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Abstract—This work addresses the problem of structured
dictionary learning for computing sparse representations of
tensor-structured data. It introduces a low-separation-rank dic-
tionary learning (LSR-DL) model that better captures the
structure of tensor data by generalizing the separable dic-
tionary learning model. A dictionary with p columns that is
generated from the LSR-DL model is shown to be locally
identifiable from noisy observations with recovery error at
most ρ given that the number of training samples scales with
(# of degrees of freedom in the dictionary)× p2ρ−2.

I. INTRODUCTION

Many data processing tasks such as feature extraction, data
compression, classification, signal denoising, image inpaint-
ing, and audio source separation make use of data-driven
sparse representations of data [1]–[3]. In several applications,
these tasks are performed on data samples that are naturally
structured as multiway arrays, also known as multidimensional
arrays or tensors. Instances of multidimensional or tensor data
include videos, hyperspectral images, tomographic images,
and multiple-antenna wireless channels. Sparse representations
of these data can allow for significant savings in terms of
compression: rather than storing the full signal we can store a
sparse vector or coefficients. Traditional approaches to sparse
representations of tensor data ignore their multidimensional
structure, which results in sparsifying models with a large
number of parameters. These larger representation models
impact the scalability of applications on computation and/or
storage-limited platforms such as smartphones, drones, etc.

Our focus in this paper is on learning of compact models
that yield sparse representations of tensor data. To this end,
we study dictionary learning (DL), an effective and popular
data-driven technique for obtaining sparse representations of
data [1], [3], for tensor data. The goal in DL is to learn a
dictionary D such that every data sample can be approximated
by a linear combination of a few atoms (columns) of D.
While DL has been widely studied, traditional DL approaches
flatten tensor data and then employ methods designed for
vector data [3], [4]. Such simplistic approaches disregard
the multidimensional structure in tensor data and result in
dictionaries with a large number of parameters. One intuitively
expects, however, that dictionaries with smaller number of
free parameters that exploit the correlation and structure along
different tensor modes are likely to be more efficient with
regards to storage requirements, computational complexity,

Fig. 1: Dictionary atoms for representing RGB image
Barbara for separation rank (left-to-right) 1, 4, and 256.

and generalization performance, especially when training data
are noisy or scarce.

To reduce the number of parameters and better exploit the
correlation among different tensor modes, some recent DL
works have turned to tensor decompositions such as the Tucker
decomposition [5] and CANDECOMP/PARAFAC decompo-
sition (CPD) [6] for learning of structured dictionaries. The
idea in structured DL for tensor data is to restrict the class of
dictionaries to the one imposed by the tensor decomposition
under consideration. For example, structured DL based on the
Tucker decomposition of N -way tensor data corresponds to the
dictionary class in which any dictionary D ∈ Rm×p consists
of the Kronecker product [7] of N smaller subdictionaries
{Dn ∈ Rmn×pn}Nn=1 [8]–[13]. The resulting DL techniques
in this instance are interchangeably referred to in the literature
as separable DL or Kronecker-structured DL (KS-DL).

In terms of parameter counting, the advantages of KS-DL
for tensor data are straightforward: whereas an unstructured
dictionary requires learning and storing mp = ΠN

n=1mnpn
parameters, the KS-DL model consists of only

∑N
n=1mnpn

parameters. Nonetheless, while existing KS-DL methods enjoy
lower sample/computational complexity and better storage
efficiency over unstructured DL [13], the KS-DL model makes
a strong separability assumption among different modes of
tensor data, which is often too restrictive [14]. This results in
an unfavorable tradeoff between model compactness and rep-
resentation power. In this paper, we overcome this limitation
by proposing and studying a generalization of KS-DL that we
interchangeably refer to as learning a mixture of separable
dictionaries or low-separation-rank DL (LSR-DL).

The separation rank of a matrix A is defined as the
minimum number of KS matrices whose sum equals A [15],
[16]. The LSR-DL model interpolates between the under-
parameterized separable model (a special case of LSR-DL



model with separation rank 1) and the over-parameterized
unstructured model. Figure 1 provides an illustrative example
of the usefulness of LSR-DL, in which one learns a dictionary
with a small separation rank: while KS-DL learns dictionary
atoms that cannot reconstruct diagonal structures perfectly be-
cause of the abundance of horizontal/vertical structures within
them, LSR-DL also returns dictionary atoms with pronounced
diagonal structures as the separation rank increases.

In this work, we study whether the true LSR dictionary un-
derlying tensor data is identifiable by solving a factorization-
based LSR-DL problem in which the dictionary is explicitly
written as summation of KS matrices and the individual
mixture terms have bounded norm. Similar to conventional
DL problems, this LSR-DL problem is nonconvex with mul-
tiple global minima. Thus, we focus on local identifiability,
meaning that a local search algorithm initialized close enough
to the true dictionary can recover that dictionary. To this end,
we show that given a sufficient number of training samples,
and under certain assumptions on the generating model and the
constraint set, there exists a local minimum of the factorized
LSR-DL problem that is within a small neighborhood of the
true LSR dictionary generating the data.

A. Our Contributions

This paper studies the information-theoretic limits of the
LSR-DL problem, with the hope of informing the future design
of computationally efficient algorithms for LSR-DL. Our two
main contributions in this regard are as follows:
• We generalize the separable (KS) DL model to a mixture

of separable dictionaries, which we call an LSR-DL
model. This allows for better representation power than
the separable model while maintaining a smaller number
of parameters than standard DL.

• We show that in the LSR-DL problem, under cer-
tain condition on the problem parameters, L =
Ω
(
r(
∑N
n=1mnpn)p2ρ−2

)
samples are sufficient for iden-

tifying the true dictionary (underlying N th-order tensor
data of separation rank r) with distortion at most ρ.

B. Related Work

Tensor decompositions [17], [18] have emerged as one of
the main sets of tools that help avoid overparameterization of
tensor data models in a variety of areas. These include deep
learning, collaborative filtering, multilinear subspace learning,
source separation, topic modeling, and many other works (see
references from recent surveys [19], [20]).

There have been many works that provide theoretical
analysis for the sample complexity of the conventional DL
problem [21]–[24]. Among these, Gribonval et al. [23] focus
on the local identifiability of the true dictionary underlying
vectorized data using Frobenius norm as the distance metric.
Shakeri et al. [13] extended this analysis for the sample com-
plexity of the KS-DL problem for N th-order tensor data. That
analysis relies on expanding the objective function in terms of
subdictionaries and exploiting the coordinate-wise Lipschitz
continuity property of the objective function with respect to

each subdictionary. While this analysis ensures identifiability
of the subdictionaries, it requires the dictionary coefficient
vectors to follow the so-called separable sparsity model [12]
and does not extend to the LSR-DL problem. In contrast, we
provide sample complexity results for the factorization-based
LSR-DL problem. Further, our local identifiability result holds
for coefficient vectors following either the random sparsity
model or the separable sparsity model.

Finally, space constraints prevent us from providing exper-
imental results in this paper; we refer readers to the extended
version of this work [25] for a demonstration of the LSR-DL
model’s usefulness on real data.

II. BACKGROUND AND PROBLEM STATEMENT

A. Notation and Definitions

Underlined bold upper-case (A), bold upper-case (A), bold
lower-case (a), and regular lower-case letters denote tensors,
matrices, vectors, and scalars, respectively. The exception to
this convention is the j-th column of a matrix A which is de-
noted by Aj . For any integer p, we define [p] = {1, 2, · · · , p}.
For an m×p matrix A and an index set J ⊆ [p], we denote by
AJ the |J | × p matrix containing the columns of A indexed
by J . For vector v, ‖v‖0 and ‖v‖ are its `0 and `2 norms,
while ‖A‖2, ‖A‖F , and ‖A‖tr are the spectral, Frobenius,
and trace (nuclear) norms of matrix A, respectively. Further,
‖A‖1→2 = maxj ‖Aj‖2 is the max-column norm.

We denote by (An)Nn=1 an N -tuple (A1, · · · ,AN ), while
{An}Nn=1 represents the set {A1, · · · ,AN}. We often drop
the range indicators if they are clear from the context. The
Euclidean distance between two tuples of the same size is de-

fined as
∥∥(An)Nn=1 − (Bn)Nn=1

∥∥
F
,
√∑N

n=1 ||An −Bn||2F .
We denote the Kronecker product of two matrices by ⊗

and the mode-n product between a tensor and a matrix by
×n [17]. We use

⊗N
n=1 An = A1 ⊗ A2 ⊗ · · · ⊗ AN for

the Kronecker product of N matrices. For matrix D with
unit-norm columns, its cumulative coherence is defined as
µs , max|J |≤s maxj /∈J ‖DT

JDj‖1. We denote by Um×p the
Euclidean unit sphere: Um×p , {D ∈ Rm×p|‖D‖F = 1}. We
also denote the Euclidean sphere with radius α by αUm×p.
The oblique manifold in Rm×p is defined as the manifold of
matrices with unit-norm columns: Dm×p , {D ∈ Rm×p|∀j ∈
[p], DT

j Dj = 1}. The covering number of a set A with respect
to a norm ‖·‖∗, denoted by N∗(A, ε), is the minimum number
of balls of ∗-norm radius ε needed to cover A.

B. Dictionary Learning Setup

In conventional DL, we assume observations y ∈ Rm are
generated according to y = D0x0 + ε, where D0 ∈ Rm×p is
the underlying dictionary, x0 ∈ Rp is a randomly generated
sparse coefficient vector, and ε ∈ Rm is the underlying noise
vector. The goal in DL is to recover the underlying dictionary
given the noisy observations {yl}Ll=1. One approach is to solve
the empirical risk minimization problem

min
D∈C

FY(D) =
1

L

∑L

l=1
fyl(D) (1)



as a proxy for the (unknown) expected risk, where C ⊆
Rm×p is the dictionary class, typically selected to be
the oblique manifold in unstructured DL, and fy(D) =
infx∈Rp

1
2 ‖y −Dx‖22 + λ‖x‖1.

C. Dictionary Learning for Tensor Data

One approach to explicitly account for the tensor structure
of data in DL is to use the KS-DL model that is based on
Tucker decomposition of tensor data. In the KS-DL model,
we assume that observations Yl ∈ Rm1×···×mN are generated
according to

Yl = X0
l ×1 D

0
1 ×2 D

0
2 ×3 · · · ×N D0

N + E l, (2)

where D0
n ∈ Rmn×pn are generating subdictionaries, and

X0
l and E l are the coefficient and noise tensors, respectively.

Equivalently, generating model (2) can be stated for yl ,
vec(Yl) as:

yl =
(
D0
N ⊗D0

N−1 ⊗ · · · ⊗D0
1

)
x0
l + εl, (3)

where x0
l , vec(X0

l ) and εl , vec(E l). This is the same as
the unstructured model yl = D0x0 + εl with the additional
condition that the generating dictionary is a Kronecker product
of N subdictionaries. As a result, in the KS-DL problem, the
constraint set in (1) becomes C = KNm,p where KNm,p , {D ∈
Dm×p|D =

⊗N
n=1 Dn, Dn ∈ Rmn×pn} is the set of KS

matrices with unit-norm columns and m and p are vectors
containing mn’s and pn’s, respectively.

In summary, the structure in tensor data is exploited in the
KS-DL model by assuming that the dictionary is separable into
subdictionaries for each mode. However, as discussed in the
introduction, this separable model is rather restrictive. Instead,
we propose a less restrictive model by generalizing the KS-DL
model. We begin by defining the separation rank.

Definition 1. The separation rank RN
m,p(·) of a matrix

A ∈ RΠnmn×Πnpn is the minimum number r of N th-order

KS matrices Ak =
⊗N

n=1 A
k
n such that A =

r∑
k=1

Ak , where

Ak
n ∈ Rmn×pn .
Hence, the KS-DL model corresponds to separation rank

1. In contrast, the LSR-DL model is the one in which the
separation rank of the underlying dictionary is relatively small
so that 1 ≤ Rm,p(D0) � min{m, p}. This generalizes
the KS-DL model to a generating dictionary of the form
D0 =

∑r
k=1[Dk

N ]0 ⊗ [Dk
N−1]0 ⊗ · · · ⊗ [Dk

1 ]0, where r is the
separation rank of D0. Consequently, given KN,rm,p , {D ∈
Dm×p|RN

m,p(D) ≤ r}, the empirical rank-constrained LSR-
DL problem is

min
D∈KN,rm,p

FY(D). (4)

To prove identifiability of the true LSR dictionary, the analyt-
ical tools at our disposal require the constraint set in (4) to be
closed. However, the set KN,rm,p is not closed when N > 2 and
r > 1. In that case, we instead analyze (4) with a certain closed
subset of KN,rm,p (see the discussion in Section III). In our

study of LSR-DL (which includes KS-DL as a special case),
we use the following correspondence between KS matrices
and rank-1 tensors, proved in our earlier work [26], which
allows us to leverage techniques and results in the tensor
recovery literature to analyze the LSR-DL recovery problem
and develop tractable LSR-DL algorithms.

Lemma 1. Any N th-order KS matrix A = A1⊗A2⊗· · ·⊗AN

can be rearranged as a rank-1 tensor Aπ = aN ◦ · · ·◦a2 ◦a1.
It follows immediately from Lemma 1 that if D =∑r
k=1 D

k
1 ⊗ Dk

2 ⊗ · · · ⊗ Dk
N , then we can rearrange matrix

D into the tensor Dπ =
∑r
k=1 d

k
N ◦ dkN−1 ◦ · · · ◦ dk1 ,

where dn = vec(Dn). Therefore, we have the equivalence
RN

m,p(D) ≤ r ⇐⇒ rank(Dπ) ≤ r. This correspondence
highlights a challenge with the LSR-DL problem: finding the
rank of a tensor is NP-hard [27], [28] and thus so is finding the
separation rank of a matrix. This makes the rank-constrained
Problem (4) in its current form (and its variant for N > 2,
r > 1) intractable. To overcome this issue, we introduce a
tractable relaxation to the rank-constrained Problem (4) that
does not require explicit computation of the tensor rank. The
relaxation that we propose here is the factorization-based LSR-
DL model, in which the LSR dictionary is explicitly written
in terms of its subdictionaries. The resulting empirical risk
minimization problem is

min
{Dk

n}:
∑r
k=1

⊗N
n=1 Dk

n∈Dm×p

F fac
Y

(
{Dk

n}
)
, (5)

where F fac
Y ({Dk

n}) , 1
L

∑L
l=1 f

fac
yl

({Dk
n}) with

f fac
y ({Dk

n}) , infx∈Rp
∥∥∥y−(∑r

k=1

⊗N
n=1 D

k
n

)
x
∥∥∥2

+λ ‖x‖1
and the terms

⊗N
n=1 D

k
n are constrained as

‖
⊗N

n=1 D
k
n‖F ≤ c for some positive constant c when

N > 2 and r > 1.

D. Generating Model

Here, we describe the generating model that we consider
in this work. Let D0 ∈ KN,rm,p be the underlying dictionary.
Each training sample Y ∈ Rn1×n2×···×nN is independently
generated using a linear combination of s � p atoms of
dictionary D0 with added noise: y , vec(Y) = D0x0 + ε
where

∥∥x0
∥∥

0
≤ s. Specifically, s atoms of D0 are selected

uniformly at random, defining the support J ⊂ [p]. Then, we
draw a random sparse coefficient vector x0 ∈ Rp supported
on J . We state further assumptions on the distribution of x0

and ε that are similar to the ones in [23] and [13].

Assumption 1 (Coefficient Distribution). Consider a random
variable x ∈ R. Define s0 = sgn(x0). We assume: i)
E
{
x0
J [x0

J ]T |J
}

= E{x2} · Is, ii) E
{
s0
J [s0
J ]T |J

}
= Is,

iii) E
{
s0
J [x0

J ]T |J
}

= E{|x|} · Is, iv)
∥∥x0

∥∥
2
≤ Mx with

probability 1, v) min
j∈J
|x0
j | ≥ x with probability 1.

Assumption 2 (Noise Distribution). Consider a random vari-
able ε ∈ R. i) E

{
εεT |J

}
= E{ε2} · Im, ii) E

{
x0εT |J

}
=

E
{
s0εT |J

}
= 0, iii) ‖ε‖2 ≤Mε with probability 1.



Assumptions 1-iv and 2-iii imply the magnitude of
y is bounded: ‖y‖2 ≤ My . Next, we define parame-
ters Cmin , 24E{|x|}2

E{x2}
(∥∥D0

∥∥
2

+ 1
)2 s

p

∥∥[D0]TD0 − I
∥∥
F

,

Cmax , 2E{|x|}
7Mx

(
1− 2µs(D

0)
)
, and λ̄ , λ

E{|x|} for ease of
notation. We also make the following standard assumptions:

Assumption 3. Assume Cmin ≤ Cmax, λ ≤ x/4, s ≤
p

16(‖D0‖2+1)
2 , µs(D0) ≤ 1/4, and the noise is relatively small

in the sense that Mε

Mx
< 7

2 (Cmax − Cmin) λ̄.

In the rest of this paper, we study the problem of recov-
ering the true underlying LSR-DL dictionary by solving the
factorization-based LSR-DL Problem (5).

III. IDENTIFIABILITY RESULT

In this section, we derive the sample complexity required to
guarantee with high probability that the true dictionary D0 ∈
KN,rm,p is identifiable as a solution to the minimization problem
in (5). More specifically, we find the number of samples
required to guarantee that, for the generating model described
in the previous section, there is at least one local minimum
{[Dk

n]∗} of the factorization-based LSR-DL Problem (5) such
that

∑⊗
[Dk

n]∗ is close to the underlying dictionary D0. This
implies that given enough samples, any DL algorithm that
converges to a local minimum of this problem can recover
D0 up to a small error if it is initialized close enough to D0.

Our analysis of the sample complexity of Problem (5) is
based on connecting the local minima of Problem (5) to those
of Problem (4) and showing that local identifiability guarantees
for Problem (4) translate to those for Problem (5). Hence, we
first derive sufficient conditions on number of samples required
for local identifiability of Problem (4).

Theorem 1. Consider the DL Problem (1) with a compact
constraint set C ⊆ Dm×p and fix any u > 0. Suppose that
D0 ∈ C and that Assumptions 1–3 are satisfied. Assume
λ̄Cmin < ρ < λ̄Cmax and Mε

Mx
< 7

2 (λ̄Cmax − ρ). Define
positive constants c0 and ν such that N1→2(C, ε) =

(
c0
ε

)ν
.

Suppose the number of samples L satisfies

L

logL
≥ Cp2 (c0ν + u)

M4
y(

ρ
(
ρ− λ̄Cmin

)
E{x2}

)2 , (6)

where C is a positive constant, then, with probability no less
than 1− e−u, the objective function D ∈ C 7→ FY(D) has a
local minimizer D∗ such that

∥∥D∗ −D0
∥∥
F
≤ ρ.

The result in Theorem 1 holds for compact constraint sets.
To apply it to the LSR-DL problem, we need to study the
compactness of KN,rm,p. Since KN,rm,p is a bounded set, according
to the Heine-Borel Theorem [29], it is a compact subset of
Rm×p if and only if it is closed. This set can be written as the
intersection of the set LN,rm,p = {D ∈ Rm×p|RN

m,p(D) ≤ r}
and the oblique manifold D. To show KN,rm,p = LN,rm,p ∩ D
is closed, it suffices to show that LN,rm,p and D are closed.
However, we show in the extended version of this work [25]
that although the set of KS matrices LN,1m,p and the set L2,r

m,p

are closed, the set LN,rm,p is not closed in general for N ≥ 3

and r ≥ 2. To work around this issue, we consider cKN,rm,p ,{
D ∈ KN,rm,p|∀k ∈ [r],

∥∥⊗N
n=1 D

k
n

∥∥
F
≤ c

}
, a closed subset

of KN,rm,p. Note that KNm,p = cKN,1m,p and K2,r
m,p = cK2,r

m,p.
The sample complexity result in Theorem 1 depends on the

covering number of the set of interest. The following lemma
bounds the covering number of cKN,rm,p.

Lemma 2. For the covering number of the set cKN,rm,p with
respect to the max-column norm ‖ · ‖1→2, we have the bound
N1→2(cKN,rm,p, ε) ≤ (3rc/ε)r

∑N
n=1mnpn .

The proofs for Theorem 1 and Lemma 2 can be found in the
extended version of this work [25]. Before we present the local
identifiability result of factorization-based LSR-DL, we need
the following lemma that establishes a bound on the distance
of LSR matrices when their factor matrices are ε-close.

Lemma 3. For any two tuples (Ak
n) and (Bk

n) such that
Ak
n,B

k
n ∈ αUmn×pn for all n ∈ [N ] and k ∈ [r], if

the distance
∥∥(Ak

n) − (Bk
n)
∥∥
F
≤ ξ, then

∥∥∑r
k=1

⊗
Ak
n −∑r

k=1

⊗
Bk
n

∥∥
F
≤ αN

√
Nrξ.

The proof of Lemma 3 is also provided in [25].

Theorem 2 (Main Result). Consider the factorization-based
LSR-DL Problem (5). Suppose that the assumptions for Theo-
rem 1 are satisfied. Let the number of samples satisfy sample
complexity requirement (6) with ν = r

∑N
n=1mnpn. Then

with probability no less than 1 − e−u, the empirical risk
objective function F fac

Y

(
{Dk

n}
)

has a local minimum achieved
at {[Dk

n]∗} such that
∥∥∑⊗

[Dk
n]∗ −D0

∥∥
F
≤ ρ.

Proof. Let us first establish a connection between the local
minima of (5) and those of (4). It is easy to show that any
D ∈ cKN,rm,p can be written as

∑r
k=1

⊗
Dk
n for all k ∈ [r] and

n ∈ [N ] such that, without loss of generality, Dk
n ∈ αUm×p

where α = N
√
c. Define

Cfac ,
{

(Dk
n)
∣∣∑⊗

Dk
n ∈ cKN,rm,p,∀k, n : Dk

n ∈ αUm×p
}
.

Since D∗ ∈ cKN,rm,p, there is a ([Dk
n]∗) ∈ Cfac such that D∗ =∑⊗

[Dk
n]∗. According to Lemma 3, for any {Dk

n} ∈ Cfac

and any ξ′ > 0, if
∥∥(Dk

n) − ([Dk
n]∗)

∥∥
F
≤ ξ′, it follows that∥∥∑⊗

Dk
n −

∑⊗
[Dk

n]∗
∥∥
F
≤ αN

√
Nrξ′ = c

√
Nrξ′. Since

D∗ is a local minimizer of (4), there exists a positive ξ such
that for all D ∈ cKN,rm,p satisfying ‖D−D∗‖F ≤ ξ, we have
FY(D∗) ≤ FY(D). If we choose ξ′ small enough such that
c
√
Nrξ′ ≤ ξ, then for any (Dk

n) ∈ Cfac such that
∥∥(Dk

n) −
([Dk

n]∗)
∥∥
F
≤ ξ′, we have

∥∥∑⊗
Dk
n −D∗

∥∥
F
≤ ξ and this

means that F fac
Y

(
{Dk

n}
)
−F fac

Y

(
{[Dk

n]∗}
)

= FY(
∑⊗

Dk
n)−

FY(D∗) ≥ 0. Therefore, ([Dk
n]∗) is a local minimizer of

Problem (5).
We established that if there exists a local minimum D∗

of (4) close to D0, then there is a local minimum {[Dk
n]∗}

of (5) such that
∑⊗

[Dk
n]∗ is close to D0. Thus, local

identifiability guarantees for Problem (4) directly translate to
local identifiability guarantees for Problem (5). That is, if the
sample complexity requirement (6) is met, a local minimum
{[Dk

n]∗} of (5) is such that
∑⊗

[Dk
n]∗ is close to D0.



TABLE I: Comparison of known upper bounds on the sample
complexity of KS-DL, LSR-DL, and standard DL.

Best Known This Paper
KS (Separable Sparsity) Ω(mnp

3
nρ
−2
n ) [13] Ω

(
(
∑
nmnpn)p2ρ−2

)
KS (Random Sparsity) Ω

(
(
∑
nmnpn)p2ρ−2

)
[30] Ω

(
(
∑
nmnpn)p2ρ−2

)
LSR – Ω

(
r(
∑
nmnpn)p2ρ−2

)
Standard Ω(mp3ρ−2) [23] Ω(mp3ρ−2)

IV. DISCUSSION

Here, we have provided a sample complexity upper-bound
for local identifiability in the factorization-based LSR-DL
problem. We compare our result with the known sample
complexity bounds for local identifiability of KS and standard
DL problems in Table I. Note that when the separation rank
is 1, our result gives a bound on the sample complexity of
the KS-DL model as a special case. Unlike previous analysis
for the KS-DL model [13], which has sample complexity of
maxn∈{1,...,N} Ω(mnp

3
nρ
−2
n ), our analysis of the factorized

model does not focus on identifiability of the true subdic-
tionaries. However, we do away with the requirement that
the dictionary coefficient vectors follow the separable sparsity
model: our result does not require any constraints on the
sparsity pattern of the coefficient vector.

V. CONCLUSION

We studied the low-separation-rank model (LSR-DL)
to learn structured dictionaries for tensor data. This
model bridges the gap between unstructured and separa-
ble dictionary learning (DL) models. We show that given
Ω
(
r(
∑
nmnpn)p2ρ−2

)
data samples, the true dictionary can

be locally recovered up to distance ρ. This is a reduction
compared to the Ω(mp3ρ−2) sample complexity of standard
DL in [23]. However, a minimax lower bound scaling of
Ω(p

∑
nmnpnρ

−2) in [12] for KS-DL (r = 1) has an O(p)
gap with our upper bound. This shows an interesting possible
future direction to tighten these bounds.
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