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This letter presents a framework for computational 
imaging (CI) in fiber-bundle-based endoscopy systems.  
Multiple observations are acquired of objects spatially 
modulated with different random binary masks. Sparse-
recovery algorithms then reconstruct images with more 
resolved pixels than individual fibers in the bundle.  
Object details lying within the diameter of single fibers 
are resolved, allowing images with 41,663 resolvable 
points to be generated through a bundle with 2,420 
fibers.  Computational fiber bundle imaging of micro- and 
macro-scale objects is demonstrated using fluorescent 
standards and biological tissues, including in vivo 
imaging of a human fingertip.  In each case, CI recovers 
detail that conventional endoscopy does not provide.   
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Endoscopic imaging provides real-time visualization of tissue at sites within the body.  Larger instruments such as colonoscopes and gastroscopes (5-10 mm diameter) use digital CCD or CMOS sensors located at the distal tip.  Smaller devices (below around 3 mm diameter) including bronchoscopes and pediatric scopes use coherent fiber optic bundles to transmit images to an eyepiece or sensor at the proximal end.  Fiber bundles are also used for confocal, multi-photon, and epi-fluorescence endomicroscopy.  Configurations that use a single optical fiber typically require a mechanism for distal beam scanning.  Fiber bundles avoid this challenge, but the number of resolvable points is limited to the number of fibers within the bundle. Post-processing techniques including Fourier filtering, spatial averaging, or interpolation can be applied to images acquired through a fiber bundle [1].  These methods can improve the visual appearance of images by removing the fiber bundle mask pattern, but the information content is still limited by the fiber packing density.  Other techniques include image-compounding, combining multiple images as the distal end of the fiber bundle is laterally displaced between frames [2].  Bedard et al. use a similar concept, 

but avoid the need to physically move the bundle by using a prism at the distal tip to spectrally encode spatially offset images that are captured in a snapshot multispectral image [3].  Image registration protocols have been developed to reconstruct a high-resolution image from a sequence of shifted, low-resolution frames for both known [4] and unknown [5, 6] displacements.  Ravi et al. showed that deep learning algorithms further improve this approach [7].  Recently, Vyas et al. reported bundle-shifting confocal endomicroscopy with a nearly two-fold resolution improvement [8].  All the approaches discussed above improve the appearance of images acquired through fiber optic bundles, but each is based on individual fibers resolving only a single pixel of information. Alternative approaches aiming to resolve multiple points include wavefront shaping for imaging through a single multimode fiber [9].  Ohayon et al. implemented wavefront shaping endoscopy for deep brain imaging, but fiber bending remains a challenge of this technique [10].  However, a recent exploration of step-index and graded-index multimode fibers suggests a path forward [9], while Shin et al. demonstrated a compressed sensing approach for confocal endomicroscopy that is insensitive to bending of the fiber bundle [11].  Unfortunately, the bundle is used only to deliver structured light to the sample, instead of collecting emitted light, making clinical implementation difficult at present.  This letter proposes a framework for resolution improvement using computational imaging (CI).  Our approach requires collecting multiple images, or “observations”, of an object through different coded masks.  We then use sparse-recovery algorithms to reconstruct an image that resolves multiple pixels within the diameter of each fiber in the bundle, producing images with a resolution determined by the density of elements in the mask rather than the number of fibers in the bundle. We use a CI framework based on coded masks located at a conjugate image plane, which we previously evaluated when imaging without a fiber bundle [12].  We extended the mathematical forward model from this earlier framework to account for imaging through a fiber bundle.  Since the inter-fiber gaps are opaque, information about regions of the object located behind these gaps is lost and the algorithms can only recover 
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 Fig. 2. Experimental results for the synthetic resolution target in (a).  (b) Plot of line profiles across a single fiber (red arrows in (d-l)).  (c, d) Zoom in of a 1.6 × 0.7 mm region (blue) and a 0.7 × 0.2 mm region (red) on the displayed target.  (e, f) Ideal reconstruction of intra-fiber details.  (g, h) Conventional bundle image.  (i-l) CI reconstructions with 200 observations using (i, j) NPG algorithm and (k, l) TVNN algorithm.   Further quantitative measures demonstrate the relationship between the number of observations (masked images) and CI reconstruction accuracy [Fig. 3].  “Reconstruction error” is the normalized relative error obtained by comparing the displayed (true) image to the conventional and CI reconstructed images.  Both algorithms outperform conventional imaging. Using more observations is beneficial for both NPG and TVNN reconstructions.  However, beyond 80 observations, additional measurements do not significantly improve the reconstructed image quality.  Building on the quantitative evaluation in Figs. 2 and 3, we next imaged real objects with the platform illustrated in Fig. 1, including a mixture of 40 μm and 50 μm diameter fluorescent beads (Phosphorex Polystyrene Microspheres).  A 10× objective (Olympus Plan N) and 150 mm focal length achromatic lens were used to project an image of the beads onto the DMD.  The “ground truth” image of the beads in Fig. 4(a) is a cropped region of a 980 × 1240 image taken with an independent “witness” camera positioned prior to the fiber bundle.  When the same beads are imaged through the fiber bundle [Fig. 4(b)], the black inter-fiber cladding and pixilation due to individual fibers reduces overall brightness and image quality such that the edges of the beads are not well defined.  Fig. 4(c) is the result of basic post processing of a single observation, applying bicubic interpolation to Fig. 4(b) to replace the fiber bundle mask pattern with values interpolated 

 Fig. 3. Relative reconstruction error with increasing number of observations for NPG and TVNN on the same dataset shown in Fig. 2.  from the fibers.  After interpolation the images appear more continuous and brighter, but integrity at the edges of the beads is not restored.  Our CI method using the TVNN algorithm with 200 observations [Fig. 4(d)] captures the curved edges of the beads with better definition than the representative conventional fiber bundle image in Fig. 4(b).  By removing the bundle mask pattern with interpolation of our CI reconstructed image, the outline of the beads becomes even clearer and bright spots within the interior can be distinguished.  Comparing Fig. 4(c) and 4(e) clarifies that our CI method is closer to the ground truth image than the representative conventional fiber bundle image.  Furthermore, it is easier to distinguish the 40 μm from the 50 μm beads with the CI method [Fig. 4(e)].  The middle row of Fig. 4 illustrates similar results, but for a different object on a different scale.  Here, lens paper coated in fluorescent highlighter is imaged through the platform using a 4× objective (Olympus Plan N) and a 150 mm focal length achromatic lens as the imaging optics.  The red arrows indicate an area where individual paper fibers are better defined when CI is used with interpolation, compared to when interpolation is applied to the raw fiber bundle image. The blue arrows highlight where overlapping fibers can be distinguished in the CI image, but are not easily discerned in the conventional fiber bundle image.   The bottom row of Fig. 4 provides results for a trans-illuminated H&E stained histopathology section of normal colon tissue.  The structure of the muscle tissue layers (top half of Fig. 4(k)), and crypts (bottom half of Fig. 4(k)) are characteristics of interest to pathologists.  These features are visible in the ground truth image [Fig. 4(k)].  However, fine details are not discernable in the conventional fiber bundle image, with or without inter-fiber interpolation (Figs. 4(m) and 4(l), respectively).  Computational imaging recovers tissue detail including crypt structure and organization [Fig. 4(o)].  The reduction in apparent brightness for CI reconstructed images (Figs. 4(i) and 4(n)) is partially due to the dark inter-fiber cladding regions and partially an artifact of system modeling errors where there is a mismatch between the mathematical model and physical system.  Pixel values within individual fibers were similar to those in the ground truth image.   Many endoscopy applications work with a FOV on the order of millimeters to centimeters.  Fig. 5 illustrates that computational endoscopy is scalable to macroscopic objects and potentially compatible with in vivo imaging.  Fig. 5(a) shows a ground truth image of a human fingertip coated with fluorescent highlighter.  At this scale, the computational endoscopy technique clearly recovers the narrow ridge patterns of the fingerprint [Fig. 5(c)] that are not resolved in conventional fiber bundle imaging [Fig. 5(b)]. In conclusion, we developed a framework to integrate CI with fiber bundle systems that is scalable to different FOVs and resolves 
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