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Statistical inference and machine learning algorithms have traditionally been developed for data avail-

able at a single location. Unlike this centralized setting, modern datasets are increasingly being distributed

across multiple physical entities (sensors, devices, machines, data centers, etc.) for a multitude of reasons

that range from storage, memory, and computational constraints to privacy concerns and engineering

needs. This has necessitated the development of inference and learning algorithms capable of operating

on non-collocated data. We divide such algorithms into two broad categories in this article, namely,

distributed algorithms and decentralized algorithms.

Distributed Algorithms: Distributed algorithms correspond to setups in which the data-bearing entities

(henceforth referred to as “nodes”) require some form of coordination through a specially designated entity

in the system in order to generate the final result. Depending on the application, this special entity is

referred to as master node, central server, parameter server, fusion center, etc., in the literature. While

distributed setups can take a number of forms, this exposition mostly revolves around the so-called master–

worker distributed architecture in which data-bearing nodes only communicate with a single master node

that is tasked with generating the final result. Among other applications, such distributed architectures

arise in the context of parallel computing, where the focus is computational speedups and/or overcoming

memory/storage bottlenecks, and federated systems, where “raw” data collected by individual nodes

cannot be shared with the master node due to either communication constraints (e.g., sensor networks)

or privacy concerns (e.g., smartphone data).

Decentralized Algorithms: Decentralized algorithms correspond to setups that lack central servers;

instead, data-bearing nodes in a decentralized system are collectively tasked with generating the final

result. In particular, individual nodes in a decentralized setup typically communicate among themselves

over a network (often ad hoc) to reach a common solution (i.e., achieve consensus) at all nodes.

Decentralized setups arise either out of the need to eliminate single points of failure in distributed setups

or due to practical engineering constraints, as in the internet of things and autonomous systems.
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Fig. 1. Inference and machine learning algorithms involving non-collocated data can be broadly divided into the categories
of (i) distributed algorithms and (ii) decentralized algorithms. The former category includes master–worker distributed setups
such as parallel computing and federated systems in which a single entity is tasked with generating the final result. The latter
category deals with decentralized setups in which entities cooperate among themselves to produce the final result.

Is it distributed or is it decentralized? Inference and learning from non-collocated data have been stud-

ied for decades in computer science, control, signal processing, and statistics. Both among and within

these disciplines, however, there is no consensus on use of the terms “distributed” and “decentralized.”

Though many works share the definitions provided in here, there are numerous authors who use these

two terms interchangeably, while there are some other authors who reverse these definitions.

The last few decades have witnessed the emergence of a plethora of applications that necessitate

advances in inference and learning in distributed and decentralized setups. Indeed, distributed and de-

centralized statistical inference methods are increasingly being relied upon in urban traffic monitoring,

environmental sensing, management of smart grids, distributed spectrum sensing, and homeland security,

among other applications. Similarly, distributed and decentralized machine learning algorithms are in-

creasingly being utilized in the context of networks of self-driving cars, control of robot swarms, pattern

recognition in large-scale datasets, and federated learning systems for healthcare data. Collectively, these

applications have resulted in the development of a huge body of work devoted to understanding the

algorithmic and theoretical underpinnings of distributed and decentralized inference and learning. But

much of this work assumes a non-adversarial setting in which individual nodes—apart from occasional

statistical failures—operate as intended within the algorithmic framework.

In recent years, however, cybersecurity threats from malicious non-state actors and rogue entities—and

the potentially disastrous consequences of these threats for the aforementioned applications—have forced
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practitioners and researchers to rethink the robustness of distributed and decentralized algorithms against

adversarial attacks. As a result, we now have an abundance of algorithmic approaches that guarantee

robustness of distributed and/or decentralized inference and learning under different adversarial threat

models; see, e.g., recent survey articles [1]–[3]. Driven in part by the world’s growing appetite for data-

driven decision making, however, securing of distributed/decentralized frameworks for inference and

learning against adversarial threats remains a rapidly evolving research area. In this article, we provide

an overview of some of the most recent developments in this area under the threat model of Byzantine

attacks. This threat model—which subsumes the case of malfunctioning nodes, referred to as Byzantine

faults/failures—is one of the hardest to safeguard against since it allows for undetected takeover of nodes

by the adversary. In particular, nodes affected under this threat model—termed Byzantine nodes—are

assumed to have the potential to arbitrarily bias the outputs of the underlying algorithms by colluding

among themselves, injecting false data and information into the distributed/decentralized system, etc. This

is in stark contrast to the relatively simpler threat model of crash faults, in which individual nodes in the

distributed/decentralized system continue to operate as intended till a crash fault occurs, at which point

the faulty node ceases to interact with the system (rather then potentially injecting false information into

the system). We refer the reader to [4], and the references within, for further discussion on both the

generality and the hardness of the Byzantine threat model in relation to the crash-fault model.

Fig. 2. A Byzantine army led by three
generals, one of whom (General 3) is a
traitor, surrounding an enemy city. The
loyal generals are trying to reach a consen-
sus on the plan of action against the enemy,
while the traitor is trying to mislead them.

Origination of the Byzantine threat model: The threat model of

Byzantine attacks/faults/failures in its most general form was

introduced and analyzed in [5] within the context of reliability of

computer systems with potentially malfunctioning components.

The overarching problem in [5] was abstracted as the Byzantine

Generals Problem, in which several generals of the Byzantine

army—some of whom are likely to be traitors—need to agree

on attacking or retreating from an enemy city through exchange

of messages via a messenger; see, e.g., Figure 2. The authors

reported two key results in [5] for this problem. First, they

established the impossibility of safeguarding against Byzantine nodes (traitor generals) when the

number of uncompromised nodes (loyal generals) is not more than two-thirds of the total number

of nodes. The threat from General 3 in Figure 2, therefore, cannot be neutralized by any algorithm

since the number of loyal generals is only two in this scenario. Second, the authors proposed two
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algorithms for complete and regular graphs that provably counter the actions of Byzantine nodes in

the case of binary (e.g., attack/retreat) decisions as long as the number of uncompromised nodes

exceeds two-thirds of the total number of nodes.

The Byzantine threat model, since its introduction in 1982, has been extensively studied in the context

of statistical inference from non-collocated data [1], [2]. However, its potential impact on more general

decentralized consensus and distributed/decentralized machine learning problems has only been recently

studied. It is against this backdrop that this article summarizes recent developments in Byzantine-resilient

processing of non-collocated data, with a majority of the discussion focused on machine learning problems

in distributed and decentralized settings.

I. ADVERSARY-RESILIENT DISTRIBUTED PROCESSING OF DATA

In the classic master–worker setting of distributed systems tasked with processing of non-collocated

data, there is one central server—referred to as master node, parameter server, fusion center, etc.—that

coordinates with M data-bearing nodes (sensors, smartphones, worker nodes, etc.) for final decision

making. While all nodes in this setting communicate with the server, they usually cannot communicate

with each other (see “Distributed Setups” in Figure 1). The Byzantine threat model in this setting assumes

at most b nodes in the system have been compromised. This parameter b, which typically corresponds to

a crude upper bound on the exact number of Byzantine nodes, often plays an important role in both the

analysis and the performance of Byzantine-resilient algorithms. We summarize some of these algorithms

and their theoretical guarantees in the following for statistical inference and machine learning problems.

A. Distributed Statistical Inference

Statistical inference leverages data samples in order to draw conclusions about the underlying proba-

bility distribution(s) generating the data. While statistical inference can take many forms, we limit our

discussion in this article to Byzantine-resilient distributed detection and distributed estimation.

Distributed Detection: Distributed detection under both the Neyman–Pearson (NP) and the Bayesian

frameworks has a rich history. Given two hypotheses H0 and H1, a typical distributed detection algorithm

first involves each node taking a local decision in favor of either H0 or H1 based on its own data samples.

The nodes then send their decisions to the central server, which applies a fusion rule to the local decisions

in order to reach the final (global) decision. Unfortunately, distributed detection algorithms designed

without consideration of potential Byzantine failures break down in the presence of Byzantine nodes.

Despite the brittleness of traditional distributed detection techniques, investigation of Byzantine-resilient

distributed detection only took off in the last decade. The survey article [1] provides an overview of many
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TABLE I

SUMMARY OF RECENT RESULTS CONCERNING BYZANTINE-RESILIENT DISTRIBUTED DETECTION

Reference Hypothesis Test Detection Setup Critical Fraction α∗ Distributed Architecture

Nadendla et al. [6] Q-ary Neyman–Pearson α∗ = Q−1
Q

Star topology

Kailkhura et al. [7] Binary Bayesian α∗ = 0.5 Star topology

Hashlamoun et al. [8] Binary Bayesian Can have α∗ = 1 Quasi-star topology

Kailkhura et al. [9] Binary Neyman–Pearson b1 = dM1
2
e Tree topology

of the resulting methods and asymptotically characterizes the respective critical fraction α∗ of Byzantine

nodes, defined as α∗ := b
M , at (or beyond) which the central server cannot do better than random guessing

for its final decision. An important insight from the earliest works on Byzantine-resilient distributed

detection is that (asymptotically) α∗ can be 1
2 or higher [1]; in contrast, recall that α∗ = 1

3 for the

original Byzantine Generals Problem [5].

Since the appearance of [1] in 2013, a few other works on Byzantine-resilient distributed detection

have appeared in the literature. It is shown in [6] that distributed detection can be more resilient to

Byzantine failures in the case of a general Q-ary hypothesis testing problem, with the critical fraction

given by α∗ = Q−1
Q . Byzantine-resilient distributed binary hypothesis testing is investigated for the first

time under the Bayesian framework in [7], with the critical fraction also given by α∗ = 1
2 in this case.

Finally, it is established in [8] that—under certain conditions—it is possible to have α∗ = 1 in the case

of Bayesian distributed binary detection as long as each node is allowed to replicate its message to the

central server through one other node in the system. Strictly speaking, however, this coordination among

pairs of nodes leads to a distributed architecture that differs from the distributed master–worker (star

topology) architecture of prior works. We conclude by noting that a tree topology in which the central

server sits at the root of the tree (Depth 0) and nodes in the distributed system route their messages

to the server through their parent nodes is another distributed architecture that does not fall under the

distributed master–worker setup. Byzantine resilience of such architectures in distributed detection tasks

is investigated in [9], with the critical fraction of Byzantine nodes defined in terms of the number of

Byzantine nodes b1 and the total number of nodes M1 at Depth 1 of the tree. We also refer the reader to

Table I for a summary of all the results that have been discussed in this article in relation to Byzantine-

resilient distributed detection.

Distributed Estimation: Byzantine-resilient distributed estimation has received significant attention

lately in the context of state estimation in cyberphysical systems. Much of the developments in this

regard have been limited to linear models, with a typical observation model at any given time at node
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j expressed as yj = hT
j w + ηj , j = 1, . . . ,M , where hj ∈ Rd denotes a known vector, w ∈ Rd is

the unknown state vector that needs to be estimated at the central server, and ηj denotes the observation

noise at node j. Traditionally, distributed estimation has involved the nodes transmitting yj’s (or their

quantized versions) to the central server and the server estimating w using some variant of the following

least-squares formulation [10] (or a maximum likelihood one in the case of quantized transmissions):

ŵ = argmin
w̃

∥∥y −Hw̃
∥∥
2
, (1)

where the matrix H ∈ RM×d has hj’s as its rows. The quality of such solutions are assessed in terms

of gap of their mean squared error (MSE), E[‖ŵ−w‖22], from either the minimum mean squared error

(MMSE) or the Cramer–Rao lower bound (CRLB) for unbiased estimators.

In the presence of Byzantine nodes, in which case the yj’s corresponding to the b Byzantine nodes

can be arbitrarily different from hT
j w, solutions of distributed estimation techniques based on (1) can

be pushed far from the optimal (in terms of MMSE/CRLB); see, e.g., Figure 3. In this setting, one can

again characterize the critical fraction α∗ of Byzantine nodes at (or beyond) which the server can do

no better than relying on prior knowledge about w. It is, for instance, established in [6] that—under

certain assumptions—it is possible to have α∗ = Q−1
Q when nodes utilize Q-ary quantization in order

to transmit their data to the server. The survey articles [1]–[3] provide additional discussion of works

on Byzantine-resilient distributed estimation, many of which are based on the idea of either detection of

Byzantine attacks and/or identification of individual Byzantine nodes as part of their mitigation strategy.

Finally, while much of the focus in Byzantine-resilient distributed estimation has been on linear models,

there are works like [11] that focus on nonlinear models. Since there is a significant overlap between

statistical estimation and machine learning problems, we do not indulge in discussion of such works;

instead, we move towards our review of recent results on Byzantine-resilient distributed machine learning.

Fig. 3. The impact of Byzantine failures
on traditional least-squares estimation.

Distributed estimation and Byzantine failures: We illustrate the

impact of Byzantine nodes on distributed estimation through

a simple example of two-dimensional parameter estimation, in

which the linear observation model corresponds to a line in (x, y)

plane, using M = 8 nodes. The observations at each node in this

example correspond to yj = hT
j w+ηj with hT

j := [xj 1] and the

two-dimensional vector w describing the slope and y-intercept of

the line. It can be seen from Figure 3 that Byzantine failures of just two nodes returns a least-squares

solution that results in a model hT
j ŵ that significantly differs from the true model hT

j w.



7

B. Distributed Machine Learning

A typical challenge in machine learning is to statistically minimize a function f , referred to as loss

function or risk function, with respect to a candidate model w ∈ Rd that describes the data, i.e.,

min
w

Ez∼P
[
f(w, z)

]
, (2)

where z denotes data living in some Hilbert space that is drawn from an unknown probability distribution

P . To solve (2) without knowledge of P , distributed machine learning focuses on minimizing an empirical

variant of Ez∼P
[
f(w, z)

]
using samples of z—termed training data—distributed across different nodes.

The resulting objective, aptly termed distributed empirical risk minimization (ERM), can be expressed as

min
w

1
M

M∑
j=1

f(w,Zj), with Zj denoting the local training data at node j that comprises multiple samples

drawn from P and w referred to as the global optimization variable. The model/variable w in distributed

machine learning is stored at the central server, which iteratively updates it based on messages received

from individual nodes and subsequently sends the updated w to all nodes. Each node, in turns, performs

some computation according to its local data and the received w, and sends a message back to the server.

Distributed Stochastic Gradient Descent: Similar to distributed statistical inference, Byzantine fail-

ures can lead to breakdowns of distributed machine learning methods. Motivated in part by the widespread

adoption of deep neural networks and variance-reduction techniques like mini batching by the practition-

ers, we mainly focus here on robustification of synchronous distributed stochastic gradient descent (SGD)

against Byzantine attacks. A typical distributed SGD algorithm proceeds iteratively. In each iteration,

nodes compute the gradient of the loss function on their local data with respect to the current model and

send their gradients to the server. The server, in turn, takes the average of all the gradients and updates

the global variable according to the averaged gradient. In a faultless environment, distributed SGD—with

proper choices of step size and batch size—has a linear convergence rate for strongly convex functions.

However, a single Byzantine node can force the algorithm to converge to any model using a simple

strategy. Suppose, for instance, the summation of gradients of faultless nodes is g and the Byzantine

node wishes the server to operate on an alternate gradient g′. The Byzantine node can accomplish this

by sending Mg′ − g as its gradient to the server, thereby controlling the update step at the server. Of

course, as simple as this strategy is, it is not an optimal one for the Byzantine node; indeed, a large M

will result in a large gradient, which is likely to make the malicious message detectable. We refer the

reader to [12]–[14] for more sophisticated strategies that can be employed by Byzantine nodes.

Several algorithms have been put forth recently to safeguard distributed SGD against Byzantine failures.

The central idea in all these approaches that imparts Byzantine resilience to distributed SGD involves the

use of a screening procedure at the server while it aggregates the local gradients. Using an appropriate
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screening rule, the screened aggregated gradient can be shown to be close to the true average gradient,

thereby enabling the server to approximately solve the distributed ERM problem. Algorithm 1 provides a

general framework for Byzantine-resilient distributed SGD that is based on this idea of screening. While

some algorithms alter this framework a little bit, the general idea remains the same. Note that if one

were to remove the screening procedure in Step 10 of the algorithm, it becomes vanilla distributed SGD.

Algorithm 1 A General Framework for Byzantine-resilient Distributed SGD
1: for t = 1, 2, . . . do

2: Server:

3: Send the global optimization variable to all nodes

4: Node:

5: Receive the global optimization variable from the server

6: Calculate gradient with respect to the local training set

7: Send the local gradient to the server

8: Server:

9: Receive local gradients from all nodes

10: Screen the received gradients for Byzantine resilience and aggregate them

11: Update the global variable by taking a gradient step using the aggregated gradient

12: end for

The State of the Art: We now discuss the various screening (and aggregation) procedures adopted in

different algorithms. The algorithm introduced in [15], termed robust distributed gradient descent, uses

two screening methods: coordinate-wise median and coordinate-wise trimmed mean. In coordinate-wise

median, the server aggregates the local gradients by taking the median in each dimension of the gradients.

Coordinate-wise trimmed mean, on the other hand, involves the server eliminating the smallest and the

largest b values in each dimension of the gradients and coordinate-wise averaging the remaining values

for aggregation. The GeoMed algorithm [16], in contrast, uses the geometric median of local gradients as

the screening and aggregation rule. The Krum [17] algorithm, on the other hand, finds the local gradient

that has the smallest distance to its M − b−2 closest gradients and uses this gradient for the update step.

There is also a variant of the Krum algorithm, termed Multi-Krum [17], which finds m ∈ {1, . . . ,M}

local gradients using the Krum principle and uses an average of these gradients for update.

The Bulyan algorithm [18], [19] is a two-stage algorithm. In the first stage, it recursively uses vector

median methods such as Geometric median and Krum to select M − 2b local gradients. In the second

stage, it carries out a coordinate-wise operation on the M − 2b selected gradients in which M − 4b
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values in each coordinate are retained (and then averaged for aggregation) by eliminating 2b values

that are farthest from the coordinate-wise median. Zeno/Zeno++ [20], [21] are related algorithms that

require an oracle at the server, which can generate an estimate of the true gradient in each iteration, for

screening/aggregation purposes. In particular, the screening procedure involves calculating a score for

each local gradient based on its difference from the oracle gradient, with the surviving gradients being

the ones that are the most similar to the oracle gradient.

The Byzantine-resilient distributed SGD framework of Algorithm 1 has also been investigated in [22]

under a generalized Byzantine threat model. The basic assumption underlying this threat model is that

the set of nodes under Byzantine attacks can change in each iteration of the algorithm, but the attackers

can only inject malicious information in some dimensions of their respective gradients. Similar to [15],

[16], the work in [22] puts forth the use of coordinate-wise median, a variant of coordinate-wise trimmed

mean, and geometric median for screening purposes, and establishes resilience of the resulting methods

under the assumption that less than half of the gradients in each dimension are attacked in each iteration.

We conclude by discussing a few methods that somewhat deviate from the distributed framework

of Algorithm 1. In contrast to [15]–[22], the RSA algorithm of [23] robustifies distributed SGD by

making individual nodes store and update local versions of the global optimization variable w, which

are then aggregated at the server in each iteration in a Byzantine-resilient manner. In order to reduce the

communications overhead of Byzantine-resilient distributed SGD, [24] discusses the signSGD algorithm,

which only uses the element-wise sign of the gradient—rather than the gradient itself—for the update step.

In particular, it is established in [24] that signSGD with an element-wise majority vote on the signs of

the local gradients as a screening/aggregation rule is a Byzantine-resilient learning method. Finally, [25]

proposes and analyzes a variant of distributed SGD that requires only one pass over the entire training

data. Unlike other works, however, resilience in this work is accomplished through explicit labeling of

nodes as Byzantine, which are then excluded from all future computations at the server.

We next summarize key aspects of some of the Byzantine-resilient distributed learning algorithms in

Table II in terms of the number of nodes M , the number of Byzantine nodes b, and the number of

independent and identically distributed (i.i.d.) samples per node N . The convergence rates in the table

correspond to the gap between the learned model after t iterations and the minimizer of the statistical risk

(cf. (2)) in the limit of large N . The parameter c denotes a constant that may change from one algorithm

to the other, the O(·) scaling hides dependence on problem parameters (including dimension d in the top

part of the table), N/A signifies an algorithm lacks a particular result, and — means guarantees for an

algorithm are not directly comparable to other algorithms. The last column in the top part of the table
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TABLE II

SUMMARY OF SOME RECENT RESULTS CONCERNING BYZANTINE-RESILIENT DISTRIBUTED MACHINE LEARNING

Algorithm Convergence Rate Statistical Learning Rate Condition on (M, b)

Coordinate-wise Median (CM) [15] O
(
ct
)

O
(

b

M
√
N

+ 1√
MN

+ 1
N

)
M ≥ 2b+ 1

Coordinate-wise Trimmed Mean (CTM) [15] O
(
ct
)

O
(

b

M
√
N

+ 1√
MN

)
M ≥ 2b+ 1

GeoMed [16] O
(
ct
)

O
( √

b√
MN

)
M ≥ 2b+ 1

Krum [17] N/A N/A M ≥ 2b+ 3

Multi-Krum [17] N/A N/A M ≥ 2b+m+ 2

Bulyan [18] N/A N/A M ≥ 4b+ 3

Zeno/Zeno++ [20], [21] O
(
ct
)
+O (1) N/A M ≥ b+ 1

RSA [23] O
(
1
t

)
+O (1) N/A M ≥ b+ 1

signSGD [24] — N/A M ≥ 2b+ 1

Algorithm CM, CTM, Zeno/Zeno++ GeoMed Krum, Multi-Krum Bulyan

Screening Complexity O(Md) O
(
Md+ bd log3( 1

γ
)
)?

O(M2d) O(M2d+Md)

? Screening computational complexity for GeoMed is for computing (1 + γ)-approximate geometric median [16].

lists conditions on M and b necessary for well-posedness of different algorithms. The bottom part of the

table lists per-iteration computational complexity of the screening procedure for algorithms that involve

an explicit screening step at the server. While the convergence/learning rates in the table are for strongly

convex and smooth loss functions, some of the works require further assumptions and/or also provide

results under a relaxed set of assumptions on the loss function and training data. We refer the reader to

the referenced works for further details.
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Fig. 4. An illustration of the effects of data
falsified by Byzantine nodes on screening methods.

Screening and aggregation in two dimensions: We il-

lustrate the robustness of different screening/aggregation

methods against Byzantine attacks through a simple two-

dimensional example. Consider a total of seven two-

dimensional points (g1, g2), out of which six represent

correct data (black discs in Figure 4) and one of which has

been falsified by a Byzantine node (red disc in Figure 4).

It can be seen from Figure 4, which is displayed with non-

uniform g1- and g2-axes to capture the effect of the Byzantine node, that the ordinary average operation

is highly susceptible to the falsified data point. On the other hand, screening and aggregation rules

such as coordinate-wise median, coordinate-wise trimmed mean, Krum and Bulyan (using Krum in

Figure 4) all produce final results that stay close to the true average of the faultless data points.
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Numerical Experiments: It can be seen from Table II that (coordinate-wise) median, (coordinate-

wise) trimmed mean, and GeoMed have some of the best theoretical guarantees for strongly convex and

smooth loss functions in terms of convergence and learning rates. We now numerically compare the

performance of most of the algorithms listed in Table II on nonconvex loss functions. Our comparison

excludes GeoMed, since it lacks an algorithm for computing the exact geometric median of a set of high-

dimensional gradients, as well as signSGD and RSA, since they differ from the rest of the algorithms in

terms of their approach to Byzantine resilience.

The nonconvex learning task in the experiments corresponds to classification of the ten classes in

CIFAR-10 dataset using a convolutional neural network with three convolution layers followed by two

fully connected layers. Each of the three convolution layers are followed by ReLU activation and max

pooling, while the output layer uses softmax activation. The distributed setup corresponds to one server

and M = 20 nodes, with the 50, 000 sample training set uniformly at random distributed across the

system (i.e., each node has N = 2, 500 training samples). We run two rounds of experiments for each

algorithm, where each round is repeated 10 times—with each trial corresponding to 20,000 algorithmic

iterations—and the results on the CIFAR-10 test set are averaged over these 10 trials. In the first round,

none of the nodes are taken to be Byzantine nodes. In the second round, four nodes are randomly selected

as Byzantine nodes, with each one sending a random vector to the server in each iteration whose elements

uniformly take values in the range (0, 10−5) for odd-numbered iterations and (0, 20) for even-numbered

iterations. We limit ourselves to four Byzantine nodes in order to provide a fairer comparison between

different algorithms, since five Byzantine nodes exceeds the theoretical limit of some algorithms (e.g.,

Bulyan). In both rounds of experiments, the algorithms operate under the assumption of b = 4. We

conclude our discussion of the experimental setup by noting that the optimal Byzantine attack strategy

that adversely affects all distributed learning algorithms in a uniform manner remains an open problem.

Nonetheless, the attack strategy being employed in our experiments has been carefully designed in light

of the discussions in prior works (see, e.g., [12]); in particular, it appears to be the uniformly most potent

strategy for the distributed learning algorithms under consideration in this article.

The results of the experiments in terms of average classification accuracy are shown in Figure 5, which

highlight some trade-offs that should help the practitioners select algorithms that best fit their needs. We

first note from Table II that the computational complexity of screening steps in Krum and Bulyan scales

quadratically with the number of nodes M , whereas it scales only linearly with M in median, trimmed

mean, and Zeno/Zeno++. Next, it can be seen from Figure 5 that all screening-based methods fall short

of distributed SGD’s performance in the faultless setting. This is in line with the conventional wisdom
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Fig. 5. Comparison of different distributed learning methods (with median and trimmed mean being coordinate wise) based on
stochastic gradient descent. The left panel corresponds to the faultless setting, while the right panel corresponds to the case of
four Byzantine nodes in the system. In both cases, the parameter b is set equal to 4 in all Byzantine-resilient algorithms. We
have also overlayed plots of two decentralized machine learning methods, namely, BRIDGE and DGD, on top of the ones for
distributed learning methods; these two methods are discussed later in the article (see “Decentralized Machine Learning”).

that robustness often comes at the expense of correctness, with median and Krum paying the highest

price in terms of correctness, while Bulyan, trimmed mean, and Zeno paying the least (and somewhat

insignificant) price. In the presence of Byzantine nodes, on the other hand, the vanilla distributed SGD

completely falls apart. In contrast, while varying degrees of reduction in the performance of screening-

based methods are observed under Byzantine attacks, none of them breaks down to the level of distributed

SGD. Nonetheless, median, trimmed mean, and Krum (in this particular order) are affected the most in

terms of performance by the aggressive Byzantine attack strategy employed in our experiments. Bulyan

and Zeno, on the other hand, seem to be the most stable under Byzantine attacks. In addition, both these

methods offer a competitive tradeoff between correctness (in a faultless setting) and robustness (under

attack). However, it is worth pointing out that Zeno’s resilience comes at the expense of an oracle that

can provide it with some knowledge of the true gradient. Similarly, since Bulyan screens four times the

number of Byzantine nodes in each iteration, its resilience comes at the expense of a limited number of

Byzantine nodes that it can handle (cf. Table II).

II. ADVERSARY-RESILIENT DECENTRALIZED PROCESSING OF DATA

Distributed systems in general, and distributed master–worker architectures in particular, have become

the workhorse framework for non-centralized processing of data. The reasons for this range from relative

ease of implementation and subsequent scaling up or scaling down of the system through addition or
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removal of nodes to relative simplicity of synchronization and communication protocols. Despite these

and other related advantages, decentralized setups for inference and learning are increasingly being inves-

tigated in lieu of distributed setups for a multitude of reasons. Unlike the distributed setup, a decentralized

system lacks a central server that is connected to every node (see “Decentralized Setup” in Figure 1).

Instead, all nodes in a decentralized system maintain local copies of the decision variable/machine learning

model and reach (approximate) consensus on a common solution through periodic exchange of messages

over a network with a subset of other nodes, termed neighbors. Because of this reason, and unlike

distributed systems, there is no single point of failure in decentralized systems. In the same vein, whereas

the star communications topology in distributed master–worker architectures can create a communications

bottleneck at the central server (see “Distributed Setups” in Figure 1), the network/communications

topologies in decentralized systems can be carefully designed to avoid such bottlenecks. One of the

biggest reasons for the study of Byzantine-resilient inference and learning in decentralized systems,

however, is the emergence of inherently decentralized applications such as networks of self-driving cars

and robot swarms. Both centralized and distributed setups typically cannot be engineered in a cost-effective

manner in such applications, which are generally studied under the moniker of multiagent systems. This

necessitates the use of decentralized frameworks, often with ad-hoc network topologies, for statistical

inference and machine learning.

Since no single node in decentralized setups gets access to the entire set of local variables, ensuring

robustness against Byzantine failures is generally harder in decentralized systems. In particular, unlike

simple characterizations of the feasible and/or necessary relationships between the number of nodes M

and the number of Byzantine nodes b in Table I and Table II, the necessary and/or sufficient conditions

for Byzantine-resilient decentralized algorithms are stated in terms of topology of the underlying network

graph. In addition, while practical benefits of asynchronous update rules for and impact of time-varying

network topologies on decentralized processing of data have long been investigated by researchers, the

literature on Byzantine-resilient decentralized processing is relatively sparse in this regard. Because of

this reason, and due to space constraints, our discussion in this article is mostly limited to synchronous

algorithms on decentralized networks whose topology does not change with time (i.e., static graphs). We

begin by engaging in discussion of an algorithmic process, aptly termed consensus, that often forms the

basis of algorithms for decentralized inference and machine learning.

A. Decentralized Consensus

Many decentralized inference and learning algorithms require a subprocess that ensures (approximate)

agreement, i.e., consensus, among all nodes. In the context of Byzantine-resilient decentralized processing,
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therefore, it is instructive to understand the fundamentals of Byzantine-resilient consensus. Our discussion

in this regard will be limited to linear strategies for consensus, which form the basis for Byzantine-resilient

decision consensus, averaging consensus, convex consensus, etc. [26], [27].

Suppose each node j in the decentralized system has a local variable w0
j and it is desired to reach

consensus on the average of these variables at each node through in-network message passing, i.e.,

wj ≈ 1
M

M∑
i=1

w0
i for every node j. Consensus algorithms usually proceed by having each node iteratively

take a weighted average of their neighbors’ variables. Mathematically, therefore, a consensus algorithm is

associated with an M×M weight matrix whose (j, i)-th entry corresponds to the weight assigned by node

j to the variable it receives from node i. In the absence of Byzantine nodes, a well-known result says that

a doubly stochastic weight matrix whose smallest nonzero entry is lower bounded guarantees convergence

of all wj’s to the average 1
M

M∑
i=1

w0
i . Suppose, however, that node k in the system is Byzantine and it

transmits wk = w′ to its neighbors in each iteration. This simple “lazy” Byzantine strategy is enough

for all nodes to converge to w′. And if there were another Byzantine node k′ in the system that always

transmitted the same wk′ 6= w′, nodes in the system will not reach consensus at all.

The main idea behind ensuring robustness of (averaging) consensus to Byzantine nodes is to screen

potential outliers at each node before the weighting step in each iteration. Since averaging of finite-

dimensional vectors is equivalent to averaging of their individual respective (scalar) coordinates, much

of the discussion in Byzantine-resilient consensus has focused on scalar-valued problems. Some variant

of the trimmed mean, in which a node removes the largest b and the smallest b values received from

its neighbors (including itself), is in particular a common screening method used in scalar consensus.

Clearly, each node has to have enough neighbors (e.g., more than 2b for trimmed mean) for screening-

based consensus to be well defined. However, since the network must not become disconnected after

screening, the exact constraint on network topology for different algorithms tends to be more involved;

see [26], [27] for further discussion of different screening methods and the corresponding topology

constraints. Note that decentralized inference and learning algorithms utilizing similar screening ideas

for Byzantine resilience tend to have similar topology constraints.

In terms of the performance of Byzantine-resilient consensus, even the best screening/aggregation

method cannot guarantee removal of all falsified data. However, equipped with a reasonable strategy, a

Byzantine-resilient scalar consensus algorithm can guarantee two things in each iteration: (i) the retained

values are between the smallest and the largest scalars at all nonfaulty nodes; and (ii) the difference

between the largest and the smallest nonfaulty values decreases. Together, these two conditions can ensure

that the nonfaulty nodes converge to a common value. However, since a node can also retain falsified data
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and/or eliminate nonfaulty data, consensus to the true average is no longer possible. Instead, guarantees

can only be given to an approximate average such as a convex combination of initial values. This in

particular is what makes Byzantine-resilient decentralized inference and learning so challenging.

We conclude by noting that asynchronous variants of decentralized consensus in the presence of

Byzantine attacks have been investigated in [28], [29]. The asynchronicity in [29] comes through the

use of randomized gossip algorithms, but the focus in that work is primarily on detection of Byzan-

tine nodes. In contrast, [28] extends the synchronous (screening) framework and analysis of [26] to

asynchronous settings (and time-varying network topologies). A noteworthy implication of [28] is that

asynchronicity does not impose additional topology constraints required for resilience of decentralized

consensus algorithms. This is important since synchronous algorithms often incur additional latency;

indeed, a synchronous algorithm can only be as fast as the slowest connection/node in the system.

B. Decentralized Statistical Inference

Similar to the case of distributed inference, we limit ourselves in here to decentralized detection and

estimation. In both problems, decentralized consensus makes an integral part of the developed algorithms.

Decentralized Detection: Similar to distributed detection, a typical setup in decentralized detection

involves nodes in the system making observations under one of two (or more) hypotheses. Unlike

distributed detection, however, nodes must collaborate among themselves to reach consensus in favor of

one of the hypotheses. Vulnerability of the vanilla consensus framework to Byzantine nodes, therefore,

also makes decentralized detection highly susceptible to Byzantine attacks.

While several application scenarios call for Byzantine-resilient decentralized detection, it has received

less attention compared to its distributed counterpart. Some of the most relevant works in this regard

include [30]–[32], all of which focus on scalar-valued problems. In the spirit of Byzantine-resilient scalar

consensus, an adaptive threshold-based screening method is utilized in [30] to mitigate the impact of

Byzantine nodes on the final decision. Similarly, a robust variant of distributed alternating direction

method of multipliers (ADMM) is proposed in [31] that uses trimmed mean to eliminate 2b scalars at

each node in every iteration. But other than the trivial topology constraint imposed by the trimmed mean

(i.e., in-degree of nodes being greater than 2b), this work lacks guarantees. In contrast, [32] proposes and

analyzes a robust detection scheme that involves identification of Byzantine nodes and use of a weighted

average consensus algorithm. However, this work focuses on a particular variant of Byzantine attacks

and does not characterize topology constraints as a function of the number of Byzantine nodes.

Decentralized Estimation: Decentralized estimation, in which nodes use local observations and mes-

sages from neighbors to reach consensus on the estimate of an unknown parameter w ∈ Rd, is often
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also studied under the linear model. Similar to decentralized detection, Byzantine-resilient decentralized

estimation is a relatively recent topic of interest. Among relevant works, [33] focuses on a specialized

estimation problem in which node j need only estimate the j-th entry of w and there are three types

of nodes in the system: reliable nodes, which are special nodes having perfect knowledge of the entry

of w associated with them, ordinary (normal) nodes, and Byzantine nodes. Under this setup and the

assumption of a time-varying directed graph, [33] proposes and analyzes a trimmed mean-type (scalar-

valued) screening procedure for Byzantine resilience. The works [34], [35] study vector-valued dynamic

estimation under the noiseless observation model of yj [n] = w, n = 1, . . . , for nonfaulty nodes. While

the threat model in [34], [35] is a specialized variant of the Byzantine model, it allows the indices

of the nodes under attack to change from one time instance to the next one. Both [34], [35] use

similar consensus+innovations algorithms coupled with time-varying gains to achieve resilience. The

main difference in these works is that [35] can achieve linear convergence, as opposed to sublinear

convergence for [34], but it can only tolerate less than 30% of the nodes being under attack, in contrast

to 50% for [34]. Finally, [36] accomplishes Byzantine-resilient decentralized dynamic estimation under

the general linear model yj [n] = Hjw + ηj [n] by focusing on explicit detection of adversaries. We

conclude by noting that the review article [2] provides more detailed overview of [33], [34], [36].

C. Decentralized Machine Learning

Decentralized machine learning algorithms, which can be considered a combination of consensus and

distributed learning frameworks, approximately solve (2) by minimizing a global loss function on the

non-collocated data in a decentralized manner while reaching an agreement among all nodes, i.e.,

min
{w1,...,wM}

1

M

M∑
j=1

f(wj ,Zj) subject to wi = wj ∀i, j, (3)

where wj ∈ Rd denotes the model learned at node j in the system. We refer to (3) as the decentralized

ERM problem, which approximately solves the statistical risk minimization problem (2).

We focus here on synchronous gradient descent-based methods for solving (3). The classic decentralized

gradient descent (DGD) method [37], for instance, involves each node j exchanging its current local iterate

in every iteration t with all nodes in its neighborhood Nj and then updating the local iterate using a

consensus-type weighted averaging step and a local gradient descent step, i.e.,

wt+1
j = αjjw

t
j +

∑
i∈Nj

αjiw
t
i︸ ︷︷ ︸

consensus

−ρ(t)gj(wt
j)︸ ︷︷ ︸

local gradient descent

, (4)
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where {αji} is the collection of averaging weights, ρ(t) denotes the step size, and gj(w) := ∇wf(w,Zj)

denotes the local gradient. Similar to the case of “Decentralized Consensus,” however, a simple lazy

Byzantine strategy at one or more nodes will lead to breakdown of DGD-based learning methods.

Scalar-valued Problems: Robustification of decentralized ERM-based learning in the presence of

Byzantine attacks requires resilient variants of DGD. The works in [4], [38] focus on this for scalar-

valued (i.e., d = 1) decentralized optimization. Similar to distributed learning and decentralized consensus,

resilience in these methods is also achieved through the use of a screening-based aggregation procedure

within the consensus step in (4). The works [4], [38] in particular focus on trimmed-mean screening:

after node j receives wi ∈ R from its neighbors, it removes the largest b and the smallest b wi’s and

takes average of the remaining scalars for consensus. This leads to the following update rule:

wt+1
j =

1

|N t
j∗ |

∑
i∈N t

j∗

wt
i − ρ(t)gj(wt

j), (5)

where N t
j∗ is the set of nodes (possibly including node j itself) that survive the screening at node j. This

update can be shown to be Byzantine resilient in the sense that the wt
j’s converge to the minimizer of some

convex combination of local losses f(w,Zj). We also have a result from [4] that the minimum of the

decentralized ERM in (3), even when restricted to the set of nonfaulty nodes, cannot be achieved in the

presence of Byzantine nodes. Despite this negative result, it can be shown that any convex combination of

local losses will converge in probability to the global statistical risk in the case of i.i.d. training samples.

This can then be leveraged to establish the robustness of (5) for scalar-valued decentralized learning [39].

Vector-valued Problems: The algorithms in [4], [38] cannot be directly utilized in vector-valued

problems (i.e., w ∈ Rd for d > 1). On the one hand, unless a problem decouples over different coordinates

of the optimization variable w, minimizing the objective function along one coordinate independent of

the other coordinates does not yield the right solution. On the other hand, since the trimmed-mean

procedure of [4], [38] requires sorting of values received from one’s neighbors, it cannot be directly

applied to members of an unordered space like Rd. This limitation of [4], [38] is overcome in [39],

which proposes an algorithm termed Byzantine-resilient decentralized coordinate descent (ByRDiE) for

vector-valued decentralized learning in the presence of Byzantine nodes. ByRDiE, fundamentally being

a coordinate descent method, cyclically updates one coordinate at a time in a decentralized manner. And

since each subproblem in coordinate descent becomes a scalar-valued problem, ByRDiE uses trimmed-

mean screening in each inner (coordinate-wise) iteration for Byzantine resilience. The final update rule

in each coordinate-wise iteration of ByRDiE takes a form similar to (5), except that the gradient term

also depends on other coordinates of w. For strictly convex and smooth loss functions, [39] guarantees
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(algorithmic and statistical) convergence of the iterates of ByRDiE to the statistical minimizer, with the

algorithmic convergence rate being sublinear and the statistical learning rate being O
(
a/
√
MN

)
; here,

N again denotes the number of i.i.d. training samples per node, while the parameter a differs from

one problem setup (and Byzantine attack model) to another and satisfies 1 ≤ a ≤
√
M . Despite these

guarantees, which establish that ByRDiE can result in robust and (sample-wise) fast statistical learning

in decentralized setups that exceeds the local learning rate of O
(
1/
√
N
)

[39], the one-coordinate-at-a-

time update of ByRDiE can be inefficient for high-dimensional (i.e., d� 1) problems. Indeed, since the

coordinate-wise gradient update step depends on the updates of other coordinates, the iterates in ByRDiE

cannot be updated in a coordinate-wise parallel fashion, leading to high network coordination and local

computation overheads in decentralized learning.

To curtail the high overheads of ByRDiE, [40] presents another algorithm—termed Byzantine-resilient

decentralized gradient descent (BRIDGE)—that is based on gradient descent and coordinate-wise trimmed

mean. Similar to DGD, each node j in BRIDGE also exchanges its entire current iterate wt
j in every

iteration t with all nodes in its neighborhood Nj . The update step in BRIDGE, however, involves

coordinate-wise screening/aggregation of wt
j’s using trimmed mean with parameter 2b, which is followed

by a local gradient descent step. Mathematically, the (parallel) update of the k-th coordinate is given by

∀k ∈ {1, . . . , d} (in parallel), wt+1
j (k) =

1

|N t,k
j∗ |

∑
i∈N t,k

j∗

wt
i(k)− ρ(t)gkj (wt

j), (6)

where N t,k
j∗ is the set of nodes whose k-th coordinates survive the screening at node j and gkj (w) denotes

the k-th coordinate of the local gradient gj(w). In the case of strongly convex and smooth loss functions,

theoretical guarantees for BRIDGE match those for ByRDiE.

Topology Constraints: We noted earlier (see “Decentralized Consensus”) that Byzantine resilience

in decentralized setups depends on network topology. We now describe two related topology constraints

for trimmed mean-based decentralized learning. The constraint in [4] requires that, after removing all b

Byzantine nodes and any combination of remaining b (incoming) edges from each node, there is always a

group of nodes—termed source component—of cardinality at least (b+1) that has a directed path to every

other node. In words, this constraint means every nonfaulty node, even after trimmed-mean screening, can

always receive information—directly or indirectly—from the source component. The topology constraints

for ByRDiE and BRIDGE are also based on this condition. The constraint in [38], on the other hand,

is based on the idea that any two arbitrary partitions of the network must result in one of the partitions

having at least one node with (2b + 1) neighbors outside the partition. This, in turn, guarantees that b

Byzantine nodes cannot isolate any subset of nonfaulty nodes during trimmed-mean screening.
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Beyond Trimmed-mean Screening: Unlike distributed learning, where several screening methods and

aggregation rules have been proposed and analyzed for Byzantine resilience (Table II), utilization of

screening methods in decentralized learning has been limited to (coordinate-wise) trimmed mean. The

main reason for this is the need for iterate consensus in decentralized learning, which makes analysis of

other screening/aggregation methods challenging. (It is also worth noting that our focus here is on iterate

screening, as opposed to gradient screening in distributed learning.) In practice, it is possible to merge

the ideas behind BRIDGE and screening methods such as coordinate-wise median, Krum, and Bulyan to

develop other Byzantine-resilient decentralized learning methods. This is indeed the approach we have

taken in the numerical experiments discussed in the following. Consensus, convergence analysis, and

statistical learning rates of such methods, however, remain an open problem.

Numerical Experiments: We first compare the performance of DGD, ByRDiE, BRIDGE and three

variants of BRIDGE that come about from incorporation of the screening principles of (coordinate-wise)

median, Krum, and Bulyan (with Krum) within the BRIDGE framework. The computational inefficiency

of ByRDiE for high-dimensional datasets and machine learning models necessitates an experimental

setup, both in terms of the dataset and the learning task, that differs from the one utilized as part of our

discussion on Byzantine-resilient distributed machine learning. Specifically, note that each (colored) image

in the CIFAR-10 dataset is 3, 072-dimensional and the corresponding convolutional neural network used

earlier in our discussion for this dataset gives rise to a model with d = 122, 410. In contrast, we resort

to a computationally tractable experimental setup in here that corresponds to multiclass classification of

MNSIT dataset (784-dimensional data samples) using a linear one-layer neural network (i.e., d = 7, 840).

In addition to being computationally manageable for ByRDiE, this setup also results in a loss function

that satisfies the theoretical conditions for convergence of ByRDiE and BRIDGE.

The decentralized system in our experimental setup involves a total of M = 20 nodes in the network,

with a communications link (edge) between two nodes decided by a random coin flip. Once a random

topology is generated, we ensure each node has at least 4b + 1 nodes in its neighborhood (a condition

imposed due to Bulyan screening). The training data at each node corresponds to N = 2, 000 samples

randomly selected from the MNIST dataset. The performance of each method is reported in terms of

classification accuracy, averaged over (M − b) nodes and a total of 10 independent Monte Carlo trials, as

a function of the number of scalars broadcast per node. The final results, shown in Figure 6, correspond to

two sets of experiments: (i) the faultless setting in which none of the nodes actually behaves maliciously;

and (ii) the setting in which two of the 20 nodes are Byzantine, with each Byzantine node broadcasting

every coordinate of the iterate as a uniform random variable between −1 and 0. Note that this Byzantine
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Fig. 6. Performance comparison of different decentralized learning methods in both faultless (left panel) and Byzantine settings
(right panel). Byzantine-resilient algorithms in both settings operate under the assumption of b = 2. The algorithms entitled
Median, Krum, and Bulyan are effectively BRIDGE combined with the screening procedures advocated in distributed learning.

attack strategy is by no means the most potent in all decentralized settings. However, similar to the

attack strategy utilized in our earlier discussion on distributed learning, this particular strategy has been

selected after careful evaluation of the impact of different strategies proposed in works such as [12]–[14]

on our particular experimental setup. Finally, with the exception of DGD, all methods are initialized with

parameter b = 2 in both faultless and faulty scenarios.

It can be seen from Figure 6 that, other than ByRDiE and Krum-based screening, all methods perform

almost as well as DGD in the faultless case. In the presence of Byzantine nodes, however, DGD completely

falls apart, whereas the performances of all screening methods remain comparable to the faultless setting.

It is also worth comparing these results to those for Byzantine-resilient distributed learning (see Figure 5).

While (coordinate-wise) median and trimmed mean appear to be the worst performers in Figure 5, Krum-

based screening is the least effective in Figure 6. In both cases, however, Bulyan is quite effective, except

that it has stringent topology requirements.

We conclude by explicitly comparing the performance of DGD and BRIDGE in decentralized settings to

that of (Byzantine-resilient) learning methods in distributed settings. Since DGD and BRIDGE are scalable

to high-dimensional learning tasks, our experimental setup, dataset, data distribution, learning task, and

Byzantine attack strategy for this comparison are identical to the ones described earlier for Byzantine-

resilient distributed learning methods. In order to ensure the decentralized setup in the case of BRIDGE

satisfies the topology constraints corresponding to four Byzantine nodes in the system, we use 0.7 as

the probability of random connectivity between any two nodes. The final results for DGD and BRIDGE,
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which are overlayed on top of the ones for distributed learning methods in Figure 5, show that BRIDGE

offers competitive performance in both faultless and faulty systems. In fact, BRIDGE (and DGD) have

faster convergence rates than the distributed learning methods for this particular nonconvex problem,

decentralized setup, and Byzantine strategy. While this could be partly attributable to higher network

connectivity of 0.7 in the decentralized setting, a careful head-to-head comparison and understanding of

distributed and decentralized learning methods in both faultless and faulty settings is an open problem.

III. SOME OPEN RESEARCH PROBLEMS

Despite recent advances, Byzantine-resilient inference and learning remains an active area of research

with several open problems. Much of the focus in distributed inference has been on the somewhat

restrictive model in which Byzantine nodes do not collude. Collaborative Byzantine attacks, on the other

hand, can be much more potent than independent ones. A fundamental understanding of mechanisms for

safeguarding against such attacks remains a relatively open problem in distributed inference. Byzantine-

resilient distributed estimation under nonlinear models is another problem that has been relatively un-

explored. In the case of Byzantine-resilient distributed learning, existing works have only scratched the

surface. Convergence and/or learning rates of many of the proposed methods remain unknown (Table II).

In addition, while SGD is a workhorse of machine learning, approaches such as accelerated first-order

methods (e.g., accelerated gradient descent), first-order dual methods (e.g., ADMM), and second-order

methods (e.g., Newton’s method) do play important roles in machine learning. However, resilience of

distributed variants of such methods to Byzantine attacks has not been investigated in the literature.

The lack of a central server, the need for consensus, and an ad-hoc topology make it even more

challenging to develop and analyze Byzantine-resilient methods for decentralized inference and learning.

Much of the work in this regard is based on screening methods such as trimmed mean and median that

originated in the literature on Byzantine-resilient scalar-valued consensus. This has left open the question

of how other screening methods, such as the ones explored within distributed learning, might handle

Byzantine attacks—both in theory and in practice—in various decentralized problems. Unlike distributed

learning, any such efforts will also have to characterize the interplay between network topology and effec-

tiveness of the screening procedure. The fundamental tradeoffs between the robustness and the (faultless)

performance of Byzantine-resilient methods also remain largely unknown for decentralized setups. Finally,

existing works on decentralized learning only guarantee sublinear convergence for strictly/strongly convex

and smooth functions. Whether this can be improved by taking advantage of faster distributed optimization

frameworks or different screening methods also remains an open question.
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IV. CONCLUSIONS

In this article, we have presented an overview of latest advances in Byzantine-resilient inference

and learning. In the distributed master–worker setting, which is characterized by the presence of a

central server that computes the final solution, we discussed recent results concerning resilience of

distributed detection, estimation, and machine learning against Byzantine attacks. Within distributed

machine learning, we focused on Byzantine-resilient variants of distributed stochastic gradient descent,

whose performances were compared using numerical experiments. In the decentralized setting, which

typically requires consensus due to lack of a central server, we first discussed the principles behind

Byzantine-resilient consensus. This was followed by a discussion of latest results on decentralized

detection, estimation, and learning in the presence of Byzantine nodes. We also compared and contrasted

different Byzantine-resilient decentralized learning methods using numerical experiments, and discussed

similarities and differences between them and distributed learning methods. Byzantine-resilient inference

and learning has a number of research challenges that remain unaddressed, some of which are also briefly

discussed in the article.
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