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Abstract—This paper studies training-based sparse channel
estimation in massive MIMO-OFDM systems. In contrast to
prior works, the focus here is on the setup in which (training)
pilot tones are spread across multiple OFDM symbols. Within
this setup, two training models—termed distinct block diagonal
(DBD) model and repetitive block diagonal (RBD) model—are
investigated. The restricted isometry property, which leads to
sparse recovery guarantees, is proven for the DBD model. Fur-
ther, it is established that the RBD model, through exploitation
of its tensor structure, leads to computationally simpler sparse
recovery algorithms. Finally, numerical experiments are provided
that compare and contrast the channel estimation performance
under the two models as a function of the number of pilot tones
per OFDM symbol and the total number of OFDM symbols.

I. INTRODUCTION

Employing multiple antennas in communication systems
creates multiple parallel data streams and enhances system
reliability [1]. Massive MIMO systems offer many advantages
such as increased data throughput and link reliability that are
a result of adding extra antennas to MIMO systems [2]. In
such systems, coherent signal detection and low bit-error rates
rely on the channel state information available at the receiver.
This requires the channel to be periodically estimated at the
receiver [1], [3].

The large number of transmit (Tx) and receive (Rx) antennas
in massive MIMO systems gives rise to large number of chan-
nel parameters, which require considerable spectral resources
to estimate them. To reduce spectral resources used for channel
estimation, many works exploit the fact that wireless channels
associated with a number of scattering environments tend to
be highly sparse at high signal space dimension [2], [3]. In
this case, training-based channel estimation techniques, which
involve transmitting known data to the receiver, can exploit the
literature on sparse recovery for reduction in training spectral
resources [1], [3], [4].

In this work, we study sparse channel estimation of massive
MIMO-OFDM channels. Most prior works on sparse channel
estimation in MIMO-OFDM systems require the (training)
pilot subcarriers (tones) to be interleaved with data subcarriers
within one OFDM symbol [1], [3]. But practical systems tend
to spread pilot tones across multiple OFDM symbols [5].
While one might anticipate that spreading training resources
across frequency and time will result in the same channel
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estimation performance as using the same number of resources
in one OFDM symbol, no prior work has formally investigated
this problem to the best of our knowledge. Specifically, let
Nt denote the number of OFDM symbols and let Nf be
the number of OFDM pilot tones per OFDM symbol. Then
the total number of training resources is Ntr = NtNf and
the question we want to address is: Does the performance of
sparse channel estimation in massive MIMO-OFDM systems
depend on Ntr alone or is it also a function of Nt and Nf?

In order to address this question, we focus on two models
for training in massive MIMO-OFDM systems. In the first
model, termed the distinct block diagonal (DBD) model,
we assume independent training data are transmitted over
different pilot tones. Under this model, we show that a
channel with no more than S non-zero parameters can be
reliably recovered from training observations as long as Ntr =
Ω(S log2 S log3 p), where p denotes the number of channel
parameters per Rx antenna. While this result suggests that
estimation of (massive) MIMO-OFDM channels is largely a
function of the total number of training spectral resources Ntr,
we rush to add that this is just a sufficient condition and it
comes with a few caveats that are discussed later in the paper.

The second training model discussed in this paper is termed
the repetitive block diagonal (RBD) model, in which same
training data are transmitted across different pilot tones. The
motivation for this model comes from the need to reduce com-
putational and storage complexity at the receiver in downlink
settings. Consider, for instance, the setup involving 64 Tx
antennas, 4 Rx antennas, and 320 delay taps per Tx-Rx pair.
This results in an 81,920-dimensional channel estimation prob-
lem at the receiver, requiring large computational and storage
resources. The RBD model, however, can be formulated as a
Tucker decomposition of the observations [6]. In this case, we
show the channel coefficient “tensor” can be recovered using
the sparse tensor recovery technique referred to as Kronecker-
OMP [7], which has similar performance as the classical
orthogonal matching pursuit (OMP) algorithm [8], but has
significantly less computational complexity and memory re-
quirements. While we do not derive theoretical guarantees for
the RBD model, we provide numerical experiments to compare
its performance to that of the DBD model.

In our numerical experiments, we also study the impact of
different values of Nt, Nf , and Ntr on the performance of
both DBD and RBD models. We further investigate the use



of overcomplete DFT bases, instead of the canonical bases,
to model the angles of arrival (AoA) and angles of departure
(AoD) in MIMO channels. Our results show that this leads to
enhanced channel estimation. This suggests that data-driven
bases can be learned using methods such as dictionary learning
to achieve improved channel estimation performance [9].

Notational Convention: Underlined bold upper-case, bold
upper-case and lower-case letters are used to denote tensors,
matrices and vectors, respectively, while non-bold lower-case
letters denote scalars. Also, ‖v‖2 and ‖X‖∞ denote the `2
norm of v and max norm of X, respectively, while X> and
XH denote the transpose and Hermitian of X. Moreover, Ip
denotes the identity matrix of size p×p and [p] , {1, . . . , p}.

II. PROBLEM FORMULATION

Consider a massive MIMO-OFDM system communicating
over a broadband multipath channel G. Let NT and NR denote
the number of Tx and Rx antennas, respectively, that are
half-wavelength spaced linear arrays. Moreover, given channel
bandwidth W and symbol duration T , denote N0 = WT as
the temporal signal space dimension, i.e, the number of OFDM
subcarriers. Assuming W � 1/τmax, where τmax denotes the
maximum delay spread of the channel, the frequency response
of channel G can be expressed as1

G(f) =

Np∑
n=1

βnaR(θR,n)aH
T (θT,n)e−j2πτnf , (1)

where Np is the number of physical paths and aR(θR,n)
and aT (θT,n) are the receive and transmit steering vectors,
respectively. Here, βn, θR,n, θT,n, and τn denote the complex
path gain, AoA, AoD, and delay associated with the n-th
path, respectively. The physical channel model (1) involves a
large number of parameters. This motivates a virtual channel
representation G of G that can compactly and linearly model
interactions between the Tx and Rx antennas. This involves
a discretized approximation of G by sampling the angle-
delay space at Nyquist rate to obtain a 3rd-order tensor
G ∈ RNR×NT×N0 that can be expressed via the Tucker
decomposition [10] as

G = H×1 AR ×2 AT ×3 AF , (2)

where H ∈ CNR×NT×L denotes the virtual channel coef-
ficient tensor with L , dWτmaxe + 1, AR ∈ CNR×NR ,
AT ∈ CNT×NT , and AF ∈ CN0×L are the canonical DFT
bases associated with AoA, AoD, and delay spread that are
used to map H to G [6]. In particular, each element of H
can be expressed in terms of the physical propagation path
parameters as

H(i, k, l) =

Np∑
n=1

βnfNR
(
i

NR
− θR,n)

f∗NT
(
k

NT
− θT,n) sinc(l −Wτn), (3)

1We do not consider the Doppler spread in the scope of this work.

where fNR
(θR) and fNT

(θT ) denote the Tx and Rx smoothing
kernels defined as fN (θ) , 1

N

∑N−1
i=1 e−j2πiθ, and sinc(x) ,

sin(πx)/πx.

In wideband scenarios, majority of the entries of H tend
to be below the noise floor. Our goal is to estimate the re-
sulting “sparse” (or approximately sparse) channel coefficient
tensor H using pilot training sequences transmitted over pilot
subcarriers spread across Nt OFDM symbols (we assume
that the channel stays constant over Nt OFDM symbols). We
specifically focus on the setting in which the same set of Nf
(out of N0) subcarriers per OFDM symbol are reserved for
training purposes, resulting in a total of Ntr = NtNf pilot
tones. Let Nf denote the indices of the pilot tones per OFDM
symbol and F ∈ RNf×N0 denote the subcarrier selection
matrix that is comprised of rows of IN0

corresponding to Nf .
Then, each slice of training data Y ∈ CNR×Nt×Nf observed
at the Rx antennas after Nt symbols can be expressed as

Y(:, :, i) = H×1 AR ×2 XiAT ×3 fiAF + W(:, :, i), (4)

where i ∈ [Nf ], fi denotes the i-th row of F, and W ∈
CNR×Nt×Nf is the additive noise tensor. Here, Xi = X0

iB
denotes the pilot sequence transmitted over the i-th subcarrier
in which X0

i = {±1}Nt×Nt is a square orthogonal matrix and
B ∈ CNt×NT is a beamforming matrix that has unit-modulus
entries with random phases. This ensures the matrix XiAT

will have similar norm columns.

We refer to the training model described by (4) as the
distinct block diagonal (DBD) model. This model can be
simplified further by assuming that Xi , X for all i ∈ [Nf ],
which reduces (4) to

Y = H×1 AR ×2 XAT ×3 FAF + W. (5)

Using properties of the Tucker decomposition [10], we can
rewrite (5) as

vec(Y) = (FAF ⊗XAT ⊗AR) vec(H) + vec(W), (6)

where ⊗ denotes the matrix Kronecker product and vec(Y)
denotes the vectorized version of Y. We refer to this training
model as the repetitive block diagonal (RBD) model.

Our focus in this paper is addressing the question: Can we
guarantee recovery of sparse H under the DBD and RBD
models? We first address this question theoretically for the
DBD model in the next section. Afterwards, we focus on the
numerical aspects of this question for both DBD and RBD
models in Section IV. In particular, due to the fact that (5)
follows the Tucker decomposition, the RBD model allows
recovery of H using tensor recovery techniques. Specifically,
Kronecker-OMP is a method introduced in [7] that does
not require explicit computation of the Kronecker-structured
measurement matrix (FAF ⊗XAT ⊗AR) in (6), thus facili-
tating recovering of H using less computation complexity and
memory requirements compared to regular OMP.



III. SPARSE CHANNEL ESTIMATION UNDER THE DBD
MODEL

Let us consider the linear observation model y = Ah +
vec(W) in which h is S-sparse (i.e., has no more than S
non-zero entries). We first describe a property that is essential
for recovering h from y.

Proposition 1. Let A ∈ Cnk×p be a matrix with unit-norm
columns. To ensure reliable recovery of an S-sparse h ∈ Cp
from y, A has to satisfy the restricted isometry property (RIP)
of order S, i.e., A ∈ RIP(S, δS) with δS ∈ (0, 1) if for all
S-sparse h,

(1− δS)‖h‖22 ≤ ‖Ah‖22 ≤ (1 + δS)‖h‖22. (7)

Notice that A ∈ RIP(S, δS) if we have

max
T ⊂[p],|T |≤S

∥∥AH
TAT − I|T |

∥∥
2
≤ δS , (8)

where AT denotes the matrix consisting of columns of A with
indices T and I|T | denotes the identity matrix of size |T |×|T |.
Using the non-negative function ‖.‖T ,S : Cp×p → [0,∞) that
is defined as ‖P‖T ,S , maxT ⊂[p],|T |≤S ‖PT ×T ‖2, where
PT ×T is a submatrix of P constructed by collecting entries
of P with indices in the set T × T , (8) can be restated as∥∥AHA− Ip

∥∥
T ,S ≤ δS .

We now provide a theorem that shows that a special class of
structured matrices satisfies the RIP under certain conditions.
The ensuing discussion then relates this class of matrices to
the observations arising within the DBD model.

Theorem 1. Let U ∈ Cp×p be a unitary matrix. Define
X , {xi,i′}, where i ∈ [mk], i′ ∈ [k′], and k′ , p/m is an
integer factor of p, to be a generating sequence whose elements
are independent realizations of Rademacher random variables
taking values ±1 with probability 1/2. Let R ∈ Rmk×p be a
block diagonal row-mixing matrix with mk ≤ p, defined as

R ,


R1 0 . . . 0
0 R1 . . . 0
...

...
. . .

...
0 0 . . . Rm

 , (9)

where

Ri ,

x(i−1)k+1,1 . . . x(i−1)k+1,k′

...
. . .

...
xik,1 . . . xik,k′

 . (10)

Next, define Φ , RU. Further, given a subset Ω of cardinality
|Ω| = n chosen uniformly at random without replacement
from [m], define Ω′ of cardinality |Ω′| = nk with elements
Ω′ = {(i− 1)k + j, i ∈ Ω, j ∈ [k]}. Also, let A ∈ Cnk×p
be the result of sampling nk rows of Φ with indices in Ω′

and normalizing the resulting columns by
√
m/(kn). Finally,

define µU ,
√
pmaxi,j |uij | as the coherence of U. Then,

for each integer p, S > 2, and for any z > 1 and any
δS ∈ (0, 1), there exist positive constants c1 and c2 such that
if nk ≥ c1zµ

2
US log2 S log3 p, then A satisfies RIP(S, δS)

with probability higher than

1− 20 max
{

exp
(
− c2δ2Sz

)
, p−1

}
. (11)

Similar to [11], we prove this theorem by first assuming that
the block sampling variables in Ω follow Bernoulli distribu-
tion, and then translate the results for uniform distribution.
To this end, let ξ = {ξi}mi=1 be independent Bernoulli
random variables taking value 1 with probability n/m and
let Ω , {i : ξi = 1}. Also, define η = {ηj}mkj=1 = ξ⊗ 1k and
Ω′ = {j : ηj = 1}. We then have the following lemmas. In
all lemmas, it is assumed that A is a structurally-subsampled
unitary matrix, as defined in Theorem 1, generated from Φ
according to the Bernoulli sampling model.

Lemma 1. We have E
[
AHA

]
= Ip.

Proof: The proof follows from steps similar to those
in [12, Lemma 3.10] after some algebraic manipulations.

Lemma 2. For any integer p > 2 and any r ∈ [2, 2 log p], we
have

(E [‖A‖rmax])
1/r ≤

√
m

nk
(E [‖Φ‖rmax])

1/r ≤
√

16µ2
U log p

nk
.

Proof: The proof relies on the Khintchine inequality [13,
Lemma 4.1], and follows similar steps as in [12, Lemma 3.13].

Lemma 3. For any integer p > 2 and any ε ∈ (0, 1), we have
E
[∥∥AHA− Ip

∥∥
T ,S

]
≤ kε provided

nk ≥ c3ε−2µ2
US log2 S log3 p, (12)

for some positive constant c3.

Proof: We have

E
[∥∥AHA− Ip

∥∥
T ,S

] (a)

≤
k∑
l=1

E

[∥∥∥∥AH
l Al −

1

k
Ip

∥∥∥∥
T ,S

]
,

where Al denotes the matrix comprised of rows of A with
indices {(i− 1)k + l}mi=1 and (a) follows from Jensen’s in-
equality since ‖.‖T ,S is a norm [12]. We can show that

E
[∥∥AH

l Al − 1
k Ip
∥∥
T ,S

]
≤ ε using similar steps as in [12,

Lemma 3.14] that takes advantage of the Rudelson-Vershynin
inequality [14, Lemma 3.8].

Proof of Theorem 1: A result from [15, Section 2.3] states
that if subsampled matrices from a certain class satisfy RIP
with probability exceeding 1 − ζ for the Bernoulli sampling
model, then they also satisfy RIP with probability exceeding
1−2ζ for the uniformly-at-random sampling model. It can be
shown that this result holds for the case of our block Bernoulli
and uniformly-at-random sampling models as well. Hence, it
is sufficient to show that A satisfies RIP(δS , S) for the block
Bernoulli sampling model. We next define

Yi ,
m

nk
ξiΦ

H
i Φi −

1

m
Ip, Ỹi ,

m

nk

(
ξiΦ

H
i Φi − ξ′iΦ′i

H
Φ′i

)
,

for i ∈ [m]. Here, Φi denotes the matrix comprised of rows of



Φ with indices {(i− 1)k + l}kl=1, ξ′i and Φ′i are independent
copies of ξi and Φi, and hence,

∑m
i=1 Ỹi is a symmetric

version of
∑m
i=1 Yi. Defining Ỹ ,

∥∥∑m
i=1 Ỹi

∥∥
T ,S and

Y , ‖
∑m
i=1 Yi‖T ,S , from [13], we have for all u > 0:

E
[
Ỹ
]
≤ 2E [Y] ,P [Y > 2E [Y] + u] ≤ 2P

[
Ỹ > u

]
. (13)

Hence, from Lemma 3, E
[
Ỹ
]
≤ 2kε. We can use

Lemma 2 and Markov’s inequality to show that with prob-
ability exceeding 1 − 2p−1, maxi

∥∥Ỹi

∥∥
T ,S ≤ 2SB1,

where B1 , 16eµ2
U log p
n . Conditioned on the event F ,{

maxi
∥∥Ỹi

∥∥
T ,S ≤ 2SB1

}
, using Lemma 3 and the Ledoux-

Talagrand inequality [14, Lemma 3.10], if (12) is satisfied,
then for any integer r ≥ q, any t > 0, some absolute constant
c4 > 0, and any ε ∈ (0, 1/k):

P
[
Ỹ ≥ 16qkε+ 4rSB1 + t|F

]
<
cr4
qr

+ 2 exp

(
−t2

1024qk2ε2

)
.

Next, choose q = dec4e, t = 32
√
qζkε and r = d t

2SB1
e for

some ζ > 1, and define c1 , max
{
e
√
q, c3

}
. Given P(F c) ≤

2p−1, if nk ≥ c1ε−2µ2
US log2 S log3 p, then r ≥ q and

P
[
Ỹ ≥ (16q + 96

√
qζ)kε

]
< exp

(
−
√
qζεkn

3µ2
US log p

)
+2 exp(−ζ2) + 2p−1. (14)

We can translate this result for Y using (13). If (12) is satisfied,
then E [Y] ≤ kε from Lemma 3. In this case, we get

P [Y ≥ (2 + 16q + 96
√
qζ)kε] < 2 exp

(
−
√
qζεkn

3µ2
US log p

)
+ 4 exp(−ζ2) + 4p−1

(b)
< 10 max

{
exp

(
−c2δ2Sz

)
, p−1

}
,

where (b) follows from defining c5 , 2 + 16q+ 96
√
q (which

implies c5ζkε > (2 + 16q + 96
√
qζ)kε), choosing ζ = δS

c5kε
,

and denoting c2 , 1/c5 and z , 1/(kε)2.

A. Discussion

Theorem 1 implies that if nk = Ω(µUS log2 S log3 p), A
will satisfy RIP(S, δS) with δS = Ω(kε) for an appropriately
small ε ∈ (0, 1) and an S-sparse h is recoverable from y with
high probability. Notice however that for large values of k,
δS > 1 and Theorem 1 will not hold. This restriction is a
limitation of our proof technique.

Connecting Theorem 1 to the MIMO-OFDM observation
model in (4), let yr ∈ CNtNf , r ∈ [NR], denote the
vectorized observation received at antenna r. Also, let the
indices of the Nf pilot tones be selected uniformly at random
from [N0]. In this case, yr can be divided into Nf blocks:
yr =

[
yr(1)> . . . yr(Nf )>

]>
. We can write

yi(r) = Xi(fiAF ⊗AT )hr + wi(r), i ∈ [Nf ], (15)

where hr ∈ CNTL is a vectorized version of channel co-
efficients H(r, k, l), where k ∈ [NT ] and l ∈ [L]. This
corresponds to the observation model in Theorem 1 where

Ri = Xi, U consists of stacking 1√
N0

(aF,i ⊗ AT ) on top
of each other, where aF,i denotes the ith row of AF for
i ∈ [N0], k = Nt, n = Nf , and p = NTL. This means that for
reliable recovery of hr, NtNf = Ω(µUS log2 S log3NTL)
has to be satisfied. In comparison to the result provided
in [11] for the case of Nt = 1 that requires scaling of
Nf = Ω(µUS log2 S log3NTL), it can be seen that the
total number of parameters in Xi, i.e. Ntr = NtNf , is the
determining factor for reliable recovery of hr in our setup.
However, note that the theorem does not hold for large values
of Nt since in that case δS > 1.

Our discussion so far has been focused on sufficient condi-
tions. In the next section, we show numerically that the sparse
channel estimation performance actually depends on individual
values of Nt and Nf as well as on Ntr.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of sparse chan-
nel estimation under the DBD and RBD models in terms of
the number of OFDM pilot subcarriers per symbol Nf and the
number of symbols Nt. The experimental setup corresponds
to NR = 4, NT = 64, N0 = 1024, Np = 200. We assume
W = 25.12MHz and τn’s are uniformly distributed over
[0, 12.7µsec], resulting in L = 320. Moreover, (θR,n, θT,n)’s
are uniformly distributed over [−1/2, 1/2]× [−1/2, 1/2] and
βn’s follow the normal distribution. We use Gaussian noise
with standard deviation σ = 0.2

√
2. We select the set

of pilot subcarriers Nf uniformly-at-random from [N0]. We
generate random Xi’s according to the description in Sec-
tion II. We generate channel realization coefficients according
to (3) and conduct experiments for Nt = [4, 8, 16, 32] and
Nf = [16, 32, 64, 128, 256]. We use OMP and Kronecker-
OMP with sparsity level S = 1000 to reconstruct H from
noisy observations Y for DBD and RBD models, respectively.
We evaluate the channel estimation performance via the nor-

malized reconstruction error, i.e.,
‖G−Ĝ‖2

F

‖G‖2F
. In all experiments,

we average the error over 100 Monte Carlo experiments for
random channel, additive noise, and training pilot realizations.

We conduct two sets of experiments. In both sets, the
reconstruction error is plotted against Nf for various Nt’s.
In the first set, we compare the performance of channel
estimation using the DBD and the RBD models. Figure 1(a)
shows the reconstruction performance for both models (solid
lines represent RBD model while dotted lines represent DBD
model). For both models, it can been seen that lower error lev-
els are achieved by increasing Nf for all Nt’s. We also achieve
better reconstruction when we choose a larger Nt. It can also
be seen that although the DBD model outperforms the RBD
model for smaller values of Nt and Nf , their performance
is similar for larger values, especially for Nf = 256. This
shows that given sufficient training pilot tones, both models
have a similar performance and one can use the RBD model
to take advantage of Kronecker-OMP to reduce storage costs
and required computational resources at the Rx. Figure 1(b)
shows the error for both training models as a function of the



(a) (b) (c)

Fig. 1: Normalized reconstruction error for DBD and RBD models as a function of (a) Nf and (b) Ntr. In (c), we plot the
normalized reconstruction error for complete (C) and overcomplete (OC) AoA and AoD bases (RBD model only).

total number of pilot tones, Ntr = NtNf . While it is clear that
the general trend is downward based on Ntr, it is observed
that Ntr is not the only determining factor and values of Nf
and Nt individually matter as well in determining the error.

In the second set of experiments, we compare the perfor-
mance of channel estimation using complete (C) and overcom-
plete (OC) bases under the RBD model. We use factor matrices
AR, XAT , and FAF to form the measurement matrix in
the complete case (solid lines in Figure 1(c)) and we use
overcomplete DFT matrices instead of AR and AT in the
overcomplete setup (dotted lines in figure 1(c)). It can be
observed in Figure 1(c) that the use of overcomplete DFT
bases results in a reduction in the reconstruction error. This
suggests that perhaps these matrices can be carefully designed
using dictionary learning techniques similar to those in [9],
[16] for enhanced reconstruction performance.

V. CONCLUSION

In this work, we studied the sparse channel estimation
problem for (massive) MIMO-OFDM systems. We introduced
the distinct block diagonal model for training data and ob-
tained theoretical guarantees for channel recovery based on
number of training pilot tones. Moreover, we studied the
repetitive block diagonal model for training data that results in
a Tucker decomposition for the observations. This formulation
allows recovery of channel coefficients using sparse tensor
recovery techniques that use less computational measures
and memory compared to traditional recovery techniques. We
further provided a comparison of the performance of the two
models via numerical experiments. While our theory states
that the total number of parameters determine the channel
estimation performance, our numerical experiments show that
the performance is also a function of the number of OFDM
symbols and pilot tones. Consequently, there is a lot more
that needs to be understood about the performance of these
models. Future work includes providing formal guarantees for
the repetitive block diagonal model using proof techniques
similar to those in [17]. Our perspectives also include the
use of dictionary learning techniques to improve the channel
estimation performance for more challenging scenarios.
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