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Abstract

During the last decade, dictionary learning has emerged as one of the most pow-

erful methods for data-driven extraction of features from data. While the initial

focus on dictionary learning had been from an algorithmic perspective, recent

years have seen an increasing interest in understanding the theoretical underpin-

nings of dictionary learning. Many such results rely on the use of information-

theoretic analytical tools and help understand the fundamental limitations of

different dictionary learning algorithms. This chapter focuses on the theoretical

aspects of dictionary learning and summarizes existing results that deal with

dictionary learning from both vector-valued data and tensor-valued (i.e., multi-

way) data, which are defined as data having multiple modes. These results are

primarily stated in terms of lower and upper bounds on the sample complexity

of dictionary learning, defined as the number of samples needed to identify or

reconstruct the true dictionary underlying data from noiseless or noisy samples,

respectively. Many of the analytical tools that help yield these results come from

the information theory literature; these include restating the dictionary learning

problem as a channel coding problem and connecting the analysis of minimax

risk in statistical estimation to Fano’s inequality. In addition to highlighting the

effects of different parameters on the sample complexity of dictionary learning,

this chapter also brings out the potential advantages of dictionary learning from

tensor data and concludes with a set of open problems that remain unaddressed

for dictionary learning.

1.1 Introduction

Modern machine learning and signal processing relies on finding meaningful and

succinct representations of data. Roughly speaking, data representation entails

transforming “raw” data from its original domain to another domain in which it

can be processed more effectively and efficiently. In particular, the performance
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of any information processing algorithm is dependent on the representation it is

built on [1]. There are two major approaches to data representation. In model-

based approaches, a predetermined basis is used to transform data. Such a basis

can be formed using predefined transforms such as the Fourier transform [2],

wavelets [3], and curvelets [4]. The data-driven approach infers transforms from

the data to yield efficient representations. Prior works on data representation

show that data-driven techniques generally outperform model-based techniques

as the learned transformations are tuned to the input signals [5, 6].

Since contemporary data are often high-dimensional and high-volume, we need

efficient algorithms to manage them. In addition, rapid advances in sensing and

data acquisition technologies in recent years have resulted in individual data

samples or signals with multimodal structures. For example, a single observation

may contain measurements from a 2D array over time, leading to a data sample

with 3 modes. Such data are often termed tensors or multiway arrays [7]. Special-

ized algorithms can take advantage of this tensor structure to handle multimodal

data more efficiently. These algorithms represent tensor data using fewer param-

eters compared to vector-valued data representation methods by means of tensor

decomposition techniques [8–10], resulting in reduced computational complexity

and storage costs [11–15].

In this chapter, we focus on data-driven representations. As data collection

systems grow and proliferate, we will need efficient data representations for pro-

cessing, storage, and retrieval. Data-driven representations have successfully been

used for signal processing and machine learning tasks such as data compression,

recognition, and classification [5,16,17]. From a theoretical standpoint, there are

several interesting questions surrounding data-driven representations. Assuming

there is an unknown generative model forming a “true” representation of data,

these questions include: i) What algorithms can be used to learn the represen-

tation effectively? ii) How many data samples are needed to learn the repre-

sentation? iii) What are the fundamental limits on the number of data samples

needed to learn the representation? iv) How robust are the solutions addressing

these questions to parameters such as noise and outliers? In particular, state-of-

the-art data representation algorithms have excellent empirical performance but

their nonconvex geometry makes analyzing them challenging.

The goal of this chapter is to provide a brief overview of some of the afore-

mentioned questions for a class of data-driven representation methods known as

dictionary learning (DL). Our focus here will be on both the vector-valued and

tensor-valued (i.e., multidimensional/multimodal) data cases.

1.1.1 Dictionary Learning: A Data-driven Approach to Sparse Representations

Data-driven methods have a long history in representation learning and can be

divided into two classes. The first class includes linear methods, which involve

transforming (typically vector-valued) data using linear functions to exploit the

latent structure in data [5,18,19]. From a geometrical point of view, these meth-
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ods effectively learn a low-dimensional subspace and projection of data onto

that subspace, given some constraints. Examples of classical linear approaches

for vector-valued data include principal component analysis (PCA) [5], linear dis-

criminant analysis (LDA) [18], and independent component analysis (ICA) [19].

The second class consists of nonlinear methods. Despite the fact that histori-

cally linear representations have been preferred over nonlinear methods because

of ease of computational complexity, recent advances in available analytical tools

and computational power have resulted in an increased interest in nonlinear rep-

resentation learning. These techniques have enhanced performance and inter-

pretability compared to linear techniques. In nonlinear methods, data is trans-

formed into a higher dimensional space, in which it lies on a low dimensional

manifold [6, 20–22]. In the world of nonlinear transformations, nonlinearity can

take different forms. In manifold-based methods such as diffusion maps, data

is projected onto a nonlinear manifold [20]. In kernel (non-linear) PCA, data

is projected onto a subspace in a higher dimensional space [21]. Autoencoders

encode data based on the desired task [22]. DL uses a union of subspaces as the

underlying geometric structure and projects input data onto one of the learned

subspaces in the union. This leads to sparse representations of the data, which

can be represented in the form of an overdetermined matrix multiplied by a sparse

vector [6]. Although nonlinear representation methods result in nonconvex for-

mulations, we can often take advantage of the problem structure to guarantee

the existence of a unique solution and hence an optimal representation.

Focusing specifically on DL, it is known to have slightly higher computational

complexity in comparison to linear methods, but it surpasses their performance

in applications such as image denoising and inpainting [6], audio processing [23],

compressed sensing [24], and data classification [17, 25]. More specifically, given

input training signals y ∈ Rm, the goal in DL is to construct a basis such that y ≈
Dx. Here, D ∈ Rm×p is denoted as the dictionary that has unit-norm columns

and x ∈ Rp is the dictionary coefficient vector that has a few nonzero entries.

While the initial focus in DL had been on algorithmic development for various

problem setups, works in recent years have also provided fundamental analytical

results that help us understand the fundamental limits and performance of DL

algorithms for both vector-valued [26–33] and tensor-valued [12,13,15] data.

There are two paradigms in the DL literature: the dictionary can be assumed to

be a complete or an overcomplete basis (effectively, a frame [34]). In both cases,

columns of the dictionary span the entire space [27]; in complete dictionaries,

the dictionary matrix is square (m = p), whereas in overcomplete dictionar-

ies the matrix has more columns than rows (m < p). In general, overcomplete

representations result in more flexibility to allow both sparse and accurate rep-

resentations [6].
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Figure 1.1 A graphical representation of the scope of this chapter in relation to the
literature on representation learning.

1.1.2 Chapter Outline

In this chapter, we are interested in summarizing key results in learning of over-

complete dictionaries. We group works based on whether the data is vector-

valued (one-dimensional) or tensor-valued (multidimensional). For both these

cases, we focus on works that provide fundamental limits on the sample com-

plexity for reliable dictionary estimation, i.e., the number of observations that are

necessary to recover the true dictionary that generates the data up to some pre-

defined error. The main information-theoretic tools that are used to derive these

results range from reformulating the dictionary learning problem as a channel

coding problem and connecting the minimax risk analysis to Fano’s inequality.

We refer the reader to Fig. 1.1 for a graphical overview of the relationship of this

chapter to other themes in representation learning.

We address the DL problem for vector-valued data in Section 1.2, and for

tensor data in Section 1.3. Finally, we talk about extensions of these works and

some open problems in DL in Section 1.4. We focus here only on the problems

of identifiability and fundamental limits; in particular, we do not survey DL

algorithms in depth apart from some brief discussion in Sections 1.2 and 1.3.

The monograph of Okoudjou [35] discusses algorithms for vector-valued data.

Algorithms for tensor-valued data are relatively more recent and are described

in our recent paper [13].
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1.2 Dictionary Learning for Vector-valued Data

We first address the problem of reliable estimation of dictionaries underlying

data that have a single mode, i.e., are vector valued. In particular, we focus on

the subject of the sample complexity of the DL problem from two prospectives:

i) fundamental limits on the sample complexity of DL using any DL algorithm,

and ii) number of samples that are needed for different DL algorithms to reliably

estimate a true underlying dictionary that generates the data.

1.2.1 Mathematical Setup

In the conventional vector-valued dictionary learning setup, we are given a total

number N of vector-valued samples, {yn ∈ Rm}Nn=1, that are assumed to be

generated from a fixed dictionary, D0, according to the following model:

yn = D0xn +wn, n = 1, . . . , N. (1.1)

Here, D0 ∈ Rm×p is a (deterministic) unit-norm frame (m < p) that belongs to

the following compact set1:

D0 ∈ D ≜
{
D ∈ Rm×p, ∥Dj∥2 = 1 ∀j ∈ {1, . . . , p}

}
, (1.2)

and is referred to as the generating, true, or underlying dictionary. The vector

xn ∈ Rp is the coefficient vector that lies in some set X ⊆ Rp, and wn ∈ Rm

denotes the observation noise. Concatenating the observations into a matrix

Y ∈ Rm×N , their corresponding coefficient vectors into X ∈ Rp×N , and noise

vectors into W ∈ Rm×N , we get the following generative model:

Y = D0X+W. (1.3)

Various works in the DL literature impose different conditions on the coefficient

vectors {xn} to define the set X . The most common assumption is that xn

is sparse with one of several probabilistic models for generating sparse xn. In

contrast to exact sparsity, some works consider approximate sparsity and assume

that xn satisfies some decay profile [38], while others assume group sparsity

conditions for xn [39]. The latter condition comes up implicitly in DL for tensor

data as we discuss in Section 1.3. Similarly, existing works consider a variety

of noise models, the most common being Gaussian white noise. Regardless of

the assumptions on coefficient and noise vectors, all of these works assume the

observations are independent for n = 1, 2, . . . , N .

We are interested here in characterizing when it is possible to recover the true

dictionary D0 from observations Y. There is an inherent ambiguity in dictionary

recovery: reordering the columns of D0 or multiplying any column by −1 yields

a dictionary which can generate the same Y (with appropriately modified X).

1 A frame F ∈ Rm×p, m ≤ p, is defined as a collection of vectors {Fi ∈ Rm}pi=1 in some

separable Hilbert space H, that satisfy c1 ∥v∥22 ≤
∑p

i=1 |⟨Fi,v⟩|2 ≤ c2 ∥v∥22 for all v ∈ H
and for some constants 0 < c1 ≤ c2 < ∞. If c1 = c2, then F is a tight frame [36,37].



6 Sample Complexity Bounds for Dictionary Learning

Thus, each dictionary is equivalent to 2pp! other dictionaries. To measure the

distance between dictionaries, we can either define the distance between equiv-

alence classes of dictionaries or consider errors within a local neighborhood of a

fixed D0, where the ambiguity can potentially disappear.

The specific criterion that we focus on is sample complexity, defined as the

number of observations necessary to recover the true dictionary up to some

predefined error. The measure of closeness of the recovered dictionary and the

true dictionary can be defined in several ways. One approach is to compare the

representation error of these dictionaries. Another measure is the mean squared

error (MSE) between the estimated and generating dictionary, defined as

EY

{
d
(
D̂(Y),D0

)2}
, (1.4)

where d(·, ·) is some distance metric, and D̂(Y) is the recovered dictionary ac-

cording to observations Y. For example, if we restrict the analysis to a local

neighborhood of the generating dictionary, then we can use the Frobenius norm

as the distance metric.

We now discuss an optimization approach to solving the dictionary recovery

problem. Understanding the objective function within this approach is the key to

understanding the sample complexity of DL. Recall that solving the DL problem

involves using the observations to estimate a dictionary D̂ such that D̂ is close

to D0. In the ideal case, the objective function involves solving the statistical

risk minimization problem as follows:

D̂ ∈ argmin
D∈D

E
{
inf
x∈X

{
1

2
∥y −Dx∥22 +R(x)

}}
. (1.5)

Here, R(·) is a regularization operator that enforces the pre-specified structure,

such as sparsity, on the coefficient vectors. Typical choices for this parameter

include functions of ∥x∥0 or its convex relaxation, ∥x∥1.2 However, solving (1.5)

requires knowledge of exact distributions of the problem parameters as well as

high computational power. Hence, works in the literature resort to algorithms

that solve the empirical risk minimization (ERM) problem [40]:

D̂ ∈ argmin
D∈D

{
N∑

n=1

inf
xn∈X

{
1

2
∥yn −Dxn∥22 +R(xn)

}}
. (1.6)

In particular, to provide analytical results, many estimators solve this problem

in lieu of (1.5) and then show that the solution of (1.6) is close to (1.5).

There are a number of computational algorithms that have been proposed

to solve (1.6) directly for various regularizers, or indirectly using heuristic ap-

proaches. One of the most popular heuristic approaches is the K-SVD algorithm,

which can be thought of as solving (1.6) with ℓ0-norm regularization [6]. There

are also other methods such as method of optimal directions (MOD) [41] and

2 The so-called ℓ0-norm counts the number of nonzero entries of a vector; it is not a norm.
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online DL [25] that solve (1.6) with convex regularizers. While these algorithms

have been known to perform well in practice, attention has shifted in recent years

to theoretical studies to i) find the fundamental limits of solving the statistical

risk minimization problem in (1.5), ii) determine conditions on objective func-

tions like (1.6) to ensure recovery of the true dictionary, and iii) characterize

the number of samples needed for recovery using either (1.5) or (1.6). In this

chapter, we are also interested in understanding the sample complexity for the

DL statistical risk minimization and ERM problems. We summarize such results

in the existing literature for the statistical risk minimization of DL in Subsec-

tion 1.2.2 and for the ERM problem in Subsection 1.2.3. Because the measure

of closeness or error differs between these theoretical results, the corresponding

sample complexity bounds are different.

Remark 1.1 In this section, we assume that the data is available in a batch,

centralized setting and the dictionary is deterministic. In the literature, DL algo-

rithms have been proposed for other settings such as streaming data, distributed

data, and Bayesian dictionaries [42–45]. Discussions of these scenarios is beyond

the scope of this chapter. In addition, some works have looked at ERM problems

that are different from (1.6). We briefly discuss these works in Section 1.4.

1.2.2 Minimax Lower Bounds on the Sample Complexity of DL

In this section, we study the fundamental limits on the accuracy of the dictio-

nary recovery problem that is achievable by any DL method in the minimax

setting. Specifically, we wish to understand the behavior of the best estimator

that achieves the lowest worst-case MSE among all possible estimators. We de-

fine the error of such an estimator as the minimax risk, which is formally defined

as:

ε∗ = inf
D̂(Y)

sup
D∈D̃

EY

{
d
(
D̂(Y),D

)2}
. (1.7)

Note that the minimax risk does not depend on any specific DL method and

provides a lower bound for the error achieved by any estimator.

The first result we present pertains to lower bounds on the minimax risk,

i.e., minimax lower bounds, for the DL problem using the Frobenius norm as

the distance metric between dictionaries. The result is based on the following

assumption:

A1.1 (Local recovery) The true dictionary lies in a neighborhood of a fixed, known

reference dictionary,3 D∗ ∈ D, i.e., D0 ∈ D̃, where

D̃ = {D|D ∈ D, ∥D−D∗∥F ≤ r} . (1.8)

The range for the neighborhood radius r in (1.8) is (0, 2
√
p]. This conditioning

3 The use of a reference dictionary is an artifact of the proof technique and for sufficiently

large r, D ≈ D̃.
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comes from the fact that for anyD,D′ ∈ D, ∥D−D′∥F ≤ ∥D∥F+∥D′∥F = 2
√
p.

By restricting dictionaries to this class, for small enough r, ambiguities that are

a consequence of using the Frobenius norm can be prevented. We also point out

that any lower bound on ε∗ is also a lower bound on the global DL problem.

theorem 1.1 (Minimax lower bounds [33]) Consider a DL problem for vector-

valued data with N i.i.d. observations and true dictionary D satisfying assump-

tion A1.1 for some r ∈ (0, 2
√
p]. Then for any coefficient distribution with mean

zero and covariance matrix Σx, and white Gaussian noise with mean zero and

variance σ2, the minimax risk ε∗ is lower bounded as

ε∗ ≥ c1 min

{
r2,

σ2

N ∥Σx∥2
(c2p(m− 1)− 1)

}
, (1.9)

for some positive constants c1 and c2.

Theorem 1.1 holds for both square and overcomplete dictionaries. To obtain

this lower bound on the minimax risk, a standard information-theoretic approach

is taken in [33] to reduce the dictionary estimation problem to a multiple hy-

pothesis testing problem. In this technique, given fixed D∗ and r, and L ∈ N,
a packing DL =

{
D1,D2, . . . ,DL

}
⊆ D̃ of D̃ is constructed. The distance of

the packing is chosen to ensure a tight lower bound on the minimax risk. Given

observations Y = DlX+W, where Dl ∈ DL and index l is chosen uniformly at

random from {1, . . . , L}, and any estimation algorithm that recovers a dictionary

D̂(Y), a minimum distance detector can be used to find the recovered dictionary

index l̂ ∈ {1, . . . , L}. Then, Fano’s inequality can be used to relate the proba-

bility of error, i.e., P(l̂(Y) ̸= l), to the mutual information between observations

and the dictionary (equivalently, the dictionary index l), i.e., I(Y; l) [46].

Let us assume that r is sufficiently large such that the minimizer of the left

hand side of (1.9) is the second term. In this case, Theorem 1.1 states that to

achieve any error ε ≥ ε∗, we need the number of samples to be on the order of

N = Ω

(
σ2mp

∥Σx∥2 ε

)
.4 Hence, the lower bound on the minimax risk of DL can be

translated to a lower bound on the number of necessary samples, as a function

of the desired dictionary error. This can further be interpreted as a lower bound

on the sample complexity of the dictionary recovery problem.

We can also specialize this result to sparse coefficient vectors. Assume xn has

up to s nonzero elements and the random support of the nonzero elements of xn

is assumed to be uniformly distributed over the set {S ⊆ {1, . . . , p} : |S| = s},
for n = {1, . . . , N}. Assuming that the nonzero entries of xn are i.i.d. with vari-

ance σ2
x, we get Σx = (s/p)σ2

xIp. Therefore, for sufficiently large r, the sample

complexity scaling to achieve any error ε becomes Ω

(
σ2mp2

σ2
xsε

)
. In this special

case, it can be seen that in order to achieve a fixed error ε, the sample complex-

4 We use f(n) = Ω(g(n)) and f(n) = O(g(n)) if for sufficiently large n ∈ N, f(n) > c1g(n)

and f(n) < c2g(n), respectively, for some positive constants c1 and c2.
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ity scales with the number of degrees of freedom of the dictionary multiplied by

number of dictionary columns, i.e., N = Ω(mp2). There is also an inverse depen-

dence on sparsity level s. Defining the signal-to-noise-ratio of the observations

as SNR = (sσ2
x)/(mσ2), this can be interpreted as an inverse relationship with

SNR. Moreover, if all parameters except data dimension, m, are fixed, increasing

m requires a linear increase in N . Evidently, this linear relation is limited by the

fact that m ≤ p has to hold to maintain completeness or overcompleteness of the

dictionary: increasing m by a large amount requires increasing p also.

While the tightness of this result remains an open problem, Jung et al. [33] have

shown that for a special class of square dictionaries that are perturbations of the

identity matrix, and for sparse coefficients following a specific distribution, this

result is order-wise tight. In other words, a square dictionary that is perturbed

from the identity matrix can be recovered from this sample size order. Although

this result does not extend to overcomplete dictionaries, it suggests that the

lower bounds may be tight.

Finally, while distance metrics that are invariant to dictionary ambiguities

have been used for achievable overcomplete dictionary recovery results [30, 31],

obtaining minimax lower bounds for DL using these distance metrics remains an

open problem.

In this section, we discussed the number of necessary samples for reliable

dictionary recovery (sample complexity lower bound). In the next subsection, we

focus on achievability results, i.e., the number of sufficient samples for reliable

dictionary recovery (sample complexity upper bound).

1.2.3 Achievability Results

The preceding lower bounds on minimax risk hold for any estimator or compu-

tational algorithm. However, the proofs do not provide an understanding of how

to construct effective estimators and provide little intuition about the potential

performance of practical estimation techniques. In this section, we direct our

attention to explicit reconstruction methods and their sample complexities that

ensure reliable recovery of the underlying dictionary. Since these achievability

results are tied to specific algorithms that are guaranteed to recover the true

dictionary, the sample complexity bounds from these results can also be used to

derive upper bounds on the minimax risk. As we will see later, there remains a

gap between the lower bound and the upper bound on the minimax risk. Alter-

natively, one can interpret the sample complexity lower bound and upper bound

as the number of necessary samples and sufficient samples for reliable dictionary

recovery, respectively. In the following, we only focus on identifiability results:

the estimation procedures are not required to be computationally efficient.

One of the first achievability results for DL were derived in [27,28] for square

matrices. Since then, a number of works have been carried out for overcom-

plete DL involving vector-valued data [26, 29–32, 38]. These works differ from

each other in terms of their assumptions on the true underlying dictionary, the
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dictionary coefficients, presence or absence of noise and outliers, reconstruction

objective function, the distance metric used to measure the accuracy of the solu-

tion, and the local or global analysis of the solution. In this section, we summarize

a few of these results based on various assumptions on the noise and outliers and

provide a brief overview of the landscape of these results in Table 1.1. We begin

our discussion with achievability results for DL for the case where Y is exactly

given by Y = D0X, i.e., the noiseless setting.

Before proceeding, we provide a definition and an assumption that will be

used for the rest of this section. We note that the constants that are used in the

presented theorems change from one result to another.

(Worst-case coherence) For any dictionary D ∈ D, its worst-case coherence

is defined as µ(D) = maxi ̸=j |⟨Di,Dj⟩|, where µ(D) ∈ (0, 1) [36].

(Random support of sparse coefficient vectors) For any xn that has up

to s nonzero elements, the support of the nonzero elements of xn is assumed

to be distributed uniformly at random over the set {S ⊆ {1, . . . , p} : |S| = s},
for n = {1, . . . , N}.

Noiseless Recovery
We begin by discussing the first work that proves local identifiability of the

overcomplete DL problem. The objective function that is considered in that

work is (
X̂, D̂

)
= argmin

D∈D,X
∥X∥1 subject to Y = DX, (1.10)

where ∥X∥1 ≜
∑

i,j |Xi,j | denotes the sum of absolute values of X.

This result is based on the following set of assumptions:

A2.1 (Gaussian random coefficients). The values of the nonzero entries of xn’s are

independent Gaussian random variables with zero mean and common standard

deviation σx =
√
p/sN .

A2.2 (Sparsity level). The sparsity level satisfies s ≤ min
{
c1/µ(D

0), c2p
}
for some

constants c1 and c2.

theorem 1.2 (Noiseless, local recovery [29]) There exist positive constants

c1, c2 such that if assumptions A2.1–A2.2 are satisfied for true (X,D0), then

(X,D0) is a local minimum of (1.10) with high probability.

The probability in this theorem depends on various problem parameters and

implies that N = Ω
(
sp3
)
samples are sufficient for the desired solution, i.e.,

true dictionary and coefficient matrix, to be locally recoverable. The proof of

this theorem relies on studying the local properties of (1.10) around its optimal

solution and does not require defining a distance metric.

We now present a result that is based on the use of a combinatorial algorithm,

which can provably and exactly recover the true dictionary. The proposed algo-

rithm solves the objective function is (1.6) with R(x) = λ ∥x∥1, where λ is the
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regularization parameter and the distance metric that is used is the column-wise

distance. Specifically, for two dictionaries D1 and D2, their column-wise distance

is defined as

d(D1
j ,D

2
j ) = min

l∈{−1,1}

∥∥D1
j − lD2

j

∥∥
2
, j ∈ {1, . . . , p} , (1.11)

where D1
j and D2

j are the jth column of D1 and D2, respectively. This distance

metric avoids the sign ambiguity among dictionaries belonging to the same equiv-

alence class. To solve (1.6), Agarwal et al. provide a novel DL algorithm that

consists of an initial dictionary estimation stage and an alternating minimization

stage to update the dictionary and coefficient vectors [30]. The provided guaran-

tees are based on using this algorithm to update the dictionary and coefficients.

The forthcoming result is based on the following set of assumptions:

A3.1 (Bounded random coefficients). The nonzero entries of xn’s are drawn from

a zero-mean unit-variance distribution and their magnitude satisfies xmin ≤
|xn

i | ≤ xmax.

A3.2 (Sparsity level). The sparsity level satisfies s ≤ min
{
c1/
√
µ(D0), c2m

1/9

, c3p
1/8
}
for some positive constants c1, c2, c3 that depend on xmin, xmax, and

the spectral norm of D0.

A3.3 (Dictionary assumptions). The true dictionary has bounded spectral norm,

i.e.,
∥∥D0

∥∥
2
≤ c4

√
p/m, for some positive c4.

theorem 1.3 (Noiseless, exact recovery [30]) Consider a DL problem with N

i.i.d. observations and assume that assumptions A3.1–A3.3 are satisfied. Then,

there exists a universal constant c such that for given η > 0, if

N ≥ c

(
xmax

xmin

)2

p2 log
2p

η
, (1.12)

there exists a procedure consisting of an initial dictionary estimation stage and

an alternating minimization stage such that after T = O(log( 1ε )) iterations of

the second stage, with probability at least 1 − 2η − 2ηN2, d(D̂j ,D
0
j ) ≤ ε, ∀ε >

0,∀j ∈ {1, . . . , p}.

This theorem guarantees that the true dictionary can be recovered to an arbi-

trary precision given N = Ω(p2 log p) samples. This result is based on two steps.

The first step is guaranteeing an error bound for the initial dictionary estima-

tion step. This step involves using a clustering-style algorithm to approximate

the dictionary columns. The second step is proving a local convergence result

for the alternating minimization stage. This step involves improving estimates

of the coefficient vectors and the dictionary through Lasso [47] and least-square

steps, respectively. More details for this work can be found in [30].

While works in [29, 30] study the sample complexity of the overcomplete DL

problem, they do not take noise into account. Next, we present works that obtain

sample complexity results for noisy reconstruction of dictionaries.
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Noisy Reconstruction
The next result we discuss is based on the following objective function:

max
D∈D

1

N

N∑
n=1

max
|S|=s

∥PS(D)yn∥22 , (1.13)

where PS(D) denotes projection of D onto the span of DS = {Dj}j∈S .
5 Here,

the distance metric that is used is d(D1,D2) = maxj∈{1,...,p}
∥∥D1

j −D2
j

∥∥
2
. In

addition, the results are based on the following set of assumptions:

A4.1 (Unit-norm tight frame). The true dictionary is a unit-norm tight frame, i.e.,

for all v ∈ Rm we have
∑p

j=1

∣∣⟨D0
j ,v⟩

∣∣2 =
p∥v∥2

2

m .

A4.2 (Lower isometry constant). The lower isometry constant of D0, defined as

δs(D
0) ≜ max|S|≤s δS(D

0) with 1 − δS(D
0) denoting the minimal eigenvalue

of D0
S
∗
D0

S , satisfies δs(D
0) ≤ 1− s

m .

A4.3 (Decaying random coefficients). The coefficient vector xn is drawn from a

symmetric decaying probability distribution ν on the unit sphere Sp−1.6

A4.4 (Bounded random noise). The vector wn is a bounded random white noise

vector satisfying ∥wn∥2 ≤ Mw almost surely, E {wn} = 0 and E {wnwn∗} =

ρ2Im.

A4.5 (Maximal projection constraint). Define c(xn) to be the non-increasing rear-

rangement of the absolute values of xn. Given a sign sequence l ∈ {−1, 1}p

and a permutation operator π : {1, . . . , p} → {1, . . . , p}, define cπ,l(x
n) whose

ith element is equal to lic(x
n)π(i) for i ∈ {1, . . . , p}. There exists κ > 0 such

that for c(xn) and Sπ ≜ π−1 ({1, . . . , s}), we have

ν

(
min
π,l

( ∥∥PSπ
(D0)D0cπ,l(x

n)
∥∥
2
− max

|S|=s,S̸=Sπ

∥∥PS(D
0)D0cπ,l(x

n)
∥∥
2

)
≥ 2κ+ 2Mw

)
= 1. (1.15)

theorem 1.4 (Noisy, local recovery [38]) Consider a DL problem with N i.i.d.

observations and assume that assumptions A4.1–A4.5 are satisfied. If for some

0 < q < 1/4, the number of samples satisfies:

2N−q +N−2q ≤
c1
√

1− δs(D0)

√
s

(
1 + c2

√
log

(
c3p(ps)

c4s(1−δs(D0)

)) , (1.16)

5 This objective function can be thought of as a manipulation of (1.6) with the ℓ0-norm
regularizer for the coefficient vectors. See [38, Equation 2] for more details.

6 A probability measure ν on the unit sphere Sp−1 is called symmetric if for all measurable

sets X ⊆ Sp−1, for all sign sequences l ∈ {−1, 1}p and all permutations
π : {1, . . . , p} → {1, . . . , p}, we have

ν(lX ) = ν(X ), where lX = {(l1x1, . . . , lpxp) : x ∈ X} , and
ν(π(X )) = ν(X ), where π(X ) =

{(
xπ(1), . . . ,xπ(p)

)
: x ∈ X

}
. (1.14)
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then, with high probability, there is a local maximum of (1.13) within distance

at most 2N−q of D0.

The constants c1, c2, c3 and c4 in Theorem 1.4 depend on the underlying dic-

tionary, coefficient vectors, and the underlying noise. The proof of this theorem

relies on the fact that for the true dictionary and its perturbations, the maximal

response, i.e.,
∥∥∥PS(D̃)D0xn

∥∥∥
2
,7 is attained for the set S = Sπ for most signals.

A detailed explanation of the theorem and its proof can be found in the paper

of Schnass [38].

In order to understand Theorem 1.4, let us set q ≈ 1
4 − log p

logN . We can then

understand this theorem as follows. GivenN/ logN = Ω(mp3), except with prob-

ability O(N−mp), there is a local minimum of (1.13) within distance O(pN−1/4)

of the true dictionary. Moreover, since the objective function that is considered

in this work is also solved for the K-SVD algorithm, this result gives an under-

standing of the performance of the K-SVD algorithm. Compared to results with

R(x) being a function of the ℓ1-norm [29,30], this result requires the true dictio-

nary to be a tight frame. On the flip side, the coefficient vector in Theorem 1.4

is not necessarily sparse; instead, it only has to satisfy a decaying condition.

Next, we present a result obtained by Arora et al. [31] that is similar to that of

Theorem 1.3 in the sense that it uses a combinatorial algorithm that can prov-

ably recover the true dictionary given noiseless observations. It further obtains

dictionary reconstruction results for the case of noisy observations. The objective

function considered in this work is similar to that of the K-SVD algorithm and

can be thought of as (1.6) with R(x) = λ ∥x∥0, where λ is the regularization

parameter.

Similar to Agarwal et al. [30], Arora et al. [31] define two dictionaries D1 and

D2 to be column-wise ε close if there exists a permutation π and l ∈ {−1, 1}
such that

∥∥∥D1
j − lD2

π(j)

∥∥∥
2
≤ ε. This distance metric captures the distance be-

tween equivalent classes of dictionaries and avoids the sign-permutation ambi-

guity. They propose a DL algorithm that first uses combinatorial techniques to

recover the support of coefficient vectors, by clustering observations into overlap-

ping clusters that use the same dictionary columns. To find these large clusters,

a clustering algorithm is provided. Then, the dictionary is roughly estimated

given the clusters, and the solution is further refined. The provided guarantees

are based on using the proposed DL algorithm. In addition, the results are based

on the following set of assumptions:

A5.1 (Bounded coefficient distribution). Nonzero entries of xn are drawn from a

zero-mean distribution and lie in [−xmax,−1] ∪ [1, xmax], where xmax = O(1).

Moreover, conditioned on any subset of coordinates in xn being nonzero,

nonzero values of xn
i are independent from each other. Finally, the distri-

bution has bounded 3-wise moments, i.e., the probability that xn is nonzero

7 D̃ can be D0 itself or some perturbation of D0.
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in any subset S of 3 coordinates is at most c3 times
∏

i∈S P {xn
i ̸= 0}, where

c = O(1).8

A5.2 (Gaussian noise). The wn’s are independent and follow a spherical Gaussian

distribution with standard deviation σ = o(
√
m).

A5.3 (Dictionary coherence). The true dictionary is µ̃-incoherent, that is, for all

i ̸= j, ⟨D0
i ,D

0
j ⟩ ≤ µ̃(D0)/

√
m and µ̃(D0) = O(log(m)).

A5.4 (Sparsity level). The sparsity level satisfies s ≤ c1 min
{
p2/5,

√
m

µ̃(D0) logm

}
, for

some positive constant c1.

theorem 1.5 (Noisy, exact recovery [31]) Consider a DL problem with N i.i.d.

observations and assume that assumptions A5.1–A5.4 are satisfied. Provided

that

N = Ω

(
σ2ε−2p log p

(
p

s2
+ s2 + log

1

ε

))
, (1.17)

there is a universal constant c1 and a polynomial-time algorithm that learns the

underlying dictionary. With high probability, this algorithm returns D̂ that is

column-wise ε close to D0.

For desired error ε, the run time of the algorithm and the sample complexity

depend on log 1
ε . With the addition of noise, there is also a dependency on ε−2 for

N , which is inevitable for noisy reconstruction of the true dictionary [31,38]. In

the noiseless setting, this result translates into N = Ω
(
p log p

(
p
s2 + s2 + log 1

ε

))
.

Noisy Reconstruction with Outliers
In some scenarios, in addition to observations Y drawn from D0, we encounter

observations Yout that are not generated according to D0. We call such obser-

vations outliers (as opposed to inliers). In this case, the observation matrix is

Yobs = [Y,Yout], where Y is the inlier matrix and Yout is the outlier matrix.

In this part, we study the robustness of dictionary identification in the presence

of noise and outliers. The following result studies (1.6) with R(x) = λ ∥x∥1,
where λ is the regularization parameter. Here, the Frobenius norm is considered

as the distance metric. In addition, the result is based on the following set of

assumptions:

A6.1 (Cumulative coherence). The cumulative coherence of the true dictionary D0,

which is defined as

µs(D
0) ≜ sup

|S|≤s

sup
j ̸∈S

∥∥∥D0
S
T
D0

j

∥∥∥
1
, (1.18)

satisfies µs(D
0) ≤ 1/4.

8 This condition is trivially satisfied if the set of the locations of nonzero entries of xn is a

random subset of size s.
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A6.2 (Bounded random coefficients). Assume nonzero entries of xn are drawn i.i.d.

from a distribution with absolute mean E {|x|} and variance E
{
x2
}
. We

denote ln = sign(xn).9 Dropping the index of xn and ln for simplicity of

notations, the following assumptions are satisfied for the coefficient vector:

E
{
xSx

T
S |S

}
= E

{
x2
}
Is, E

{
xS l

T
S |S

}
= E {|x|} Is, E

{
lS l

T
S |S

}
= Is, ∥x∥2 ≤

Mx, and mini∈S |xi| ≥ xmin. We define κx ≜ E{|x|}√
E{x2}

as a measure of the

flatness of x. Moreover,the following inequality is satisfied:

E
{
x2
}

MxE {|x|}
>

cs

(1− 2µs(D0))p

(∥∥D0
∥∥
2
+ 1
) ∥∥∥D0TD0 − I

∥∥∥
F
, (1.19)

where c is a positive constant.

A6.3 (Regularization parameter). The Regularization parameter satisfies λ ≤ xmin/4.

A6.4 (Bounded random noise). Assume nonzero entries of wn are drawn i.i.d. from

a distribution with mean 0 and variance E
{
w2
}
. Dropping the index of vectors

for simplicity,w is a bounded random white noise vector satisfying E
{
wwT |S

}
=

E
{
w2
}
Im, E

{
wxT |S

}
= E

{
wlT |S

}
= 0, and ∥w∥2 ≤ Mw. Furthermore, de-

noting λ̄ ≜ λ
E{|x|} :

Mw

Mx
≤ 7

2
(cmax − cmin) λ̄, (1.20)

where cmin and cmax depend on problem parameters such as s, coefficient

distribution, and D0.

A6.5 (Sparsity level) The sparsity level satisfies s ≤ p

16(∥D0∥2+1)
2 .

A6.6 (Radius range) The error radius ε > 0 satisfies ε ∈
(
λ̄cmin, λ̄cmax

)
.

A6.7 (Outlier energy). Given inlier matrix Y = {yn}Nn=1 and outlier matrix Yout =

{y′n}Nout
n=1 , the energy of Yout satisfies

∥Yout∥1,2
N

≤
c1ε

√
sE
{
∥x∥22

}
λ̄E {|x|}

(
A0

p

)3/2
[
1

p

(
1− cminλ̄

ε

)
− c2

√
mp+ η

N

]
,

(1.21)

where ∥Yout∥1,2 denotes the sum of the ℓ2-norms of the columns of Yout, c1
and c2 are positive constants, independent of parameters, and A0 is the lower

frame bound of D0, i.e., A0 ∥v∥22 ≤
∥∥∥D0Tv

∥∥∥2
2
for any v ∈ Rm.

theorem 1.6 (Noisy with outliers, local recovery [32]) Consider a DL prob-

lem with N i.i.d. observations and assume that assumptions A6.1–A6.6 are

satisfied. Suppose

N > c0(mp+ η)p2

 M2
x

E
{
∥x∥22

}
2
ε+

(
Mw

Mx
+ λ̄

)
+
(

Mw

Mx
+ λ̄

)2
ε− cminλ̄

 , (1.22)

9 The sign of the vector v is defined as l = sign(v), whose elements are li =
vi
|vi|

for vi ̸= 0

and li = 0 for vi = 0, where i denotes any index of the elements of v.
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then with probability at least 1− 2−η, (1.6) admits a local minimum within dis-

tance ε of D0. In addition, this result is robust to the addition of outlier matrix

Yout, provided that the assumption in A6.7 is satisfied.

The proof of this theorem relies on using the Lipschitz continuity property of

the objective function in (1.6) with respect to the dictionary and sample complex-

ity analysis using Rademacher averages and Slepian’s Lemma [48]. Theorem 1.6

implies that

N = Ω

((
mp3 + ηp2

)(Mw

Mxε

)2
)

(1.23)

samples are sufficient for the existence of a local minimum within distance ε of

true dictionary D0, with high probability. In the noiseless setting, this result

translates into N = Ω
(
mp3

)
, and sample complexity becomes independent of

the radius ε. Furthermore, this result applies to overcomplete dictionaries with

dimensions p = O(m2).

1.2.4 Summary of Results

In this section, we have discussed DL minimax risk lower bounds [33] and achiev-

ability results [29–32,38]. These results differ in terms of the distance metric they

use. An interesting question that rises here is: Can these results be unified so

that the bounds can be directly compared with one another? Unfortunately, the

answer to this question is not as straightforward as it seems and the inability

to unify them is a limitation that we discuss in Section 1.4. A summary of the

general scaling of the discussed results for sample complexity of (overcomplete)

dictionary learning are provided in Table 1.1. We note that these are general scal-

ings that ignore other technicalities. Here, the provided sample complexity results

depend on the present or absence of noise and outliers. All the presented results

require the underlying dictionary satisfies incoherence conditions in some way.

For a one-to-one comparison of these results, the bounds for the case of absence

of noise and outliers can be compared. A detailed comparison of the noiseless

recovery for square and overcomplete dictionaries can be found in [32, Table I].
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1.3 Dictionary Learning for Tensors

Many of today’s data are collected using various sensors and tend to have a mul-

tidimensional/tensor structure (cf. Fig. 1.2). Examples of tensor data include: 1)

hyperspectral images that have three modes; two spatial and one spectral, 2) col-

ored videos that have four modes; two spacial, one depth, and one temporal, and

3) dynamic magnetic resonance imaging in a clinical trial that has five modes;

three spatial, one temporal, and one subject. To find representations of tensor

data using DL, one can follow two paths. A naive approach is to vectorize tensor

data and use traditional vectorized representation learning techniques. A better

approach is to take advantage of the multidimensional structure of data to learn

representations that are specific to tensor data. While the main focus of the liter-

ature on representation learning has been on the former approach, recent works

have shifted focus to the latter approaches [8–11]. These works use various tensor

decompositions to decompose tensor data into smaller components. The repre-

sentation learning problem can then be reduced to learning the components that

represent different modes of the tensor. This results in reduction in the number

of degrees of freedom in the learning problem, due to the fact that the dimensions

of the representations learned for each mode are significantly smaller than the

dimensions of the representation learned for the vectorized tensor. Consequently,

this approach gives rise to compact and efficient representation of tensors.

To understand the fundamental limits of dictionary learning for tensor data,

one can use the sample complexity results in Section 1.2, which are a function of

the underlying dictionary dimensions. However, considering the reduced number

of degrees of freedom in the tensor DL problem compared to vectorized DL, this

problem should be solvable with a smaller number of samples. In this section,

we formalize this intuition and address the problem of reliable estimation of

dictionaries underlying tensor data. Similar to the previous section, we will focus

on the subject of sample complexity of the DL problem from two prospectives; i)

fundamental limits on the sample complexity of DL for tensor data using any DL

algorithm, and ii) number of samples that are needed for different DL algorithms

to reliably estimate the true dictionary from which the tensor data is generated.

Spatial (horizontal)

Tem
poral

Spatial (horizontal)

Tem
poral

Hyperspectral video Clinical study using dynamic MRI

Figure 1.2 Two of countless examples of tensor data in today’s sensor-rich world.
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1.3.1 Tensor Terminology

A tensor is defined as a multiway array and the tensor order is defined as the

number of components of the array. For instance, X ∈ Rp1×···×pK is a Kth-order

tensor. For K = 1 and K = 2, the tensor is effectively a vector and a matrix,

respectively. In order to better understand the results reported in this section,

we first need to define some tensor notation that will be useful throughout this

section.

Tensor Unfolding: Elements of tensors can be rearranged to form matrices.

Given a Kth-order tensor, X ∈ Rp1×···×pK , its mode-k unfolding is denoted as

X(k) ∈ Rpk×
∏

i̸=k pi . The columns of X(k) are formed by fixing all the indices,

except one in the kth mode.

Tensor Multiplication: The mode-k product between the Kth-order tensor,

X ∈ Rp1×···×pK , and a matrix, A ∈ Rmk×pk , is defined as

(X×k A)i1,...,ik−1,j,ik+1,...,iK =

pk∑
ik=1

Xi1,...,ik−1,ik,ik+1,...,iK
Aj,ik . (1.24)

Tucker Decomposition [49]: Given a Kth-order tensor Y ∈ Rm1×···×mK sat-

isfying rank
(
Y(k)

)
≤ pk, the Tucker decomposition decomposes Y into a core

tensor X ∈ Rp1×···×pK multiplied by factor matrices Dk ∈ Rmk×pk along each

mode, i.e.,

Y = X×1 D1 ×2 D2 ×3 · · · ×K DK . (1.25)

This can be restated as:

vec
(
Y(1)

)
= (DK ⊗DK−1 ⊗ · · · ⊗D1) vec

(
X(1)

)
, (1.26)

where ⊗ denotes the matrix Kronecker product [50] and vec(.) denotes stacking

of the columns of a matrix into one column. We will use the shorthand notation

vec(Y) to denote vec
(
Y(1)

)
and

⊗
k Dk to denote D1 ⊗ · · · ⊗DK .

1.3.2 Mathematical Setup

To exploit the structure of tensors in DL, we can model tensors using various

tensor decomposition techniques. These include Tucker decomposition, CAN-

DECOMP/PARAFAC (CP) decomposition [51], and the t-product tensor fac-

torization [52]. While the Tucker decomposition can be restated as the Kronecker

product of matrices multiplied by a vector, other decompositions result in dif-

ferent formulations. In this chapter, we consider the Tucker decomposition due

to the following reasons: i) it represents a sequence of independent transforma-

tions, i.e., factor matrices, for different data modes, and ii) Kronecker-structured

matrices have successfully been used for data representation in applications such

as magnetic resonance imaging, hyperspectral imaging, video acquisition, and

distributed sensing [8, 9].



20 Sample Complexity Bounds for Dictionary Learning

VectorizedDL

KS-DL ⌦

Figure 1.3 Illustration of the distinctions of KS-DL versus vectorized DL for a
2nd-order tensor: both vectorize the observation tensor, but the structure of the
tensor is exploited in the KS dictionary, leading to the learning of two coordinate
dictionaries with reduced number of parameters compared to the dictionary learned
in vectorized DL.

Kronecker-structured Dictionary Learning (KS-DL)
In order to state the main results of this section, we begin with a generative

model for tensor data based on Tucker decomposition. Specifically, we assume

we have access to a total number of N tensor observations, Yn ∈ Rm1×···×mK ,

that are generated according to the following model:10

vec(Yn) =
(
D0

1 ⊗D0
2 ⊗ · · · ⊗D0

K

)
vec(Xn) + vec(Wn), n = 1, . . . , N. (1.27)

Here, {D0
k ∈ Rmk×pk}Kk=1 are the true fixed coordinate dictionaries, Xn ∈

Rp1×···×pK is the coefficient tensor, and Wn ∈ Rm1×···×mK is the underlying

noise tensor. In this case, the true dictionaryD0 ∈ Rm×p is Kronecker-structured

(KS) and has the form

D0 =
⊗
k

D0
k, m =

K∏
k=1

mk and p =

K∏
k=1

pk,

where D0
k ∈ Dk =

{
Dk ∈ Rmk×pk , ∥Dk,j∥2 = 1 ∀j ∈ {1, . . . , pk}

}
. (1.28)

We define the set of KS dictionaries as

DKS =

{
D ∈ Rm×p : D =

⊗
k

Dk,Dk ∈ Dk ∀k ∈ {1, . . . ,K}
}
. (1.29)

Comparing (1.27) to the traditional formulation in (1.1), it can be seen that

KS-DL also involves vectorizing the observation tensor, but it has the main dif-

ference that the structure of the tensor is captured in the underlying KS dictio-

nary. An illustration of this for a 2nd-order tensor is shown in Figure 1.3. Similar

to (1.3), we can stack the vectorized observations, yn = vec(Yn), vectorized co-

efficient tensors, xn = vec(Xn), and vectorized noise tensors, wn = vec(Wn), in

columns of Y, X, and W, respectively. We now discuss the role of sparsity in

10 We have reindexed Dk’s here for simplicity of notation.
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coefficient tensors for dictionary learning. While in vectorized DL it is usually as-

sumed that the random support of nonzero entries of xn is uniformly distributed,

there are two different definitions of the random support of Xn for tensor data:

1) Random sparsity: The random support of xn is uniformly distributed over the

set {S ⊆ {1, . . . , p} : |S| = s}.
2) Separable sparsity: The random support of xn is uniformly distributed over

the set S that is related to {S1 × . . .SK : Sk ⊆ {1, . . . , pk} , |Sk| = sk} via lex-

icographic indexing. Here, s =
∏

k sk.

Separable sparsity requires nonzero entries of the coefficient tensor to be grouped

in blocks. This model also implies that the columns of Y(k) have sk-sparse rep-

resentations with respect to D0
k [53].

The aim in KS-DL is to estimate coordinate dictionaries, D̂k’s, such that they

are close to D0
k’s. In this scenario, the statistical risk minimization problem has

the form:(
D̂1, . . . , D̂K

)
∈ argmin

{Dk∈Dk}K
k=1

E

{
inf
x∈X

{
1

2

∥∥∥∥y −
(⊗

k

Dk

)
x

∥∥∥∥2
2

+R(x)

}}
,

(1.30)

and the ERM problem is formulated as:(
D̂1, . . . , D̂K

)
∈ argmin

{Dk∈Dk}K
k=1

{
N∑

n=1

inf
xn∈X

{
1

2

∥∥∥∥yn −
(⊗

k

Dk

)
xn

∥∥∥∥2
2

+R(xn)

}}
,

(1.31)

where R(.) is a regularization operator on the coefficient vectors. Various KS-

DL algorithms have been proposed that solve (1.31) heuristically by means of

optimization tools such as alternative minimization [9] and tensor rank minimiza-

tion [54], and by taking advantage of techniques in tensor algebra such as the

higher-order SVD for tensors [55]. In particular, an algorithm called “STARK” is

proposed in [11] that shows that the Kronecker product of any number of matri-

ces can be rearranged to form a rank-1 tensor. In order to solve (1.31), therefore,

a regularizer is added in [11] to the objective function that enforces this low

rankness on the rearrangement tensor. The dictionary update stage of this al-

gorithm involves learning the rank-1 tensor and rearranging it to form the KS

dictionary. This is in contrast to learning the individual coordinate dictionaries

by means of alternating minimization [9].

In the case of theory for KS-DL, the notion of closeness can have two interpre-

tations. One is the distance between the true KS dictionary and the recovered KS

dictionary, i.e., d
(
D̂(Y),D0

)
. The other is the distance between each true co-

ordinate dictionary and the corresponding recovered coordinate dictionary, i.e.,

d
(
D̂k(Y),D0

k

)
. While small recovery errors for coordinate dictionaries imply

a small recovery error for the KS dictionary, the other side of the statement
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does not necessarily hold. Hence, the latter notion is of importance when we are

interested in recovering the structure of the KS dictionary.

In this section, we focus on the sample complexity of the KS-DL problem. The

questions that we address in this section are i) What are the fundamental limits

of solving the statistical risk minimization problem in (1.30)? ii) Under what

kind of conditions do objective functions like (1.31) recover the true coordinate

dictionaries and how many samples do they need for this purpose? iii) How

do these limits compare to their vectorized DL counterparts? Addressing these

question will help in understanding the benefits of KS-DL for tensor data.

1.3.3 Fundamental Limits on the Minimax Risk of KS-DL

Below, we present a result that obtains lower bounds on the minimax risk of the

KS-DL problem. This result can be considered as an extension of Theorem 1.1

for the KS-DL problem for tensor data. Here, the Frobenius norm is considered

as the distance metric and the result is based on the following assumption:

A7.1 (Local recovery). The true KS dictionary lies in a neighborhood of some ref-

erence dictionary, D∗ ∈ DKS , i.e., D
0 ∈ D̃KS , where

D̃KS = {D|D ∈ DKS , ∥D−D∗∥F ≤ r} . (1.32)

theorem 1.7 (KS-DL minimax lower bounds [13]) Consider a KS-DL problem

with N i.i.d. observations and true KS dictionary D0 satisfying assumption A7.1

for some r ∈ (0, 2
√
p]. Then, for any coefficient distribution with mean zero and

covariance matrix Σx, and white Gaussian noise with mean zero and variance

σ2, the minimax risk ε∗ is lower bounded as

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ2

4NK∥Σx∥2

(
c1

( K∑
k=1

(mk − 1)pk

)
− K

2
log2 2K − 2

)}
,

(1.33)

for any 0 < t < 1 and any 0 < c1 <
1− t

8 log 2
.

Similar to Theorem 1.1, the proof of this theorem relies on using the standard

procedure for lower bounding the minimax risk by connecting it to the maximum

probability of error of a multiple hypothesis testing problem. Here, since the

constructed hypothesis testing class consists of KS dictionaries, the construction

procedure and the minimax risk analysis are different from that in [33].

To understand this theorem, let us assume that r and p are sufficiently large

such that the minimizer of the left hand side of (1.33) is the third term. In

this case, Theorem 1.7 states that to achieve any error ε for the Kth-order ten-

sor dictionary recovery problem, we need the number of samples to be on the

order of N = Ω

(
σ2
∑

k mkpk
K ∥Σx∥2 ε

)
. Comparing this scaling to the results for the

unstructured dictionary learning problem provided in Theorem 1.1, the lower
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bound here is decreased from the scaling Ω (mp) to Ω (
∑

k mkpk/K). This re-

duction can be attributed to the fact that the average number of degrees of

freedom in a KS-DL problem is
∑

k mkpk/K, compared to the number of de-

grees of the vectorized DL problem, which is mp. For the case of K = 2 and

m1 = m2 =
√
m and p1 = p2 =

√
p, the sample complexity lower bound scales

with Ω(mp) for vectorized DL, and with Ω(
√
mp) for KS-DL. On the other hand,

when m1 = αm,m2 = 1/α and p1 = αm1, p2 = 1/α, where α < 1, 1/α ∈ N, the
sample complexity lower bound scales with Ω(mp) for KS-DL, which is similar

to the scaling for vectorized DL.

Specializing this result to random sparse coefficient vectors and assuming that

the nonzero entries of xn are i.i.d. with variance σ2
x, we get Σx = (s/p)σ2

xIp.

Therefore, for sufficiently large r, the sample complexity scaling to achieve any

error ε for strictly sparse representations becomes Ω

(
σ2p

∑
k mkpk

σ2
xsKε

)
.

A very simple KS-DL algorithm is also provided in [13] that can recover a

square KS dictionary that consists of the Kronecker product of 2 smaller dic-

tionaries and is a perturbation of the identity matrix. It is shown that in this

case, the lower bound provided in (1.33) is order-wise achievable for the case

of sparse coefficient vectors. This suggests that the obtained sample complexity

lower bounds for overcomplete KS-DL are not too loose.

In the next subsection, we focus on achievability results for the KS dictionary

recovery problem, i.e., upper bounds on the sample complexity of KS-DL.

1.3.4 Achievability results

While the results in the previous section provide us with a lower bound on

the sample complexity of the KS-DL problem, we are further interested in the

sample complexity of specific KS-DL algorithms that solve (1.31). Below, we

present a KS-DL achievability result that can be interpreted as an extension of

Theorem 1.6 to the KS-DL problem.

Noisy Recovery
We present a result that states conditions that ensure reliable recovery of the

coordinate dictionaries from noisy observations using (1.31). Shakeri et al. [15]

solve (1.31) with R(x) = λ ∥x∥1, where λ is a regularization parameter. Here,

the coordinate dictionary error is defined as

εk =
∥∥∥D̂k −D0

k

∥∥∥
F
, k ∈ {1, . . . ,K} , (1.34)

where D̂k is the recovered coordinate dictionary. The result is based on the

following set of assumptions:

A8.1 (Cumulative coherence). The cumulative coherences of the true coordinate
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dictionaries satisfy µsk(D
0
k) ≤ 1/4 and the cumulative coherences of the true

dictionary satisfies µs(D
0) ≤ 1/2.11

A8.2 (Bounded random coefficients). The random support of xn is generated from

the separable sparsity model. Assume nonzero entries of xn are drawn i.i.d.

from a distribution with absolute mean E {|x|} and variance E
{
x2
}
. De-

noting ln = sign(xn), and dropping the index of xn and ln for simplicity

of notation, the following assumptions are satisfied for the coefficient vec-

tor: E
{
xSx

T
S |S

}
= E

{
x2
}
Is, E

{
xS l

T
S |S

}
= E {|x|} Is, E

{
lS l

T
S |S

}
= Is,

∥x∥2 ≤ Mx, and mini∈S |xi| ≥ xmin. Moreover, defining κx ≜ E{|x|}√
E{x2}

as a

measure of the flatness of x, the following inequality is satisfied:

E
{
x2
}

MxE {|x|}
>

c1
1− 2µs(D0)

max
k∈{1,...,K}

(
sk
pk

(∥∥D0
k

∥∥
2
+ 1
) ∥∥∥D0

k
T
D0

k − I
∥∥∥
F

)
,

(1.35)

where c1 is a positive constant that is an exponential function of K.

A8.3 (Regularization parameter). The Regularization parameter satisfies λ ≤ xmin

/c2, where c2 is a positive constant that is an exponential function of K.

A8.4 (Bounded random noise). Assume nonzero entries of wn are drawn i.i.d. from a

distribution with mean 0 and variance E
{
w2
}
. Dropping the index of vectors

for simplicity of notation, w is a bounded random white noise vector satisfying

E
{
wwT |S

}
= E

{
w2
}
Im, E

{
wxT |S

}
= E

{
wlT |S

}
= 0, and ∥w∥2 ≤ Mw.

Furthermore, denoting λ̄ ≜ λ
E{|x|} , we have

Mw

Mx
≤ c3

(
λ̄Kcmax −

K∑
k=1

εk

)
, (1.36)

where c3 is a positive constant that is an exponential function of K and cmax

depends on the coefficient distribution, D0, and K.

A8.5 (Sparsity level). The sparsity levels for each mode satisfy sk ≤ pk

8(∥D0
k∥2

+1)
2

for k ∈ {1, . . . ,K}.
A8.6 (Radii range). The error radii εk > 0 satisfy εk ∈

(
λ̄ck,min, λ̄cmax

)
for k ∈

{1, . . . ,K}, where ck,min depends on s, the coefficient distribution, D0, and

K.

theorem 1.8 (Noisy KS-DL, local recovery [15]) Consider a KS-DL prob-

lem with N i.i.d. observations and suppose that assumptions A8.1–A8.6 are

satisfied. Assume

N ≥ max
k∈[K]

Ω

(
p2k(η +mkpk)

(εk − εk,min(λ̄))2

(
2K(1 + λ̄2)M2

x

s2E{x2}2
+

(
Mw

sE{x2}

)2))
, (1.37)

where εk,min(λ̄) is a function of K, λ̄, and ck,min. Then, with probability at

least 1 − e−η, there exists a local minimum of (1.31), D̂ =
⊗

D̂k, such that

d(D̂k,D
0
k) ≤ εk, for all k ∈ {1, . . . ,K}.

11 The cumulative coherence is defined in (1.18).
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Table 1.2 Comparison of the scaling of vectorized DL sample complexity bounds with
KS-DL, given fixed SNR.

Vectorized DL KS-DL

Minimax Lower Bound
mp2

ε2
[33]

p
∑

k mkpk

Kε2
[13]

Achievability Bound
mp3

ε2
[32] max

k

mkp
3
k

ε2k
[15]

The proof of this theorem relies on coordinate-wise Lipschitz continuity of

the objective function in (1.31) with respect to coordinate dictionaries and using

similar sample complexity analysis arguments as in [32]. Theorem 1.8 implies that

for fixed K and SNR, N = maxk∈{1,...,K} Ω
(
mkp

3
kε

−2
k

)
is sufficient for existence

of a local minimum within distance εk of true coordinate dictionaries, with high

probability. This result holds for coefficients that are generated according to

the separable sparsity model. The case of coefficients generated according to the

random sparsity model requires a different analysis technique that is not explored

in [15].

We compare this result to the scaling in the vectorized DL problem in The-

orem 1.6, which stated that N = Ω
(
mp3ε−2

)
= Ω

(∏
k mkp

3
kε

−2
)
is sufficient

for existence of D0 as a local minimum of (1.6) up to the predefined error ε.

In contrast, N = maxk Ω
(
mkp

3
kε

−2
k

)
is sufficient in the case of tensor data for

existence of D0
k’s as local minimums of (1.31) upto predefined errors εk. This

reduction in the scaling can be attributed to the reduction in the number of

degrees of freedom of the KS-DL problem.

We can also compare this result to the sample complexity lower bound scaling

obtained in 1.7 for KS-DL, which stated that given sufficiently large r and p,

N = Ω
(
p
∑

k mkpkε
−2/K

)
is necessary to recover true KS dictionary D0 up to

error ε. We can relate ε to εk’s using the relation ε ≤ √
p
∑

k εk [15]. Assuming

all εk’s are equal to each other, this implies that ε ≤ √
pKεk and we have

N = maxk Ω
(
2KK2p(mkp

3
k)ε

−2
)
. It can be seen from Theorem 1.7 that the

sample complexity lower bound depends on the average dimension of coordinate

dictionaries; in contrast, the sample complexity upper bound reported in this

section depends on the maximum dimension of coordinate dictionaries. There is

also a gap between the lower bound and the upper bound of order maxk p
2
k. This

suggests that the obtained bounds may be loose.

The sample complexity scaling results in Theorems 1.1, 1.6, 1.7, and 1.8 are

demonstrated in Table 1.2 for sparse coefficient vectors.
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1.4 Extensions and Open Problems

In Sections 1.2 and 1.3, we summarized some of the key results of dictionary

identification for vectorized and tensor data. In this section, we look at extensions

of these works and discuss related open problems.

1.4.1 DL for vector-valued Data

Extensions to alternative objective functions. The works discussed in Section 1.2

all analyze variants of (1.5) and (1.6), which minimizes the representation error of

the dictionary. However, there do exist other works that look for a dictionary that

optimizes different criteria. Schnass [56] proposed a new DL objective function

called the “response maximization criterion” that extends theK-means objective

function to the following:

max
D∈D

N∑
n=1

max
|S|=s

∥D∗
Sy

n∥1 . (1.38)

Given distance metric d(D1,D2) = maxj
∥∥D1

j −D2
j

∥∥
2
, Schnass shows the sample

complexity needed to recover a true generating dictionary up to precision ε

scales as O
(
mp3ε−2

)
using this objective. This sample complexity is achieved

by a novel DL algorithm, ITKM (Iterative Thresholding and K-Means), that

solves (1.38) under certain conditions on coefficient distribution, noise, and the

underlying dictionary.

Efficient representations can help improve the complexity and performance of

machine learning tasks such as prediction. This means that a DL algorithm could

explicitly tune the representation to optimize prediction performance. For exam-

ple, some works learn dictionaries to improve classification performance [17,25].

These works add terms to the objective function that measure the prediction

performance and minimize this loss. While these DL algorithms can yield im-

proved performance for their desired prediction task, proving sample complexity

bounds for these algorithms remains an open problem.

Tightness guarantees. While dictionary identifiability has been well studied for

vector-valued data, there remains a gap between the upper and lower bounds on

the sample complexity. The lower bound presented in Theorem 1.1 is for the case

of a particular distance metric, i.e., the Frobenius norm, whereas the presented

achievability results in Theorems 1.2–1.6 are based on a variety of distance met-

rics. Restricting the distance metric to the Frobenius norm, we still observe a gap

of order p between the sample complexity lower bound in Theorem 1.1 and upper

bound in Theorem 1.6. The partial converse result for square dictionaries that is

provided in [33] shows that the lower bound is achievable for square dictionaries

close to the identity matrix. For more general square matrices, however, the gap

may be significant: either improved algorithms can achieve the lower bounds or

the lower bounds may be further tightened. For overcomplete dictionaries the
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question of whether the upper bound or lower bound is tight remains open. For

metrics other than the Frobenius norm, the bounds are incomparable, making it

challenging to assess the tightness of many achievability results.

Finally, the works reported in Table 1.1 differ significantly in terms of the

mathematical tools they use. Each approach yields a different insight into the

structure of the DL problem. However, there is no unified analytical framework

encompassing all of these perspectives. This gives rise to the question: is there a

unified mathematical tool that can be used to generalize existing results on DL?

1.4.2 DL for Tensor Data

Extensions of sample complexity bounds for KS-DL. In terms of theoretical re-

sults, there are many aspects of KS-DL that have not been addressed in the

literature so far. The results that are obtained in Theorems 1.7 and 1.8 are based

on the Frobenius norm distance metric and only provide local recovery guaran-

tees. Open questions include corresponding abounds for other distance metrics

and global recovery guarantees. In particular, getting global recovery guarantees

requires using a distance metric that can handle the inherent permutation and

sign ambiguities in the dictionary. Moreover, the results of Theorem 1.8 are based

on the fact that the coefficient tensors are generated according to the separable

sparsity model. Extensions to coefficient tensors with arbitrary sparsity patterns,

i.e., the random sparsity model, have not been explored.

Algorithmic open problems. Unlike vectorized DL problems whose sample com-

plexity is explicitly tied to the actual algorithmic objective functions, the results

in [13,15] are not tied to an explicit KS-DL algorithm. While there exist KS-DL

algorithms in the literature, none of them explicitly solve the problem in these

papers. Empirically, KS-DL algorithms can outperform vectorized DL algorithms

for a variety of real-world data sets [10,11,57–59]. However, these algorithms lack

theoretical analysis in terms of sample complexity, leaving open the question how

many samples are needed to learn a KS dictionary using practical algorithms.

Parameter selection in KS-DL. In some cases we may not know a priori the

parameters for which a KS dictionary yields a good model for the data. In par-

ticular, given dimension p, the problem of selecting the pk’s for coordinate dictio-

naries such that p =
∏

k pk has not been studied. For instance, in case of RGB

images, selection of pk’s for the spatial modes is somewhat intuitive, as each

column in the separable transform represents a pattern in each mode. However,

selecting the number of columns for the depth mode, which has 3 dimensions

(red, green, and blue), is less obvious. Given a fixed number of overall columns

for the KS dictionary, how should we divide it between the number of columns

for each coordinate dictionary?

Alternative structures on dictionary. In terms of DL for tensor data, extensions

of identifiability results to structures other than the Kronecker product is an open

problem. The main assumption in KS-DL is that the transforms for different

modes of the tensor are separable from one another, which can be a limiting
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assumption for real-world datasets. Other structures can be enforced on the

underlying dictionary to reduce sample complexity while applying to a wider

range of datasets. Examples include DL using the CP decomposition [60] and

the tensor t-product [61]. Characterizing the DL problem and understanding

the practical benefits of these models remains an interesting question for future

work.
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