78% accuracy on the test set of 10K
samples. The results are shown in Table 1.

The goal of the second experiment is to evaluate the PAC learn-
ability under non-convex settings. We choose a simple but non-
convex neural network to be the classifier and apply it on the Iris
dataset [20]. Specifically, the neural network includes a 4×3 matrix
with a ReLU activation followed by a 3 × 3 matrix. This classifier
does not satisfy the assumptions we made in the analysis. We ran-
domly distribute the 150 data samples onto a network of 10 nodes.
Each pair of nodes again has a probability of 0.5 to be directly con-
nected. We randomly pick one node to be the malicious node and it
broadcasts a random matrix of the same size as the classifier to all
its neighbors during each iteration. We run the same five rounds of
experiments as for the first set of experiments and the performance
criterion is the number of times each algorithm reaches 95% accu-
racy in 100 rounds. The results are again shown in Table1.

The experimental results show that PAC learning from dis-
tributed data in the presence of malicious nodes is indeed possible.
We also observe a performance gap between ByRDiE and fault-
less distributed training, which indicates the difference in sample
complexity under faultless and malicious settings. Further, ByRDiE
has better performance than training with only local dataset, which
agrees with our analysis that, even in the presence of malicious
nodes, learning can still benefit from having more data. The fact
that DGD fails in the presence of malicious nodes again justifies the
motivation of discussing PAC learnablility of distributed learning
when having malicious nodes.

5. CONCLUSION

We have discussed the PAC learnability from distributed data in the
presence of malicious nodes. It has been shown that, when the risk
function is strictly convex with Lipschitz gradient, we can still learn
a hypothesis that is probably approximately correct even when a
number of nodes are trying to sabotage the algorithm. Experiments
on both convex and non-convex settings were performed to show
the PAC learnability on distributed datasets. We conclude by noting
that PAC learnability on distributed data in the presence of mali-
cious nodes is an open problem under non-convex and non-smooth
settings. The investigation of such problems is left for future works.

6. REFERENCES

[1] M. Kearns, U. V. Vazirani, and U. Vazirani, An Introduction to
Computational Learning Theory. MIT Press, 1994.

[2] V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed.
New York, NY: Springer-Verlag, 1999.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers,” Found. and Trends Mach.
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[4] A. Nedić and A. Ozdaglar, “Distributed subgradient methods
for multi-agent optimization,” IEEE Trans. Autom. Control,
vol. 54, no. 1, pp. 48–61, 2009.

[5] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An ex-
act first-order algorithm for decentralized consensus optimiza-
tion,” SIAM J. Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[6] M. Balcan, A. Blum, S. Fine, and Y. Mansour, “Distributed
learning, communication complexity and privacy,” in Proc.
Conf. Learning Theory, 2012, pp. 26–1.

[7] A. Blum, N. Haghtalab, A. Procaccia, and M. Qiao, “Collabo-
rative PAC learning,” in Proc. Advances in Neural Information
Processing Systems, 2017, pp. 2392–2401.

[8] L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimiza-
tion: Optimal iterative distributed algorithms,” in Proc. ACM
Symp. Principles of Distributed Computing, 2016, pp. 425–
434.

[9] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine
learning in adversarial settings: Byzantine gradient descent,”
in Proc. ACM Measurement and Analysis of Computing Sys-
tems, vol. 1, no. 2, Dec. 2017, pp. 44:1–44:25.

[10] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gra-
dient descent,” in Proc. Advances in Neural Information Pro-
cessing Systems, 2018, pp. 4618–4628.

[11] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-
robust distributed learning: Towards optimal statistical rates,”
in Proc. 35th Int. Conf. Machine Learning, vol. 80, 2018, pp.
5650–5659.

[12] E. El-Mhamdi and R. Guerraoui, “Fast and secure distributed
learning in high dimension,” arXiv preprint arXiv:1905.04374,
2019.

[13] C. Xie, O. Koyejo, and I. Gupta, “Zeno++: Robust asyn-
chronous SGD with arbitrary number of Byzantine workers,”
arXiv preprint arXiv:1903.07020, 2019.

[14] L. Su and N. Vaidya, “Byzantine multi-agent optimization:
Part I,” arXiv preprint arXiv:1506.04681, 2015.

[15] L. Lamport, R. Shostak, and M. Pease, “The Byzantine gener-
als problem,” ACM Trans. Programming Languages and Syst.,
vol. 4, no. 3, pp. 382–401, 1982.

[16] L. Su and N. Vaidya, “Fault-tolerant distributed optimization
(Part IV): Constrained optimization with arbitrary directed net-
works,” arXiv preprint arXiv:1511.01821, 2015.

[17] S. Sundaram and B. Gharesifard, “Distributed optimization un-
der adversarial nodes,” IEEE Trans. Autom. Control, vol. 64,
no. 3, pp. 1063–1076, 2019.

[18] Z. Yang and W. U. Bajwa, “ByRDiE: Byzantine-resilient dis-
tributed coordinate descent for decentralized learning,” IEEE
Trans. Signal Inform. Proc. over Netw., 2019.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proc. IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[20] D. Dua and E. K. Taniskidou, “UCI machine learning reposi-
tory,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml

