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The field of information theory—dating back to 1948—is one of the landmark

intellectual achievements of the 20th century. It provides the philosophical and

mathematical underpinnings of the technologies that allow accurate represen-

tation, efficient compression, and reliable communication of sources of data. A

wide range of storage and transmission infrastructure technologies, including op-

tical and wireless communication networks, the internet, and audio and video

compression, have been enabled by principles illuminated by information the-

ory. Technological breakthroughs based on information-theoretic concepts have

driven the “information revolution” characterized by the anywhere and anytime

availability of massive amounts of data and fueled by the ubiquitous presence of

devices that can capture, store, and communicate data.

The existence and accessibility of such massive amounts of data promise im-

mense opportunities, but also pose new challenges in terms of how to extract

useful and actionable knowledge from such data streams. Emerging data science

problems are different from classical ones associated with the transmission or

compression of information in which the semantics of the data is unimportant.

That said, we are starting to see that information-theoretic methods and per-

spectives can, in a new guise, play important roles in understanding emerging

data-science problems. The goal of this book is to explore such new roles for in-

formation theory and to understand better the modern interaction of information

theory with other data-oriented fields such as statistics and machine learning.

The purpose of this chapter is to set the stage for the book and for the up-

coming chapters. We first overview classical information-theoretic problems and

solutions. We then discuss emerging applications of information-theoretic meth-

ods in various data science problems and, where applicable, refer the reader to

related chapters in the book. Throughout this chapter, we highlight the per-

spectives, tools, and methods that play important roles in classic information-

theoretic paradigms and in emerging areas of data science. Table 1.1 provides

a summary of the different topics covered in this chapter and highlights the

different chapters that can be read as a follow up to these topics.
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Table 1.1 Major topics covered in this chapter and their connections to other chapters.

Section(s) Topic Related Chapter(s)

1.1–1.4 An Introduction to Information Theory 15

1.6 Information Theory and Data Acquisition 2–4, 6, 16

1.7 Information Theory and Data Representation 5, 11

1.8 Information Theory and Data Analysis/Processing 6–16

1.1 Classical Information Theory: A Primer

Claude Shannon’s 1948 paper “A Mathematical Theory of Communications,”

Bell Systems Technical Journal, July/Oct. 1948, laid out a complete architecture

for digital communication systems [1]. In addition, it articulated the philosoph-

ical decisions for the design choices made. Information theory, as Shannon’s

framework has come to be known, is a beautiful and elegant example of engi-

neering science. It is all the more impressive as Shannon presented his framework

decades before the first digital communication system was implemented, and at

a time when digital computers were in their infancy.

Figure 1.1 presents a general schematic of a digital communication system.

This figure is a reproduction of Shannon’s “Figure 1” from his seminal paper.

Before 1948 no one had conceived of a communication system in this way. Today

nearly all digital communication systems obey this structure.

The flow of information through the system is as follows. An information

source first produces a random message that a transmitter wants to convey to

a destination. The message could be a word, a sentence or a picture. In infor-

mation theory all information sources are modeled as being sampled from a set
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Figure 1.1 Reproduction of Shannon’s Figure 1 in [1] with the addition of the source
and channel encoding/decoding blocks. In Shannon’s words, this is a “Schematic
diagram of a general communication system.”
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of possibilities according to some probability distribution. Modeling information

sources as stochastic is a key aspect of Shannon’s approach. It allowed him to

quantify uncertainty as the lack of knowledge and reduction in uncertainty as

the gaining of knowledge or “information.”

The message is then fed into a transmission system. The transmitter itself has

two main sub-components: the source encoder and the channel encoder.

The source encoder converts the message into a sequence of 0’s and 1’s, i.e., a

bit sequence. There are two classes of source encoders. Lossless source coding

removes predictable redundancy that can later be recreated. In contrast, lossy

source coding is an irreversible process wherein some distortion is incurred in

the compression process. Lossless source coding is often referred to as data

compression while lossy coding is often referred to as rate-distortion coding.

Naturally, the higher the distortion the fewer the number of bits required.

The bit sequence forms the data payload that is fed into a channel encoder.

The output of the channel encoder is a signal that is transmitted over a noisy

communication medium. The purpose of the channel code is to convert the

bits into a set of possible signals or codewords that can be reliably recovered

from the noisy received signal.

The communication medium itself is referred to as the channel. The channel

can model the physical separation of the transmitter and receiver. It can also,

as in data storage, model separation in time.

The destination observes a signal that is the output of the communication

channel. Similar to the transmitter, the receiver has two main components: a

channel decoder and a source decoder. The former maps the received signal

into a bit sequence that is, hopefully, the same as the bit sequence produced by

the transmitter. The latter then maps the estimated bit sequence to an estimate

of the original message.

If lossless compression is used then an apt measure of performance is the

probability the message estimate at the destination is not equal to the original

message at the transmitter. If lossy compression (rate-distortion) is used, then

other measures of goodness, such as mean-squared error, are more appropriate.

Interesting questions addressed by information theory include the following:

1. Architectures

• What tradeoffs in performance are incurred by the use of the architecture

detailed in Figure 1.1?

• When can this architecture be improved upon; when can it not?

2. Source coding: Lossless data compression

• How should the information source be modeled; as stochastic, as arbitrary

but unknown, or in some other way?

• What is the shortest bit sequence into which a given information source

can be compressed?

• What assumptions does the compressor work under?

• What are basic compression techniques?
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3. Source coding: Rate-distortion theory

• How do you convert an analog source into a digital bit stream?

• How do you reconstruct/estimate the original source from the bit stream?

• What is the trade-off involved between the number of bits used to describe

a source and the distortion incurred in reconstruction of the source?

4. Channel coding

• How should communication channels be modeled?

• What throughput, measured in bits per second, at what reliability, mea-

sured in terms of probability of error, can be achieved?

• Can we quantify fundamental limits on the realizable tradeoffs between

throughput and reliability for a given channel model?

• How does one build computationally tractable channel coding systems that

”saturate” the fundamental limits?

5. Multi-user information theory

• How do we design systems that involve multiple transmitters and receivers?

• How do many (perhaps correlated) information sources and transmission

channels interact?

The decades since Shannon’s first paper have seen fundamental advances in

each of these areas. They have also witnessed information-theoretic perspectives

and thinking impacting a number of other fields including security, quantum

computing and communications, and cryptography. The basic theory and many

of these developments are documented in a cadre of excellent texts, including

[2, 3, 4, 5, 6, 7, 8, 9]. Some recent advances in network information theory,

which involves multiple sources and/or multiple destinations, are also surveyed

in Chapter 15. In the next three sections we illustrate the basics of information-

theoretic thinking by focusing on simple (point-to-point) binary sources and

channels. In Sec. 1.2 we discuss the compression of binary sources. In Sec. 1.3

we discuss channel coding over binary channels. Finally, in Sec. 1.4, we discuss

computational issues, focusing on linear codes.

1.2 Source Coding: Near-lossless Compression of Binary Sources

To gain a feel for the tools and results of classical information theory consider

the following lossless source coding problem. One observes a length-n string

of random coin flips, X1, X2, . . . , Xn, each Xi ∈ {heads, tails}. The flips are

independent and identically distributed with P(Xi = heads) = p where 0 ≤ p ≤ 1

is a known parameter. Suppose we want to map this string into a bit sequence to

store on a computer for later retrieval. Say we are going to assign a fixed amount

of memory to store the sequence. How much memory must we allocate?

Since there are 2n possible sequences, all of which could occur if p is not

equal to 0 or 1, if we use n bits we can be 100% certain we could index any

heads/tails sequence that we might observe. However, certain sequences, while
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possible, are much less likely than others. Information theory exploits such non-

uniformity to develop systems that can trade off between efficiency (the storage

of fewer bits) and reliability (the greater certainty that one will later be able to

reconstruct the observed sequence). In the following we accept some (arbitrarily)

small probability ε > 0 of observing a sequence that we choose not to be able

to store a description of.1 One can think of ε as the probability of the system

failing. Under this assumption we derive bounds on the number of bits that need

to be stored.

1.2.1 Achievability: An upper bound on the rate required for reliable data storage

To figure out which sequences we may choose not to store, let us think about

the statistics. In expectation we observe np heads. Of the 2n possible heads/tails

sequences there are
(
n
np

)
sequences with np heads. (For the moment we ignore

non-integer effects and deal with them later.) There will be some variability

about this mean but, at a minimum, we must be able to store all these expected

realizations since these realizations all have the same probability. While
(
n
np

)
is the cardinality of the set, we prefer to develop a good approximation that

is more amenable to manipulation. Further, rather than counting cardinality,

we will count the log-cardinality. This is because given k bits we can index 2k

heads/tails source sequences. Hence, it is the exponent in which we are interested.

Using Stirling’s approximation to the factorial, log2 n! = n log2 n− (log2 e)n+

O(log2 n), and ignoring the order term we have

log

(
n

np

)
' n log2 n− n(1− p) log2(n(1− p))− np log2 np (1.1)

= n log2

(
1

1− p

)
+ np log2

(
1− p
p

)
= n

[
(1− p) log2

(
1

1− p

)
+ p log2

(
1

p

)]
. (1.2)

In (1.1) the (log2 e)n terms have canceled and the term in square brackets in (1.2)

is called the (binary) entropy which we denote as HB(p), so

HB(p) = −p log2 p− (1− p) log2(1− p) (1.3)

where 0 ≤ p ≤ 1 and 0 log 0 = 0. The binary entropy function is plotted in

Fig. 1.2 within Sec. 1.3. One can compute that when p = 0 or p = 1 then

HB(0) = HB(1) = 0. The interpretation is that, since there is only one all-tails

and one all-heads sequence, and we are quantifying log-cardinality, there is only

one sequence to index in each case so log2(1) = 0. In these cases we apriori know

1 In source coding this is termed near-lossless source coding as the arbitrarily small ε

bounds the probability of system failure and thus loss of the original data. In the
variable-length source coding paradigm one stores a variable amount of bits per

sequence, and minimizes the expected number of bits stored. We focus on the near-lossless
paradigm as the concepts involved more closely parallel those in channel coding.



6 Introduction to Information Theory and Data Science

the outcome (respectively all heads or all tails) and so do not need to store any

bits to describe the realization. On the other hand, if the coin is fair then p = 0.5,

HB(0.5) = 1,
(
n
n/2

)
' 2n, and we must use n bits of storage. In other words, on

an exponential scale almost all binary sequences are 50% heads and 50% tails.

As an intermediate value, if p = 0.11 then HB(0.11) ' 0.5.

The operational upshot of (1.2) is that if one allocates nHB(p) bits then basi-

cally all expected sequences can be indexed. Of course, there are caveats. First,

np may not be integer. Second, there will be variability about the mean. To deal

with both, we allocate a few more bits, n(HB(p) + δ) in total. We use these bits

not just to index the expected sequences, but also the typical sequences, those

sequences with empirical entropy close to the entropy of the source.2 In the case

of coin flips, if a particular sequence consists of nH heads (and n−nH tails) then

we say that the sequence is “typical” if

HB(p)− δ ≤
[
nH
n

log2

(
1

p

)
+
n− nH
n

log2

(
1

1− p

)]
≤ HB(p) + δ. (1.4)

It can be shown that the cardinality of the set of sequences that satisfies condi-

tion (1.4) is upper bounded by 2n(HB(p)+δ). Therefore if, for instance, one lists

the typical sequences lexiographically, then any typical sequence can be described

using n(HB(p) + δ) bits. One can also show that for any δ > 0 the probability of

the source not producing a typical sequence can be upper bounded by any ε > 0

as n grows large. This follows from the law of large numbers. As n grows the

distribution of the fraction of heads in the realized source sequence concentrates

about its expectation. Therefore, as long as n is sufficiently large, and as long as

δ > 0, any ε > 0 will do. The quantity HB(p) + δ is termed the storage “rate”

R. For this example R = HB(p) + δ. The rate is the amount of memory that

must be made available per source symbol. In this case there were n symbols (n

coin tosses) so one normalizes n(HB(p) + δ) by n to get the rate HB(p) + δ.

The above idea can be immediately extended to independent and identically

distributed (i.i.d.) finite-alphabet (and to more general) sources as well. The

general definition of the entropy of a finite-alphabet random variable X

with probability mass function (p.m.f.) pX is

H(X) = −
∑
x∈X

pX(x) log2 pX(x), (1.5)

where “finite-alphabet” means the sample space X is finite.

Regardless of the distribution (binary, non-binary, even non-i.i.d.), the simple

coin-flipping example illustrates one of the central tenets of information theory.

This is to focus one’s design on what is likely to happen, i.e., the typical events,

rather than on worst-case events. The partition of events into typical and atypical

is, in information theory, known as the asymptotic equipartition property or

2 In the literature these are termed the “weakly” typical sequences. There are other

definitions of typicality that differ in terms of their mathematical use. The overarching

concept is the same.
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AEP. In a nutshell the simplest form of the AEP says that for long i.i.d. sequences

one can, up to some arbitrarily small probability ε, partition all possible outcomes

into two sets: the typical set and the atypical set. The probability of observing

an event in the typical set is at least 1− ε. Furthermore, on an exponential scale

all typical sequences are of equal probability. Designing for typical events is a

hallmark of information theory.

1.2.2 Converse: A lower bound on the rate required for reliable data storage

A second hallmark of information theory is the emphasis on developing bounds.

The source coding scheme described above is known as an achievability result.

Achievability results involve describing an operational system that can, in prin-

ciple, be realized in practice. Such results provide (inner) bounds on what is

possible. The performance of the best system is at least this good. In the above

example we developed a source coding technique that delivers high-reliability

storage and requires a rate of H(X) + δ where both the error ε and the slack δ

can be arbitrarily small if n is sufficiently large.

An important coupled question is how much (or whether) we can reduce the

rate further, thereby improving the efficiency of the scheme. In information the-

ory, outer bounds on what is possible—e.g., showing that if the encoding rate is

too small one cannot guarantee a target level of reliability—are termed converse

results.

One of the key lemmas used in converse results is Fano’s Inequality [7],

named for Robert Fano. The statement of the inequality is as follows: For any

pair of random variables (U, V ) ∈ U×V jointly distributed according to pU,V (·, ·)
and for any estimator G : U → V with probability of error, Pe = Pr[G(U) 6= V ],

H(V |U) ≤ HB(Pe) + Pe log2(|V| − 1). (1.6)

On the left-hand-side of (1.6) we encounter the conditional entropy H(V |U)

of the joint p.m.f. pU,V (·, ·). We use the notation H(V |U = u) to denote the

entropy in V when the realization of the random variable U is set to U = u.

Let us name this the “pointwise” conditional entropy, the value of which can be

computed by applying our formula for entropy (1.5) to the p.m.f. pV |U (·|u). The

conditional entropy is the expected pointwise conditional entropy:

H(V |U)=
∑
u∈U

pU (u)H(V |U = u) =
∑
u∈U

pU (u)

[∑
v∈V

pV |U (v|u) log2

1

pV |U (v|u)

]
.

(1.7)

Fano’s Inequality (1.6) can be interpreted as a bound on the ability of any

hypothesis test function G to make a (single) correct guess of the realization

of V based on its observation of U . As the desired error probability Pe → 0,

both terms on the right-hand-side go to zero, implying that the conditional

entropy must be small. Conversely, if the left-hand-side is not too small, that

asserts a non-zero lower bound on Pe. A simple explicit bound is achieved by
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upper bounding HB(Pe) as HB(Pe) ≤ 1 and rearranging to find that Pe ≥
(H(V |U)− 1)/ log2(|V| − 1).

The usefulness of Fano’s Inequality stems, in part, from the weak assumptions

it makes. One can apply Fano’s to any joint distribution. Often identification of

an applicable joint distribution is part of the creativity in the use of Fano’s. For

instance in the source coding example above, one takes V to be the stored data

sequence, so |V| = 2n(HB(p)+δ), and U to be the original source sequence, i.e.,

U = Xn. While we do not provide the derivation herein, the result is that to

achieve an error probability of at most Pe the storage rate R is lower bounded

by R ≥ H(X) − Pe log2 |X | −HB(Pe)/n where |X | is the source alphabet size;

for the binary example |X | = 2. As we let Pe → 0 we see that the lower bound

on the achievable rate is H(X) which, letting δ → 0, is also our upper bound.

Hence we have developed an operational approach to data compression where

the rate we achieve matches the converse bound.

We now discuss the interaction between achievability and converse results. As

long as the compression rate R > H(X) then due to concentration in measure,

in the achievability case the failure probability ε > 0 and rate slack δ > 0 can

both be chosen to be arbitrarily small. Concentration of measure occurs as the

blocklength n becomes large. In parallel with n getting large the total number

of bits stored nR also grows.

The entropy H(X) thus specifies a boundary between two regimes of oper-

ation. When the rate R is larger than H(X), achievability results tell us that

arbitrarily reliable storage is possible. When R is smaller than H(X), converse

results imply that reliable storage is not possible. In particular, rearranging the

converse expression and once again noting that HB(Pe) ≤ 1, the error probability

can be lower bounded as

Pe ≥
H(X)−R− 1/n

log2 |X |
. (1.8)

If R < H(X) then for n sufficiently large Pe is bounded away from zero.

The entropy H(X) thus characterizes a phase transition between one state,

the possibility of reliable data storage, and another, the impossibility. Such sharp

information-theoretic phase transitions also characterize classical information-

theoretic results on data transmission which we discuss in the next section, and

applications of information-theoretic tools in the data sciences which we turn to

later in the chapter.

1.3 Channel Coding: Transmission over the Binary-Symmetric
Channel

Shannon applied the same mix of ideas (typicality, entropy, conditional entropy)

to solve the, perhaps at first seemingly quite distinct, problem of reliable and effi-
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Figure 1.2 On the left we present a graphical description of the binary symmetric
channel (BSC). Each transmitted binary symbol is represented as a 0 or 1 input on
the left. Each received binary observation is represented by a 0 or 1 output on the
right. The stochastic relationship between inputs and outputs is represented by the
connectivity of the graph where the probability of transitioning each edge is
represented by the edge label p or 1 − p. The channel is “symmetric” due to the
symmetries in these transition probabilities. On the right we plot the binary entropy
function HB(p) as a function of p, 0 ≤ p ≤ 1. The capacity of the BSC is
CBSC = 1 −HB(p).

cient digital communications. This is typically referred to as Shannon’s “channel

coding” problem in contrast to the “source coding” problem already discussed.

To gain a sense of the problem we return to the simple binary setting. Suppose

our source coding system has yielded a length-k string of “information bits.” For

simplicity we assume these bits are randomly distributed as before, i.i.d. along

the sequence, but are now fair; i.e., each is equally likely to be “0” or a “1.” The

objective is to convey this sequence over a communications channel to a friend.

Importantly we note that since the bits are uniformly distributed, our results on

source coding tells us that no further compression is possible. Thus, uniformity

of message bits is a worst-case assumption.

The channel we consider is the binary-symmetric channel or BSC. We can

transmit binary symbols over the BSC. Each input symbol is conveyed to the

destination, but not entirely accurately. The binary-symmetric channel “flips”

each channel input symbol (0→ 1 or 1→ 0) with probability p, 0 ≤ p ≤ 1. Flips

occur independently. The challenge is for the destination to deduce, hopefully

with high accuracy, the k information bits transmitted. Due to the symbol flip-

ping noise, we get some slack; we transmit n ≥ k binary channel symbols. For

efficiency’s sake, we want n to be as close to k as possible, while meeting the

requirement of high reliability. The ratio k/n is termed the “rate” of commu-

nication. The length-n binary sequence transmitted is termed the “codeword.”

This “bit-flipping” channel can be used, e.g., to model data storage errors in a

computer memory. A graphical representation of the BSC is depicted in Fig. 1.2.
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1.3.1 Achievability: A lower bound on the rate of reliable data communication

The idea of channel coding is analogous to human-evolved language. The length-

k string of information bits is analogous to what we think, i.e., the concept we

want to get across to the destination. The length-n codeword string of binary

channel symbols is analogous to what we say (the sentence). There is redundancy

in spoken language that makes it possible for spoken language to be understood

in noisy (albeit not too noisy) situations. We analogously engineer redundancy

into what a computer transmits to be able to combat the expected (the typical!)

noise events. For the BSC those would be the expected bit-flip sequences.

We now consider the noise process. For any chosen length-n codeword there are

about
(
n
np

)
typical noise patterns which, using the same logic as in our discussion

of source compression, is a set of roughly 2nHB(p) patterns. If we call Xn the

codeword and En the noise sequence then what the receiver measures is Y n =

Xn+En. Here addition is vector addition over F2, i.e., coordinate-wise where the

addition of two binary symbols is implemented using the XOR operator. The

problem faced by the receiver is to identify the transmitted codeword. One can

imagine that if the possible codewords are far apart in the sense that they differ

in many entries (i.e., their Hamming distance is large) then the receiver will

be less likely to make an error when deciding on the transmitted codeword. Once

such a codeword estimate is made it can then be mapped back to the length-

k information bit sequence. A natural decoding rule, in fact the maximum-

likelihood rule, is for the decoder to pick the codeword closest to Y n in terms

of Hamming distance.

The design of the codebook (analogous to the choice of grammatically correct

and—thus allowable—sentences in a spoken language) is a type of probabilistic

packing problem. The question is, how do we select the set of codewords so

that the probability of a decoding error is small? We can develop a simple upper

bound on how large the set of reliably-decodable codewords can be. There are 2n

possible binary output sequences. For any codeword selected there are 2nHB(p)

typical output sequences, each associated with a typical noise sequence, that

form a noise ball centered on the codeword. If we were simply able to divide

up the output space into disjoint sets of cardinality 2nHB(p) we would end up

with 2n/2nHB(p) = 2n(1−HB(p)) distinct sets. This sphere packing argument

tells us that the best we could hope to do would be to transmit this number of

distinct codewords reliably. Thus, the number of information bits k would equal

n(1−HB(p)), i.e., a transmission rate of 1−HB(p).

Perhaps quite surprisingly, as n gets large, 1 − HB(p) is the supremum of

achievable rates at (arbitrarily) high reliability. This is the Shannon capacity

CBSC = 1−HB(p). The result follows from the law-of-large numbers which can

be used to show that the typical noise balls concentrate. Shannon’s proof that

one can actually find a configuration of codewords while keeping the probability

of decoding error small was an early use of the probabilistic method. For any

rate R = CBSC − δ, where δ > 0 is arbitrarily small, a randomized choice of the
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positioning of each codeword will with high probability yield a code with a small

probability of decoding error. To see the plausibility of this statement we revisit

the sphere packing argument. At rate R = CBSC− δ the 2nR codewords are each

associated with a typical noise ball of 2nHB(p) sequences. If the noise balls were all

disjoint this would be a total of 2nR2nHB(p) = 2n(1−HB(p)−δ)+nHB(p) = 2n(1−δ)

sequences. As there are 2n binary sequences, the fraction of the output space

taken up by the union of typical noise spheres associated with the codewords

is 2n(1−δ)/2n = 2−nδ. So, for any δ > 0 fixed, as the blocklength n → ∞, only

an exponentially disappearing fraction of the output space is taken up by the

noise balls. By choosing the codewords independently at random, each uniformly

chosen over all length-n binary sequences, one can show that the expected (over

the choice of codewords and channel noise realization) average probability of

error is small. Hence, at least one codebook exists that performs at least as well

as this expectation.

While Shannon showed the existence of such a code (actually a sequence of

codes as n→∞), it took another half-century for researchers in error-correction

coding to find asymptotically optimal code designs and associated decoding al-

gorithms that were computationally tractable and therefore implementable in

practice. We discuss this computational problem and some of these recent code

designs in Sec. 1.4.

While the above example is set in the context of a binary-input and binary-

output channel model, the result is a prototype of the results that hold for dis-

crete memoryless channels. A discrete memoryless channel is described by

the conditional distribution pY |X : X → Y. Memoryless means that output sym-

bols are conditionally independent given the input codeword, i.e., pY n|Xn(yn|xn) =∏n
i=1 pY |X(yi|xi). The supremum of achievable rates is the Shannon capacity

C where

C = sup
pX

[H(Y )−H(Y |X)] = sup
pX

I(X;Y ). (1.9)

In (1.9), H(Y ) is the entropy of the output space, induced by the choice of

input distribution pX via pY (y) =
∑
x∈X pX(x)pY |X(y|x), and H(Y |X) is

the conditional entropy of pX(·)pY |X(·|·). For the BSC the optimal choice of

pX(·) is uniform. We shortly develop an operational intuition for this choice by

connecting it to hypothesis testing. We note that this choice induces the uniform

distribution on Y . Since |Y| = 2, this means that H(Y ) = 1. Further, plugging

the channel law of the BSC into (1.7) yields H(Y |X) = HB(p). Putting the

pieces together recovers the Shannon capacity result for the binary symmetric

channel, CBSC = 1−HB(p).

In (1.9) we introduce the equality H(Y )−H(Y |X) = I(X;Y ) where I(X;Y )

denotes the mutual information of the joint distribution pX(·)pY |X(·|·). The

mutual information is another name for the Kullback-Leibler (KL) diver-

gence between the joint distribution pX(·)pY |X(·|·) and the product of the joint

distribution’s marginals, pX(·)pY (·). The general formula for the KL divergence
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between a pair of distributions pU and pV defined over a common alphabet A is

D(pU‖pV ) =
∑
a∈A

pU (a) log2

pU (a)

pV (a)
. (1.10)

In the definition of mutual information over A = X ×Y, pX,Y (·, ·) plays the role

of pU (·) and pX(·)pY (·) plays the role of pV (·).
The KL divergence arises in hypothesis testing where it is used to quantify the

error exponent of a binary hypothesis test. Conceiving of channel decoding as

a hypothesis testing problem—which one of the codewords was transmitted?—

helps us understand why (1.9) is the formula for the Shannon capacity. One way

the decoder can make its decision regarding the identity of the true codeword is to

test each codeword against independence. In other words, does the empirical joint

distribution of any particular codeword Xn and the received data sequence Y n

look jointly distributed according to the channel law or does it look independent?

That is, does (Xn, Y n) look like it is distributed i.i.d. according to pXY (·, ·) =

pX(·)pY |X(·|·) or i.i.d. according to pX(·)pY (·)? The exponent of the error in

this test is −D(pXY ‖pXpY ) = −I(X;Y ). Picking the input distribution pX to

maximize (1.9) maximizes this exponent. Finally, via an application of the union

bound we can assert that, roughly, 2nI(X;Y ) codewords can be allowed before

more than one codeword in the codebook appear to be jointly distributed with

the observation vector Y n according to pXY .

1.3.2 Converse: An upper bound on the rate of reliable data communication

An application of Fano’s Inequality (1.6) shows that C is also an upper bound

on the achievable communication rate. This application of Fano’s Inequality is

similar to that used in source coding. In this application of (1.6) we set V = Xn

and U = Y n. The greatest additional subtlety is that we must leverage the

memoryless property of the channel to single-letterize the bound. To single-

letterize means to express the final bound in terms of only the pX(·)pY |X(·|·)
distribution, rather than in terms of the joint distribution of the length-n input

and output sequences. This is an important step because n is allowed to grow

without bound. By single-letterizing we express the bound in terms of a fixed

distribution, thereby making the bound computable.

As at the end of the discussion of source coding, in channel coding we find a

boundary between two regimes of operation: the regime of efficient and reliable

data transmission, and the regime where such reliable transmission is impossi-

ble. In this instance, the phase transition boundary is marked by the Shannon

capacity C.
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1.4 Linear Channel Coding

In the previous sections we discussed the sharp phase transitions in both source

and channel coding discovered by Shannon. These phase transitions demarc fun-

damental boundaries between what is possible and what is not. In practice one

desires schemes that “saturate” these bounds. In the case of source coding we

can saturate the bound if we can design source coding techniques with rates

that can be made arbitrarily close to H(X) (from above). For channel coding we

desire coding methods with rates that can be made arbitrarily close to C (from

below). While Shannon discovered and quantified the bounds, he did not specify

realizable schemes that attained them.

Decades of effort have gone into developing methods of source and channel

coding. For lossless compression of memoryless sources, as in our motivating

examples, good approaches such as Huffman and arithmetic coding were found

rather quickly. On the other hand, finding computationally tractable and there-

fore implementable schemes of error correction coding that got close to capacity

took much longer. For a long time it was not even clear that computational

tractable techniques of error correction that saturated Shannon’s bounds were

even possible. For many years researchers thought that there might be a sec-

ond phase transition at the cuttoff rate, only below which computationally

tractable methods of reliable data transmission existed. (See [10] for a nice dis-

cussion.) Indeed only with the emergence of modern coding theory in the 1990s

and 2000s that studies turbo, low-density parity-check (LDPC), spatially cou-

pled LDPC, and Polar codes has the research community, even for the BSC,

developed computationally tractable methods of error correction that closed the

gap to Shannon’s bound.

In this section we introduce the reader to linear codes. Almost all codes in use

have linear structure, structure that can be exploited to reduce the complexity

of the decoding process. As in the previous sections we only scratch the surface

of the discipline of error-correction coding. We point the reader to the many

excellent texts on the subject, e.g., [6, 11, 12, 13, 14, 15].

1.4.1 Linear codes and syndrome decoding

Linear codes are defined over finite fields. As we have been discussing the BSC,

the field we will focus on is F2. The set of codewords of a length-n binary linear

code correspond to a subspace of the vector space Fn2 . To encode we use a matrix-

vector multiplication defined over F2 to map a length-k column vector b ∈ Fk2
of “information bits” into a length-n column vector x ∈ Fn2 of binary “channel

symbols” as

x = GTb, (1.11)

where G ∈ Fk×n2 is a k by n binary “generator” matrix and GT denotes the

transpose of G. Assuming that G is full rank, all 2k possible binary vectors b
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are mapped by G into 2k distinct codewords x, so the set of possible codewords

(the “codebook”) is the row-space of G. We compute the rate of the code as

R = k/n.

Per our earlier discussion the channel adds the length-n noise sequence e to

x, yielding the channel output y = x + e. To decode, the receiver pre-multiplies

y by the parity-check matrix H ∈ Fm×n2 to produce the length-m syndrome

s as

s = Hy. (1.12)

We caution the reader not to confuse the parity check matrix H with the entropy

function H(·). By design, the rows of H are all orthogonal to the rows of G and

thus span the null-space of G.3 When the columns of G are linearly independent,

the dimension of the nullspace of G is n− k and the relation m = n− k holds.

Substituting in the definition for x into the expression for y and thence

into (1.12) we compute

s = H(GTb + e) = HGTb + He = He, (1.13)

where the last step follows because the rows of G and H are orthogonal by design

so that HGT = 0, the m× k all-zeros matrix. Inspecting (1.13) we observe that

the computation of the syndrome s yields m linear constraints on the noise

vector e.

Since e is of length n and m = n− k, (1.13) specifies an under-determined set

of linear equations in F2. However, as already discussed, while e could be any

vector, when the blocklength n becomes large, concentration of measure comes

into play. With high probability the realization of e will concentrate around those

sequences that contain only np non-zero elements. We recall that p ∈ [0, 1] is the

bit-flip probability and note that in F2 any non-zero must be a one. In coding

theory we are therefore faced with the problem of solving an under-determined

set of linear equations subject to a sparsity constraint : there are only about np

non-zero elements in the solution vector. In fact, as fewer bit flips are more likely,

the maximum likelihood solution for the noise vector e is to find the maximally-

sparse vector that satisfies the syndrome constraints, i.e.,

ê = arg min
e∈Fn

2

dH(e) such that s = He, (1.14)

where dH(·) is the Hamming weight (or distance from 0n) of the argument. As

mentioned before, the Hamming weight is the number of non-zero entries of e.

It plays a role analogous to the cardinality function in Rn (sometimes denoted

‖ · ‖0), often used to enforce sparsity in the solution to optimization problems.

We observe that there are roughly 2nHB(p) typical binary bit-flip sequences

with roughly np non-zeros each. The syndrome s provides m linear constraints

on the noise sequence. Each constraint is binary so that if all constraints are

3 Note that in finite fields vectors can be self-orthogonal; e.g., in F2 any even-weight vector

is orthogonal to itself.
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linearly independent, each constraint reduces by 50% the set of possible noise

sequences. Thus, if the number m of constraints exceeds log2(2nHB(p)) = nHB(p)

we should be able to decode.4

Decoders can thus be thought of as solving a binary search problem where the

measurements/queries are fixed ahead of time, and the decoder uses the results

of the queries, often in an iterative fashion, to determine e. Once ê is calculated,

the codeword estimate x̂ = y + ê = GTb + (e + ê). If ê = e then the term in

brackets cancels and b can uniquely and correctly be recovered from GTb. This

last point follows since the codebook is the row-space of G and G is full rank.

Noting from the previous section that the capacity of the BSC channel is

C = 1−HB(p) and the rate of the code is R = k/n, we would achieve capacity

if 1 − HB(p) = k/n or, equivalently, if the syndrome length m = n − k =

n(1 − k/n) = nHB(p). This is the objective of coding theory: to find “good”

codes (specified by their generator matrix G or, alternately, by their parity-check

matrix H) and associated decoding algorithms (that attempt to solve (1.14) in

a computationally efficient manner) so as to be able to keep R = k/n as close as

possible to CBSC = 1−HB(p).

1.4.2 From linear to computational tractable: Polar codes

To understand the challenge of designing computationally tractable codes say

that, in the previous discussion, one picked G (or H) according to the Bernoulli-

0.5 random i.i.d. measure. Then for any fixed rate R if one sets the blocklength

n to be sufficiently large the generator (or parity-check) matrix produced will,

with arbitrarily high probability, specify a code that is capacity-achieving. Such

a selection of G or H is respectively referred to as the Elias or the Gallager

ensembles.

However, attempting to use the above capacity-achieving scheme can be prob-

lematic from a computational viewpoint. To see the issue consider block length

n = 4000 and rate R = 0.5, which are well within normal ranges for these param-

eters. For these choices there are 2nR = 22000 codewords. Such an astronomical

number of codewords makes the brute force solution of (1.14) impossible. Hence,

the selection of G or H according to the Elias or Gallager ensembles, while yield-

ing linear structure, does not by itself guarantee that a computationally efficient

decoder will exist. Modern methods of coding—low-density parity-check codes,

spatially coupled codes, Polar codes—while being linear codes also design addi-

tional structure into the code ensemble with the express intent to be compatible

with computationally tractable decoding algorithms. To summarize, in coding

4 We comment that this same syndrome decoding can also be used to provide a solution to
the near-lossless source coding problem of Sec. 1.2. One pre-multiplies the source sequence

by the parity-check matrix H, and stores the syndrome of the source sequence. For a

biased binary source, one can solve (1.14) to recover the source sequence with high
probability. This approach does not feature prominently in source coding, with the
exception of distributed source coding where it plays a prominent role. See [7, 9] for

further discussion.
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theory the design of a channel coding scheme involves the joint design of the

codebook and the decoding algorithm.

In the point of view of the phase transitions discovered by Shannon for source

and channel coding, a very interesting code construction is Erdal Arikan’s Polar

codes [16]. Another tractable code construction that connects to phase transi-

tions is the spatial-coupling concept used in convolutionally structured LDPC

codes [17, 18, 19]. In [16] Arikan considers symmetric channels and introduces a

symmetry-breaking transformation. This transformation is a type of pre-coding

that combines pairs of symmetric channels to produce a pair of virtual chan-

nels. One virtual channel is “less noisy” than the original channel and one is

more noisy. Arikan then applies this transformation recursively. In the limit the

virtual channels polarize. They either become noiseless and so have capacity

one, or become useless and have capacity zero. Arikan shows that, in the limit,

the fraction of virtual channels that become noiseless is equal to the capacity

of the original symmetric channel; e.g., 1 −HB(p), if the original channel were

the BSC. One transmits bits uncoded over the noiseless virtual channels, and

does not use the useless channels. The recursive construction yields log-linear

complexity in encoding and decoding, O(n log n), making Polar codes compu-

tationally attractive. In many ways the construction is information-theoretic in

nature, focusing on mutual information rather than Hamming distance as the

quantity of importance in the design of capacity-achieving codes.

To conclude, we note that many overarching concepts, such as fundamental

limits, achievability results, converse results, and computational limitations, that

arise in classical information theory also arise in modern data science problems.

In classical information theory, such notions have traditionally been considered

in the context of data compression and transmission, as we have seen, whereas in

data science similar notions are being studied in the realms of acquisition, data

representation, analysis, and processing. There are some instances where one can

directly borrow classical information-theoretic tools used to determine limits in

e.g. the channel coding problem to also compute limits in data science tasks. For

example, in compressive sensing [20] and group testing [21] achievability results

have been derived using the probabilistic method and converse results have been

developed using Fano’s inequality [22]. However, there are various other data

science problems where information-theoretic methods have not yet been directly

applied. We elaborate further in the following sections how information-theoretic

ideas, tools, and methods are also gradually shaping data science.

1.5 Connecting Information Theory to Data Science

Data science—a loosely defined concept meant to bring together various problems

studied in statistics, machine learning, signal processing, harmonic analysis, and

computer science under a unified umbrella—involves numerous other challenges

that go beyond the traditional source coding and channel coding problems arising
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Figure 1.3 A simplified data science pipeline encompassing functions such as data
acquisition, data representation, and data analysis & processing.

in communication or storage systems. These challenges are associated with the

need to acquire, represent, and analyze information buried in data in a reliable

and computationally efficient manner in the presence of a variety of constraints

such as security, privacy, fairness, hardware resources, power, noise, and many

more.

Figure 1.3 presents a typical data science pipeline, encompassing functions

such as data acquisition, data representation, and data analysis, whose overar-

ching purpose is to turn data captured from the physical-world into insights for

decision making. It is also common to consider various other functions within

a data science “system” such as data preparation, data exploration, and more,

but we restrict ourselves to this simplified version because it serves to illustrate

how information theory is helping shape data science. The goals of the different

blocks of the data science pipeline in Fig. 1.3 are as follows:

• The data acquisition block is often concerned with the act of turning physical-

world continuous-time analog signals into discrete-time digital signals for

further digital processing.

• The data representation block concentrates on the extraction of relevant at-

tributes from the acquired data for further analysis.

• The data analysis block concentrates on the extraction of meaningful action-

able information from the data features for decision making.

Based on the description of these goals, one might think that information

theory—a field that arose out of the need to study communication systems in

a principled manner—has little to offer to the principles of data acquisition,

representation, analysis or processing. But it turns out that information theory

has been advancing our understanding of data science in three major ways:

• First, information theory has been leading to new system architectures for the

different elements of the data science pipeline. Representative examples

associated with new architectures for data acquisition are overviewed in

Sec. 1.6.

• Second, information-theoretic methods can be used to unveil fundamental op-

erational limits in various data science tasks, including in data acquisition,

representation, analysis, and processing. Examples are overviewed in Sec.

1.6, 1.7 and 1.8.
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• Third, information-theoretic measures can be used as the basis for developing

algorithms for various data science tasks. We allude to some examples in

Sec. 1.7 and 1.8.

In fact, the questions one can potentially ask about the data science pipeline

depicted in Fig. 1.3 exhibit many parallels to the questions one asks about the

communications system architecture shown in Fig. 1.1. Specifically: What are

the tradeoffs in performance incurred by adopting this data science architecture?

Particularly, are there other systems that do not involve the separation of the

different data science elements and exhibit better performance? Are there limits

in data acquisition, representation, analysis and processing? Are there compu-

tationally feasible algorithms for data acquisition, representation, analysis and

processing that attain such limits?

There has been progress in data science on all three of these directions. As a

concrete example that showcases many similarities between the data compression

and communication problems and data science problems, information-theoretic

methods have been casting insight onto the various operational regimes asso-

ciated with the different data science tasks: (1) The regime where there is no

algorithm—regardless of its complexity—that can perform the desired task sub-

ject to some accuracy; this “regime of impossibility” in data science has the

flavor of converse results in source coding and channel coding in information

theory. (2) The regime where there are algorithms, potentially very complex and

computationally infeasible, that can perform the desired task subject to some

accuracy; this “regime of possibility” is akin to the achievability results in source

coding and channel coding. And (3) the regime where there are computationally

feasible algorithms to perform the desired task subject to some accuracy; this

“regime of computational feasibility” in data science has many characteristics

that parallel those in design of computationally tractable source and channel

coding schemes in information theory.

Interestingly, in the same way that the classical information-theoretic problems

of source coding and channel coding exhibit phase transitions, many data science

problems have also been shown to exhibit sharp phase transitions in the high-

dimensional setting where the number of data samples and the number of data

dimensions approach infinity. Such phase transitions are typically expressed as

a function of various parameters associated with the data science problem. The

resulting information-theoretic limit/threshold/barrier (aka, statistical phase

transition) partitions the problem parameter space into two regions [23, 24, 25]:

one defining problem instances that are impossible to solve and another defining

problem instances that can be solved (perhaps only with a brute-force algorithm).

In turn, the computational limit/threshold/barrier (aka, computational phase

transition) partitions the problem parameter space into a region associated with

problem instances that are easy to solve and another associated with instances

that are hard to solve [26, 27].

There can however be differences in how one establishes converse and achiev-
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ability results—and thereon phase transitions—in classical information-theoretic

problems and data science ones. Converse results in data science can often be

established using Fano’s inequality or variations (see also Chapter 16). In con-

trast, achievability results often cannot rely on classical techniques, such as the

probabilistic method, necessitating instead the direct analysis of the algorithms.

Chapter 13 elaborates on some emerging tools that may be used to establish

statistical and computational limits in data science problems.

In summary, numerous information-theoretic tools, methods, and quantities

are increasingly becoming essential to cast insight onto data science. It is impos-

sible to capture all the recent developments in a single chapter, but the following

sections sample a number of recent results under three broad themes: data ac-

quisition, data representation, and data analysis and processing.

1.6 Information Theory and Data Acquisition

Data acquisition is a critical element of the data science architecture shown in

Fig. 1.3. It often involves the conversion of a continuous-time analog signal

into a discrete-time digital signal that can be further processed in digital

signal processing pipelines.5

Conversion of a continuous-time analog signal x(t) into a discrete-time digital

representation typically entails two operations. The first operation—known as

sampling—involves recording the values of the original signal x(t) at particu-

lar instants of time. The simplest form of sampling is direct uniform sampling

in which the signal is recorded at uniform sampling times x(kTs) = x(k/Fs)

where Ts denotes the sampling period (in seconds), Fs denotes the sampling

frequency (in Hertz), and k is an integer. Another popular form of sampling

is generalized shift-invariant sampling in which x(t) is first filtered by a lin-

ear time-invariant (LTI) filter, or a bank of LTI filters, and only then sampled

uniformly [28]. Other forms of generalized and nonuniform sampling have also

been studied. Surprisingly, under certain conditions, the sampling process can be

shown to be lossless: for example, the classical sampling theorem for bandlim-

ited processes asserts that it is possible to perfectly recover the original signal

from its uniform samples provided that the sampling frequency Fs is at least

twice the signal bandwidth B. This minimal sampling frequency FNQ = 2B is

referred to as the Nyquist rate [28].

The second operation—known as quantization—involves mapping the contin-

uous-valued signal samples onto discrete-valued ones. The levels are taken from a

finite set of levels that can be represented using a finite sequence of bits. In (opti-

mal) vector quantization approaches, a series of signal samples are converted

simultaneously to a bit sequence, whereas in (sub-optimal) scalar quantiza-

tion, each individual sample is mapped to bits. The quantization process is

5 Note that it is also possible that the data is already presented in an inherently digital

format; Chapters 3, 4, and 6 deal with such scenarios.



20 Introduction to Information Theory and Data Science

inherently lossy since it is impossible to accurately represent real-valued sam-

ples using a finite set of bits. Rate-distortion theory establishes a tradeoff

between the average number of bits used to encode each signal sample—referred

to as the rate—and the average distortion incurred in the reconstruction of each

signal sample—referred to simply as the distortion—via two functions. The

rate-distortion function R(D) specifies the smallest number of bits required

on average per sample when one wishes to represent each sample with average

distortion less than D, whereas the distortion-rate function D(R) specifies

the lowest average distortion achieved per sample when one wishes to represent

on average each sample with R bits [7]. A popular measure of distortion in the re-

covery of the original signal samples from the quantized ones is the mean-squared

error (MSE). Note that this class of problems—known as lossy source coding—is

the counterpart of the lossless source coding problems discussed earlier.

The motivation for this widely-used data acquisition architecture, involving

(1) a sampling operation at or just above the Nyquist rate and (2) scalar or

vector quantization operations, is its simplicity that leads to a practical imple-

mentation. However, it is well known that the separation of the sampling and

quantization operations is not necessarily optimal. Indeed, the optimal strat-

egy that attains Shannon’s distortion-rate function associated with arbitrary

continuous-time random signals with known statistics involves a general map-

ping from continuous-time signal space to a sequence of bits that does not con-

sider any practical constraints in its implementation [1, 3, 29]. Therefore, recent

years have witnessed various generalizations of this data acquisition paradigm

informed by the principles of information theory, on the one hand, and guided

by practical implementations, on the other.

One recent extension considers a data acquisition paradigm that illuminates

the dependency between these two operations [30, 31, 32]. In particular, given

a total rate budget, Kipnis et al. [30, 31, 32] draw on information-theoretic

methods to study the lowest sampling rate required to sample a signal such that

the reconstruction of the signal from the bit-constrained representation of its

samples results in minimal distortion. The sampling operation consists of an LTI

filter, or bank of filters, followed by pointwise sampling of the outputs of the

filters. The authors also show that, without assuming any particular structure

on the input analog signal, this sampling rate is often below the signal’s Nyquist

rate. That is, due to the fact that there is loss encountered by the quantization

operation, there is no longer in general a requirement to sample the signal at the

Nyquist rate.

As an example, consider the case where x(t) is a stationary random process

bandlimited to B with a triangular power spectral density (PSD) given formally

by

S(f) =
σ2
x

B
[1− |f/B|]+ (1.15)

with [a]+ = max(a, 0). In this case, the Nyquist sampling rate is 2B. However,
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when quantization is taken into account, the sampling rate can be lowered with-

out introducing further distortion. Specifically, assuming a bit rate leading to

distortion D, the minimal sampling rate is shown to be equal to [32]:

fR = 2B
√

1−D/σ2
x. (1.16)

Thus, as the distortion grows, the minimal sampling rate is reduced. When we

do not allow any distortion, namely, no quantization takes place, D = 0 and

fR = 2B so that Nyquist rate sampling is required.

Such results show how information-theoretic methods are leading to new in-

sights about the interplay between sampling and quantization. In particular,

these new results can be seen as an extension of the classical sampling theo-

rem applicable to bandlimited random processes in the sense that they describe

the minimal amount of excess distortion in the reconstruction of a signal due

to lossy compression of its samples, leading to the minimal sampling frequency

required to achieve this distortion.6 In general, this sampling frequency is be-

low the Nyquist rate. Chapter 2 surveys some of these recent results in data

acquisition.

Another generalization of the classical data acquisition paradigm considers

scenarios where the end goal is not to reconstruct the original analog signal x(t)

but rather perform some other operation on it [33]. For example, in the context

of parameter estimation, Rodrigues et al. [33] show that the number of bits per

sample required to achieve a certain distortion in such task-oriented data acqui-

sition can be much lower than that required for task-ignorant data acquisition.

More recently, Shlezinger et al. [34, 35] study task-oriented hardware-efficient

data acquisition systems, where optimal vector quantizers are replaced by prac-

tical ones. Even though the optimal rate-distortion curve cannot be achieved

by replacing optimal vector quantizers by simple serial scalar ones, it is shown

in [34, 35] that one can get close to the minimal distortion in settings where

the information of interest is not the signal itself, but rather a low dimensional

parameter vector embedded in the signal. A practical application of this setting

is to massive multiple-input multiple-output (MIMO) systems where there is a

strong need to utilize simple low-resolution quantizers due to power and memory

constraints. In this context, it is possible to design a simple quantization sys-

tem, consisting of scalar uniform quantizers and linear pre- and post-processing,

leading to minimal channel estimation distortion.

These recent results also showcase how information-theoretic methods can cast

insight into the interplay between data acquisition, representation, and analysis,

in the sense that knowledge of the data analysis goal can influence the data

acquisition process. These results therefore also suggest new architectures for the

conventional data science pipeline that do not involve a strict separation between

the data acquisition, data representation, and data analysis & processing blocks.

Beyond this data acquisition paradigm involving the conversion of continuous-

6 In fact, this theory can be used even when the input signal is not bandlimited.
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time signals to digital ones, recent years have also witnessed the emergence of

various other data acquisition approaches. Chapters 3, 4, and 6 cover further

data acquisition strategies that are also benefiting from information-theoretic

methods.

1.7 Information Theory and Data Representation

The outputs of the data acquisition block—often known as “raw” data—need to

be typically turned into “meaningful” representations—known as features—for

further data analysis. Note that the act of transforming raw data into features,

where the number of dimensions in the features is lower than that in the raw

data, is also referred to as dimensionality reduction.

Recent years have witnessed a shift from model-based data representa-

tions, relying on pre-determined transforms—such as wavelets, curvelets, and

shearlets—to compute the features from raw data, to data-driven represen-

tations that leverage a number of (raw) data “examples”/“instances” to first

learn a (linear or nonlinear) data representation transform conforming to some

postulated data generative model [36, 37, 38, 39]. Mathematically, given N (raw)

data examples {yi ∈ Y}Ni=1 (referred to as training samples), data-driven rep-

resentation learning often assumes generative models of the form

yi = F (xi) + wi, i = 1, . . . , N, (1.17)

where xi ∈ X denote feature vectors that are assumed to be realizations of a

random vector X distributed as pX , wi denote acquisition noise and/or modeling

errors that are realizations of random noise W distributed as pW , and F : X → Y
denotes the true (linear or nonlinear) representation transform that belongs to

some postulated class of transforms F . The operational challenge in represen-

tation learning is to estimate F (·) using the training samples, after which the

features can be obtained using the inverse images of data samples returned by

G
def
= F−1 : Y → X . (1.18)

Note that if F (·) is not a bijection then G(·) will not be the inverse operator.7

In the literature, F (·) and G(·) are sometimes also referred to as the synthesis

operator and the analysis operator, respectively. In addition, the representa-

tion learning problem as stated is referred to as unsupervised representation

learning [37, 39]. Another category of representation learning is supervised

representation learning [40, 41], in which training data correspond to tuples

(yi, `i) with `i termed the label associated with training sample yi. Representa-

tion learning in this case involves obtaining an analysis/synthesis operator that

results in the best task-specific (e.g., classification and regression) performance.

7 In some representation learning problems, instead of using F (·) to obtain the inverse

images of data samples, G(·) is learned directly from training samples.



1.7 Information Theory and Data Representation 23

Another major categorization of representation learning is in terms of the lin-

earity of G(·), with the resulting classes referred to as linear representation

learning and nonlinear representation learning, respectively.

The problem of learning (estimating) the true transformation from a given pos-

tulated generative model poses various challenges. One relates to the design of

appropriate algorithms for estimating F (·) and computing inverse images G(·).
Another challenge involves understanding information-theoretic and computa-

tional limitations in representation learning in order to identify regimes where

existing algorithms are nearly optimal, regimes where existing algorithms are

clearly sub-optimal, and to guide the development of new algorithms. These chal-

lenges are also being addressed using information-theoretic tools. For example,

researchers often map the representation learning problem onto a channel coding

problem, where the transformation F (·) represents the message that needs to be

decoded at the output of a channel that maps F (·) onto F (X) + W. This allows

leveraging information-theoretic tools such as Fano’s Inequality for derivation of

fundamental limits on the estimation error of F (·) as a function of the number of

training samples [42, 43, 44, 45, 25]. We next provide a small sampling of repre-

sentation learning results that involve the use of information-theoretic tools and

methods.

1.7.1 Linear representation learning

Linear representation learning constitutes one of the oldest and, to this date, the

most prevalent data representation technique in data science. While there are

several different variants of linear representation learning in both the unsuper-

vised and the supervised settings, all these variants are based on the assumption

that the raw data samples lie near a low-dimensional (affine) subspace.

Representation learning in this case is therefore equivalent to learning the sub-

space(s) underlying raw data. This will be a single subspace in the unsupervised

setting, as in Principal Component Analysis (PCA) [46, 47, 48] and Inde-

pendent Component Analysis (ICA) [49, 50], and multiple subspaces in the

supervised setting, as in Linear Discriminant Analysis (LDA) [51, 52, 53]

and Quadratic Discriminant Analysis (QDA) [53].

Mathematically, linear representation learning operates under the assumption

of the raw data space being Y = Rm, the feature space being X = Rk with

k � m, the raw data samples given by

Y = AX + W (1.19)

with A ∈ F ⊂ Rm×k, and the feature estimates being given by X̂ = BY with

B ∈ Rk×m. In this setting, (F,G) = (A,B) and representation learning reduces

to estimating the linear operators A and/or B under various assumptions on F
and the generative model.8 In the case of PCA, for example, it is assumed that

8 Supervised learning typically involves estimation of multiple A’s and/or B’s.
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F is the Stiefel manifold in Rm and the feature vector X is a random vector that

has zero mean and uncorrelated entries. On the other hand, ICA assumes X to

have zero mean and independent entries. (The zero-mean assumption in both

PCA and ICA is for ease of analysis and can be easily removed at the expense

of extra notation.)

Information-theoretic frameworks have long been used to develop computa-

tional approaches for estimating (A,B) in ICA and its variants; see, e.g., [49,

54, 50, 55]. Recent years have also seen the use of information-theoretic tools

such as Fano’s Inequality to derive sharp bounds on the feasibility of linear rep-

resentation learning. One such result that pertains to PCA under the so-called

spiked covariance model is described next.

Suppose the training data samples are N independent realizations according

to (1.19), i.e.,

yi = Axi + wi, i = 1, . . . , N, (1.20)

where ATA = I and both xi and wi are independent realizations of X and W

that have zero mean and diagonal covariance matrices given by

E[XXT ] = diag(λ1, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk > 0, (1.21)

and E[WWT ] = σ2I, respectively. Note that the ideal B in this PCA example

is given by B = AT . It is then shown in [43, Theorem 5] using various analytical

tools, which include Fano’s Inequality, that A can be reliably estimated from N

training samples only if9

Nλ2k
k(m− k)(1 + λk)

→∞. (1.22)

This is the “converse” for the spiked covariance estimation problem.

The “achievability” result for this problem is also provided in [43]. Specifi-

cally, when the condition given in (1.22) is satisfied, a practical algorithm exists

that allows for reliable estimation of A [43]. This algorithm involves taking Â

to be the k eigenvectors corresponding to the k largest eigenvalues of the sam-

ple covariance 1
N

∑N
i=1 yiyi

T
of the training data. We therefore have a sharp

information-theoretic phase transition in this problem, which is characterized by

(1.22). Notice here, however, that while the converse makes use of information-

theoretic tools, the achievability result does not involve the use of the probabilis-

tic method; rather, it requires analysis of an explicit (deterministic) algorithm.

The sharp transition highlighted by the aforementioned result can be inter-

preted in various ways. One of the implications of this result is that it is impossi-

ble to reliably estimate the PCA features when m > N and m,N →∞. In such

high-dimensional PCA settings, it is now well understood that sparse PCA,

in which the columns of A are approximately “sparse,” is more appropriate for

9 Reliable estimation here means that the error between Â and A converges to 0 with
increasing number of samples.
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linear representation learning. We refer the reader to works such as [43, 56, 57]

that provide various information-theoretic limits for the sparse PCA problem.

We conclude by noting that there has been some recent progress on bounds on

the computational feasibility of linear representation learning. For example, the

fact that there is a practical algorithm to learn a linear data representation in

some high-dimensional settings implies that computational barriers can almost

coincide with information-theoretic ones. It is important to emphasize though

that recent work—applicable to the detection of a subspace structure within a

data matrix [58, 59, 60, 61, 25, 62]—has revealed that classical computation-

ally feasible algorithms such as PCA cannot always approach the information-

theoretic detection threshold [61, 25].

1.7.2 Nonlinear representation learning

While linear representation learning techniques tend to have low computational

complexity, they often fail to capture relevant information within complex phys-

ical phenomena. This, coupled with meteoric rise in computing power, has led

to widespread adoption of nonlinear representation learning in data science.

There is a very wide portfolio of nonlinear representation techniques, but

one of the most well-known classes, which has been the subject of much re-

search during the last two decades, postulates that (raw) data lie near a low-

dimensional manifold embedded in a higher-dimensional space. Represen-

tation learning techniques belonging to this class include local linear embed-

ding [63], Isomap [64], kernel entropy component analysis (ECA) [65], and non-

linear generalizations of linear techniques using the kernel trick (e.g., kernel

PCA [66], kernel ICA [67], and kernel LDA [68]). The use of information-theoretic

machinery in these methods has mostly been limited to formulations of the al-

gorithmic problems, as in kernel ECA and kernel ICA. While there exist some

results that characterize the regime in which manifold learning is impossible,

such results leverage the probabilistic method rather than more fundamental

information-theoretic tools [69].

Recent years have seen the data science community widely embrace another

nonlinear representation learning approach that assumes data lie near a union

of subspaces (UoS). This approach tends to have several advantages over

manifold learning because of the linearity of individual components (subspaces)

in the representation learning model. While there exist methods that learn the

subspaces explicitly, one of the most popular classes of representation learning

under the UoS model in which the subspaces are implicitly learned is referred

to as dictionary learning [38]. Formally, dictionary learning assumes the data

space to be Y = Rm, the feature space to be

X = {x ∈ Rp : ‖x‖0 ≤ k} (1.23)
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with k � m ≤ p, and the random generative model to be

Y = DX + W (1.24)

with D ∈ F = {D ∈ Rm×p : ‖Di‖2 = 1, i = 1, . . . , p} representing a dictionary

and W ∈ Rm representing the random noise vector. This corresponds to the

random data vector Y lying near a union of
(
p
k

)
k-dimensional subspaces. Notice

that while F (·) = D is a linear operator,10 its inverse image G(·) is highly

nonlinear and typically computed as

X̂ = G(Y) = arg min
X:‖X‖0≤k

‖Y −DX‖22, (1.25)

with (1.25) referred to as sparse coding.

The last fifteen years have seen the development of a number of algorithms

that enable learning of the dictionary D in both unsupervised and supervised

settings [70, 71, 41, 72]. Sample complexity of these algorithm in terms of both

infeasibility (converse) and achievability has been a more recent effort [73, 74,

75, 76, 44, 45]. In particular, it is established in [44] using Fano’s Inequality that

the number of samples N , which are independent realizations of the generative

model (1.24), i.e.,

yi = Dxi + wi, i = 1, . . . , N, (1.26)

must scale at least as fast as N = O(mp2ε−2) in order to ensure recovery of an

estimate D̂ such that ‖D̂ −D‖F ≤ ε. This lower bound on sample complexity,

which is derived in the minimax sense, is akin to the converse bounds in source

and channel coding in classical information theory. However, general tightness

of this lower bound, which requires analyzing explicit (deterministic) dictionary

learning algorithms and deriving matching achievability results, remains an open

problem. Computational limits are also in general open for dictionary learning.

Recent years have also seen extension of these results to the case of data that

has a multidimensional (tensor) structure [45]. We refer the reader to Chap-

ter 5 in the book for a more comprehensive review of dictionary learning results

pertaining to both vector and tensor data.

Linear representation learning, manifold learning, and dictionary learning are

all based on a geometric viewpoint of data. It is also possible to view these repre-

sentation learning techniques from a purely numerical linear algebra perspective.

Data representations in this case are referred to as matrix factorization-based

representations. The matrix factorization perspective of representation learn-

ing allows one to expand the classes of learning techniques by borrowing from

the rich literature on linear algebra. Non-negative matrix factorization [77], for

instance, allows one to represent data that are inherently non-negative in terms

of non-negative features that can be assigned physical meanings. We refer the

reader to [78] for a more comprehensive overview of matrix factorizations in data

10 Strictly speaking, D restricted to X is also nonlinear.
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science; [79] also provides a recent information-theoretic analysis of nonnegative

matrix factorization.

1.7.3 Recent trends in representation learning

Beyond the subspace and UoS models described above, another emerging ap-

proach to learning data representations relates to the use of deep neural net-

works [80]. In particular, this involves designing a nonlinear transformation

G : Y → X consisting of a series of stages, with each stage encompassing a linear

and a nonlinear operation, that can be used to produce a data representation

x ∈ X given a data instance y ∈ Y as follows:

x = G(y) = fL(WL ·fL−1(WL−1 · (· · · f1(W1y+b1) · · · )+bL−1)+bL) (1.27)

where Wi ∈ Rni×ni−1 is a weight matrix, bi ∈ Rni is a bias vector, fi : Rni →
Rni is a nonlinear operator such as a rectified linear unit (ReLU), and L

corresponds to the number of layers in the deep neural network. The challenge

then relates to how to learn the set of weight matrices and bias vectors associated

with the deep neural network. For example, in classification problems where each

data instance x is associated with a discrete label `, one typically relies on a

training set (yi, `i), i = 1, . . . , N , to define a loss function that can be used to

tune the various parameters of the network using algorithms such as gradient

descent or stochastic gradient descent [81].

This approach to data representation underlies some of the most spectacular

advances in areas such as computer vision, speech recognition, speech transla-

tion, natural language processing, and many more, but this approach is also not

fully understood. However, information-theoretic oriented studies have also been

recently conducted to cast insight onto the performance of deep neural networks

by enabling the analysis of the learning process or the design of new learning

algorithms. For example, Tishby et al. [82] propose an information-theoretic anal-

ysis of deep neural networks based on the information bottleneck principle.

They view the neural network learning process as a tradeoff between compres-

sion and prediction that leads up to the extraction of a set of minimal sufficient

statistics from the data in relation to the target task. Shwartz-Ziv et al. [83]—

building upon the work in [82]—also propose an information bottleneck based

analysis of deep neural networks. In particular, they study information paths

in the so-called information plane capturing the evolution of a pair of mu-

tual informations over the network during the training process: one relates to

the mutual information between the i-th layer output and the target data la-

bel, and the other corresponds to the mutual information between the i-th layer

output and the data itself. They also demonstrate empirically that the widely

used stochastic gradient descent algorithm undergoes a “fitting” phase—where

the mutual information between the data representations and the target data

label increases—and a “compression” phase—where the mutual information be-
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tween the data representations and the data decreases. See also related works

investigating the flow of information in deep networks [84, 85, 86, 87].

Achille and Soatto [88] also use an information-theoretic approach to under-

stand deep neural networks based data representations. In particular, they show

how deep neural networks can lead to minimal sufficient representations with

properties such as invariance to nuisances, and provide bounds that connect the

amount of information in the weights and the amount of information in the ac-

tivations to certain properties of the activations such as invariance. They also

show that a new information bottleneck Lagrangian involving the information

between the weights of a network and the training data can overcome various

overfitting issues.

More recently, information-theoretic metrics have been used as a proxy to

learn data representations. In particular, Hjelm et al. [89] propose unsupervised

learning of representations by maximizing the mutual information between an

input and the output of a deep neural network.

In summary, this body of work suggests that information-theoretic quantities

such as mutual information can inform the analysis, design, and optimization of

state-of-the-art representation learning approaches. Chapter 11 covers some of

these recent trends in representation learning.

1.8 Information Theory and Data Analysis & Processing

The outputs of the data representation block—the features—are often the basis

for further data analysis or processing, encompassing both statistical inference

and statistical learning tasks such as estimation, regression, classification,

clustering, and many more.

Statistical inference forms the core of classical statistical signal processing and

statistics. Broadly speaking, it involves use of explicit stochastic data models

to understand various aspects of data samples (features). These models can be

parametric, defined as those characterized by a finite number of parameters,

or nonparametric, in which the number of parameters continuously increases

with the number of data samples. There is a large portfolio of statistical infer-

ence tasks, but we limit our discussion to the problems of model selection,

hypothesis testing, estimation, and regression.

Briefly, model selection involves the use of data features/samples to select a

stochastic data model from a set of candidate models. Hypothesis testing, on

the other hand, is the task of determining whether a certain postulated hypoth-

esis (stochastic model) underlying the data is true or false. This is referred to

as binary hypothesis testing, as opposed to multiple hypothesis testing in which

the data are tested against several hypotheses. Statistical estimation, often stud-

ied under the umbrella of inverse problems in many disciplines, is the task

of inferring some parameters underlying the stochastic data model. In contrast,

regression involves estimating the relationships between different data features
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that are divided into the categories of response variable(s) (also known as de-

pendent variables) and predictors (also known as independent variables).

Statistical learning, along with machine learning, primarily concentrates on

approaches to find structure in data. In particular, while the boundary between

statistical inference and statistical learning is not a hard one, statistical learning

tends not to focus on explicit stochastic models of data generation; rather, it

often treats the data generation mechanism as a black box, and primarily con-

centrates on learning a “model” with good prediction accuracy [90]. There are

two major paradigms in statistical learning: supervised learning and unsu-

pervised learning.

In supervised learning, one wishes to determine predictive relationships be-

tween and/or across data features. Representative supervised learning approaches

include classification problems where the data features are mapped to a discrete

set of values (a.k.a. labels) and regression problems where the data features

are mapped instead to a continuous set of values. Supervised learning often in-

volves two distinct phases of training and testing. The training phase involves

use of a dataset, referred to as training data, to learn a model that finds the

desired predictive relationship(s). These predictive relationships are often implic-

itly known in the case of training data and the goal is to leverage this knowledge

for learning a model during training that generalizes these relationships to as-

yet unseen data. Often, one also employs a validation dataset in concert with

training data to tune possible hyper-parameters associated with a statistical

learning model. The testing phase involves use of another dataset with known

characteristics, termed test data, to estimate the learned model’s generaliza-

tion capabilities. The error incurred by the learned model on training and test

data is referred to as training error and testing error, respectively, while

the error that the model will incur on future unseen data can be captured by

the so-called generalization error. One of the biggest challenges in supervised

learning is understanding the generalization error of a statistical learning model

as a function of the number of data samples in training data.

In unsupervised learning, one wishes instead to determine the underlying struc-

ture within the data. Representative unsupervised learning approaches include

density estimation, where the objective is to determine the underlying data

distribution given a set of data samples, and clustering, where the aim is to

organize the data points onto different groups so that points belonging to the

same group exhibit some degree of similarity and points belonging to different

groups are distinct.

Challenges arising in statistical inference and learning also involve analyzing,

designing and optimizing inference and learning algorithms, and understanding

statistical and computational limits in inference and learning tasks. We next

provide a small sampling of statistical inference and statistical learning results

that involve the use of information-theoretic tools and methods.
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1.8.1 Statistical inference

We now survey some representative results arising in model selection, estima-

tion, regression, and hypothesis testing problems that benefit from information-

theoretic methods. We also offer an example associated with community detec-

tion and recovery on graphs where information-theoretic and related tools can

be used to determine statistical and computational limits.

Model selection
On the algorithmic front, the problem of model selection has been largely im-

pacted by information-theoretic tools. Given a data set, which statistical model

“best” describes the data? A huge array of work, dating back to the 70’s, has

tackled this question using various information-theoretic principles. The Akaike

Information Criterion (AIC) for model selection [91], for instance, uses the

KL divergence as the main tool for derivation of the final criterion. The Mini-

mum Description Length (MDL) principle for model selection [92], on the

other hand, makes a connection between source coding and model selection and

seeks a model that best compresses the data. AIC and MDL principles are just

two of a number of information-theoretic inspired model selection approaches;

we refer the interested reader to Chapter 12 for further discussion.

Estimation and regression
Over the years, various information-theoretic tools have significantly advanced

our understanding of the interconnected problems of estimation and regression.

In statistical inference, a typical estimation/regression problem involving a scalar

random variable Y ∈ R takes the form

Y = f(X;β) +W, (1.28)

where the random vector X ∈ Rp is referred to as a covariate in statistics and

measurement vector in signal processing, β ∈ Rp denotes the unknown param-

eter vector, termed regression parameters and signal in statistics and signal

processing, respectively, and W represents observation noise/modeling error.11

Both estimation and regression problems in statistical inference concern them-

selves with recovering β from N realizations {(yi,xi)}Ni=1 from the model (1.28)

under an assumed f(·; ·). In estimation, one is interested in recovering a β̂ that

is as close to the true β as possible; in regression, on the other hand, one is

concerned with prediction, i.e., how close f(X; β̂) is to f(X;β) for the random

vector X. Many modern setups in estimation/regression problems correspond to

the high-dimensional setting in whichN � p. Such setups often lead to seemingly

ill-posed mathematical problems, resulting in the following important question:

How small can the estimation and/or regression errors be as a function of N , p

and properties of the covariates and parameters.

11 The assumption is that raw data has been transformed into its features, which correspond
to X.
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Information-theoretic methods have been used in a variety of ways to address

this question for a number of estimation/regression problems. The most well

known of these results are for the Generalized Linear Model (GLM) where

the realizations of (Y,X,W) are given by:

yi = xi
T
β + wi =⇒ y = X̃β + w (1.29)

with y ∈ RN , X̃ ∈ RN×p, and w ∈ RN denoting concatenations of yi, xi
T

, and

wi, respectively. Fano’s Inequality has been used to derive lower bounds on the

errors in GLMs under various assumptions on the matrix X̃ and β [93, 94, 95].

Much of this work has been limited to the case of sparse β, in which it is assumed

that no more than a few (say, s� N) regression parameters are nonzero [93, 94].

The work by Raskutti et al. [95] extends many of these results to β that is not

strictly sparse. This work focuses on approximately sparse regression parameters,

defined as lying within an `q ball, q ∈ [0, 1] of radius Rq as follows:

Bq(Rq) = {β :

p∑
i=1

|βi|q ≤ Rq}, (1.30)

and provides matching minimax lower and upper bounds (i.e., optimal minimax

rate) for both estimation error, ‖β̂−β‖22, and prediction error, 1
n‖X̃(β̂−β)‖22. In

particular, it is established that, under suitable assumptions on X̃, it is possible to

achieve estimation and prediction errors in GLMs that scale asRq (log p/N)
1−q/2

.

The corresponding result for exact sparsity can be derived by setting q = 0 and

Rq = s. Further, there exist no algorithms, regardless of their computational

complexity, that can achieve errors smaller than this rate for every β in an `q ball.

As one might expect, Fano’s Inequality is the central tool used by Raskutti et al.

[95] to derive this lower bound (the “converse”). The achievability result requires

direct analysis of algorithms, as opposed to use of the probabilistic method in

classical information theory. Since both the converse and the achievability bounds

coincide in regression and estimation under the GLM, we end up with a sharp

statistical phase transition. Chapters 6, 7, 8, and 16 elaborate further on various

other recovery and estimation problems arising in data science, along with key

tools that can be used to cast insight into such problems.

Additional information-theoretic results are known for the Standard Linear

Model—where Y =
√
sXβ + W with Y ∈ Rn, X ∈ Rn×p, β ∈ Rp, W ∈ Rn ∼

N (0, I), and s a scaling factor representing a signal-to-noise ratio. In particular,

subject to mild conditions on the distribution of the parameter vector, it has

been established that the mutual information and the minimum mean-squared

error obey the so-called I-MMSE relationship given by [96]:

dI (β;
√
sXβ + W)

ds
=

1

2
·mmse

(
Xβ|
√
sXβ + W

)
(1.31)

where I (β;
√
sXβ + W) corresponds to the mutual information between the
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standard linear model input and output and

mmse
(
Xβ|
√
sXβ + W

)
= E

{∥∥Xβ − E
{
Xβ|
√
sXβ + W

}∥∥2
2

}
(1.32)

is the minimum mean-squared error associated with the estimation of Xβ given√
sXβ + W. Other relations involving information-theoretic quantities, such as

mutual information, and estimation-theoretic ones have also been established in

a wide variety of settings in recent years, such as Poisson models [97]. These re-

lations have been shown to have important implications in classical information-

theoretic problems – notably in the analysis and design of communications sys-

tems (e.g. [98, 99, 100, 101]) – and, more recently, in data science ones. In

particular, Chapter 7 elaborates further on how the I-MMSE relationship can be

used to cast insight into modern high-dimensional inference problems.

Hypothesis testing
Information-theoretic tools have also been advancing our understanding of hy-

pothesis testing problems (one of the most widely used statistical inference tech-

niques). In general, we can distinguish between binary hypothesis testing

problems, where the data is tested against two hypotheses often known as the

null and the alternate hypotheses, and multiple hypothesis testing prob-

lems in which the data is tested against multiple hypotheses. We can also distin-

guish between Bayesian approaches to hypothesis testing, where one specifies

a prior probability associated with each of the hypothesis, and non-Bayesian

ones, in which one does not specify a priori any prior probability.

Formally, a classical formulation of the binary hypothesis testing problem in-

volves testing whether a number of i.i.d. data samples (features) x1,x2, . . . ,xN

of a random variable X ∈ X ∼ pX conform to one of the following hypotheses

H0 : pX = p0 or H1 : pX = p1, where under the first hypothesis one postulates

that the data is generated i.i.d. according to model (distribution) p0 and un-

der the second hypothesis one assumes the data is generated i.i.d. according to

model (distribution) p1. A binary hypothesis test T : X × · · ·×X → {H0,H1} is

a mapping that outputs an estimate of the hypothesis given the data samples.

In non-Bayesian settings, the performance of such a binary hypothesis test

can be described by two error probabilities. The type-I error probability,

which relates to the rejection of a true null hypothesis, is given by:

Pe|0 (T ) = P
(
T
(
X1,X2, . . . ,XN

)
= H1|H0

)
(1.33)

and the type-II error probability, which relates to the failure to reject a false

null hypothesis, is given by:

Pe|1 (T ) = P
(
T
(
X1,X2, . . . ,XN

)
= H0|H1

)
. (1.34)

In this class of problems, one is typically interested in minimizing one of the error

probabilities subject to a constraint on the other error probability as follows:

Pe(α) = min
T :Pe|0(T )≤α

Pe|1 (T ) (1.35)
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where the minimum can be achieved using the well-known Neymann–Pearson

test [102].

Information-theoretic tools – such as typicality [7] – have long been used to an-

alyze the performance of this class of problems. For example, the classical Stein’s

lemma asserts that asymptotically with the number of data samples approaching

infinity [7]

lim
α→0

lim
N→∞

1

N
· logPe(α) = −D (p0||p1) (1.36)

where D (·||·) is the Kullback-Leibler distance between two different distribu-

tions.

In Bayesian settings, the performance of a hypothesis testing problem can be

described by the average error probability given by

Pe (T ) = P (H0) · P
(
T
(
X1,X2, . . . ,XN

)
= H1|H0

)
+ P (H1) · P

(
T
(
X1,X2, . . . ,XN

)
= H0|H1

) (1.37)

where P (H0) and P (H1) relate to the prior probabilities ascribed to each of

the hypothesis. It is well known that the maximum a posteriori test (or

maximum a posteriori decision rule) minimizes this average error proba-

bility [102].

Information-theoretic tools have also been used to analyze the performance

of Bayesian hypothesis testing problems. For example, consider a simple M -ary

Bayesian hypothesis testing problem involving M possible hypotheses, which are

modelled by a random variable C drawn according to some prior distribution pC
and the data is modelled by a random variable X drawn according to the distri-

bution pX|C . In particular, since it is often difficult to characterize in closed-form

the minimum average error probability associated with the optimal maximum

a posteriori test, information-theoretic measures can be used to upper or lower

bound this quantity. A lower bound on the minimum average error probability

– derived from Fano’s inequality – is given by:

Pe,min = min
T
Pe (T ) ≥ 1− H (C|X)

log2 (M − 1)
. (1.38)

An upper bound on the minimum average error probability is [103]:

Pe,min = min
T
Pe (T ) ≤ 1− exp (−H (C|X)) . (1.39)

A number of other bounds on the minimum average error probability involving

Shannon information measures, Rényi information measures, or other

generalizations have also been devised over the years [104, 105, 106] that have

led to stronger converse results not only in classical information theory problems

but also in data science ones [107].

Example: Community detection and estimation on graphs
We now briefly offer examples of hypothesis testing and estimation problems

arising in modern data analysis that exhibit sharp statistical and computational
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phase transitions which can be revealed using emerging information-theoretic

methods.

To add some context, in modern data analysis it is increasingly common for

datasets to consist of various items exhibiting complex relationships among them,

such as pairwise or multi-way interactions between items. Such datasets can

therefore be represented by a graph or a network of interacting items where

the network vertices denote different items and the network edges denote pair-

wise interactions between the items. 12 Our example – involving a concrete chal-

lenge arising in the analysis of such networks of interacting items – relates to

the detection and recovery of community structures within the graph. A

community consists of a sub-set of vertices within the graph that are densely

connected to one another but sparsely connected to other vertices within the

graph [108].

Concretely, consider a simple instance of such problems where one wishes to

discern whether the underlying graph is random or whether it contains a dense

subgraph (a community). Mathematically, we can proceed by considering two

objects: (1) a Erdös-Rényi random graph model G (N, q) consisting of N vertices

where each pair of vertices is connected independently with probability q; and

(2) a planted dense subgraph model G (N,K, p, q) with N vertices where each

vertex is assigned to a random set S with probability K/N (K ≤ N) and each

pair of vertices are connected with probability p if they both are in the set S
and with probability q otherwise (p > q). We can then proceed by constructing

an hypothesis testing problem where under one hypothesis one postulates that

the observed graph is drawn from G (N, q) and under the other hypothesis one

postulates instead that the observed graph is drawn from G (N,K, p, q). It can

then be established in the asymptotic regime p = cq = O (N−α), K = O
(
N−β

)
,

N → ∞, that (a) one can detect the community with arbitrarily low error

probability with simple linear-time algorithms when β > 1
2+α

4 ; (b) one can detect

the community with arbitrarily low error probability only with no-polynomial-

time algorithms when α < β < 1
2 + α

4 ; and (c) there is no test – irrespective

of its complexity – that can detect the community with arbitrarily low error

probability when β < min
(
α, 12 + α

4

)
[109]. It has also been established that

the recovery of the community exhibits identical statistical and computational

limits.

This problem in fact falls under a much wider problem class arising in mod-

ern data analysis, involving the detection or recovery of structures planted in

random objects such as graphs, matrices, or tensors. The characterization of sta-

tistical limits in detection or recovery of such structures can be typically done

by leveraging various tools: (1) statistical tools such as the first and the second

moment methods; (2) information-theoretic methods such as mutual information

and rate-distortion; and (3) statistical physics based tools such as the interpola-

12 Some datasets can also be represented by hyper-graphs of interacting items where

vertices denote the different objects and hyper-edges denotes multi-way interactions
between the different objects.
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tion method. In contrast, the characterization of computational limits associated

with these statistical problems often involves finding an approximate random-

ized polynomial-time reduction, mapping certain graph-theoretic problems such

as the planted clique problem approximately to the statistical problem under

consideration, in order to show that the statistical problem is at least as hard

as the planted clique problem. Chapter 13 provides a comprehensive overview

of emerging methods – including information-theoretic ones – used to establish

both statistical and computational limits in modern data analysis.

1.8.2 Statistical learning

We now survey emering results in statistical learning that are benefiting from

information-theoretic methods.

Supervised learning
In the supervised learning set-up one desires to learn a hypothesis based on a

set of data examples that can be used to make predictions given new data [90].

In particular, in order to formalize the problem, let X be the domain set, Y be

the label set, Z = X ×Y be the examples domain, µ be a distribution on Z,

andW a hypothesis class (i.e.W = {W} is a set of hypotheses W : X → Y).

Let also S =
{
z1, . . . , zN

}
=
{

(x1,y1), . . . , (xN ,yN )
}
∈ ZN be the training

set – consisting of a number of data points and their associated labels – drawn

i.i.d. from Z according to µ. A learning algorithm is a Markov kernel that

maps the training set S to an element W of the hypothesis class W per the

probability law pW |S .

A key challenge relates to understanding the generalization ability of the learn-

ing algorithm, where the generalization error corresponds to the difference be-

tween the expected (or true) error and the training (or empirical) error.

In particular, by considering a non-negative loss function L :W×Z → R+, one

can define the expected error and the training error associated with a hypothesis

W as follows:

lossµ(W ) = E{L(W,Z)} and lossS(W ) =
1

N

N∑
i=1

L(W, zi)

respectively. The generalization error is given by

gen(µ,W ) = lossµ(W )− lossS(W )

and its expected value is given by

gen(µ, pW |S) = E {lossµ(W )− lossS(W )}

where the expectation is with respect to the joint distribution of the algorithm

input (the training set) and the algorithm output (the hypothesis).

A number of approaches have been developed throughout the years to charac-

terize the generalization error of a learning algorithm, relying on either certain
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complexity measures of the hypothesis space or certain properties of the learn-

ing algorithm. These include VC-based bounds [110], algorithmic stability based

bounds [111], algorithmic robustness based bounds [112], PAC-Bayesian bounds

[113], and many more. However, many of these generalization error bounds can-

not explain the generalization abilities of a variety of machine learning methods

for various reasons: (1) some of the bounds depend only on the hypothesis class

and not on the learning algorithm, (2) existing bounds do not easily exploit

dependences between different hypothesis, and (3) existing bounds also do not

exploit dependences between the learning algorithm input and output.

More recently, approaches leveraging information-theoretic tools have been

emerging to characterize the generalization ability of various learning methods.

Such approaches often express the generalization error in terms of certain in-

formation measures between the algorithm input (the training dataset) and the

algorithm output (the hypothesis), thereby incorporating the various ingredi-

ents associated with the learning problem, including the dataset distribution,

the hypothesis space, and the learning algorithm itself. In particular, inspired

by [114], Xu and Raginsky [115] derive an upper bound on the generalization

error, applicable to σ-subgaussian loss functions, given by:

∣∣gen(µ, pW |S)
∣∣ ≤√2σ2

N
· I(S;W )

where I(S;W ) corresponds to the mutual information between the input – the

dataset – and the output – the hypothesis – of the algorithm. This bound sup-

ports the intuition that the less information the output of the algorithm contains

about the input to the algorithm the less it will overfit, providing a means to

strike a balance between the ability to fit data and the ability to generalize to

new data by controlling the algorithm’s input-output mutual information. Ra-

ginsky et al. [116] also propose similar upper bounds on the generalization error

based on several information-theoretic measures of algorithmic stability, captur-

ing the idea that the output of a stable learning algorithm cannot depend “too

much” on any particular training example. Other generalization error bounds

involving information-theoretic quantities appear in [117, 118]. In particular,

Asadi et al. [118] combine chaining and mutual information methods to derive

generalization error bounds that significantly outperform existing ones.

Of particular relevance, these information-theoretic based generalization er-

ror bounds have also been used to cast further insight onto machine learning

models and algorithms. For example, Pensia et al. [119] build upon the work by

Xu and Raginsky [115] to derive very general generalization error bounds for

a broad class of iterative algorithms that are characterized by bounded, noisy

updates with Markovian structure, including stochastic gradient Langevin dy-

namics (SGLD) and variants of the stochastic gradient Hamiltonian Monte Carlo

(SGHMC) algorithm. This work demonstrates that mutual information is a very

effective tool for bounding the generalization error of a large class of iterative em-

pirical risk minimization (ERM) algorithms. Zhang et al. [120], on the other
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hand, build upon the work by Xu and Raginsky [115] to study the expected

generalization error of deep neural networks, and offer a bound that shows that

the error decreases exponentially to zero with the increase of convolutional and

pooling layers in the network. Other works that study the generalization ability

of deep networks based on information-theoretic considerations and measures in-

clude [121, 122]. Chapters 10 and 11 scope these directions in supervised learning

problems.

Unsupervised learning
In unsupervised learning set-ups, one desires instead to understand the structure

associated with a set of data examples. In particular, multivariate information-

theoretic functionals such as partition information, minimum partition informa-

tion, and multiinformation have been recently used in the formulation of unsu-

pervised clustering problems [123, 124]. Chapter 9 elaborates further on such

approaches to unsupervised learning problems.

1.8.3 Distributed inference and learning

Finally, we add that there has also been considerable interest in the generalization

of the classical statistical inference and learning problems overviewed here to

the distributed setting, where a statistician / learner only has access to data

distributed across various terminals via a series of limited-capacity channels. In

particular, much progress has been made in distributed estimation [125, 126,

127], hypothesis testing [128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138],

learning [139, 140], and function computation [141] problems in recent years.

Chapters 14 and 15 elaborate further on how information theory is advancing

the state-of-the-art for this class of problems.

1.9 Discussion and Conclusion

This chapter overviewed the classical information-theoretic problems of data

compression and communication, questions arising within the context of these

problems, and classical information-theoretic tools used to illuminate fundamen-

tal architectures, schemes, and limits for data compression and communication.

We then discussed how information-theoretic methods are currently advancing

the frontier of data science by unveiling new data processing architectures, data

processing limits, and algorithms. In particular, we scoped how information the-

ory is leading to a new understanding of data acquisition architectures, and pro-

vided an overview of how information-theoretic methods have been uncovering

limits and algorithms for linear and nonlinear representation learning problems,

including deep learning. Finally, we also overviewed how information-theoretic

tools have been contributing to our understanding of limits and algorithms for

statistical inference and learning problems.
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Beyond the typical data acquisition, data representation, and data analysis

tasks covered throughout this introduction, there are also various other emerging

challenges in data science that are benefiting from information-theoretic tech-

niques. For example, privacy is becoming a very relevant research area in data

science in view of the fact that data analysis can not only reveal useful insights

but also potentially disclose sensitive information about individuals. Differen-

tial privacy is an inherently information-theoretic framework that can be used

as the basis for the development of data release mechanisms that control the

amount of private information leaked to a data analyst while retaining some de-

gree of utility [142]. Other information-theoretic frameworks have also been used

to develop data pre-processing mechanisms that strike a balance between the

amount of useful information and private information leaked to a data analyst

(e.g. [143]).

Fairness is likewise becoming a very relevant area in data science because

data analysis can also potentially exacerbate biases in decision making, such

as discriminatory treatments of individuals based on membership of a legally

protected group such as race or gender. Such biases may arise when protected

variables (or correlated ones) are used explicitly in the decision making. Biases

also arise when learning algorithms inheriting possible biases present in training

sets are used in decision making. Recent works have concentrated on the devel-

opment of information-theoretic based data pre-processing schemes that aim to

simultaneously control discrimination as well as preserve utility (e.g. [144]).

Overall, we anticipate that information-theoretic methods will play an increas-

ingly important role in our understanding of data science in upcoming years, in-

cluding in shaping data processing architectures, in revealing fundamental data

processing limits, and in the analysis, design, and optimization of new data pro-

cessing algorithms.
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