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This letter presents a framework for computational
imaging (CI) in fiber-bundle-based endoscopy systems.
Multiple observations are acquired of objects spatially
modulated with different random binary masks. Sparse-
recovery algorithms then reconstruct images with more
resolved pixels than individual fibers in the bundle.
Object details lying within the diameter of single fibers
are resolved, allowing images with 41,663 resolvable
points to be generated through a bundle with 2,420
fibers. Computational fiber bundle imaging of micro- and
macro-scale objects is demonstrated using fluorescent
standards and biological tissues, including in vivo
imaging of a human fingertip. In each case, CI recovers
detail that conventional endoscopy does not provide.
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Endoscopic imaging provides real-time visualization of tissue at
sites within the body. Larger instruments such as colonoscopes
and gastroscopes (5-10 mm diameter) use digital CCD or CMOS
sensors located at the distal tip. Smaller devices (below around 3
mm diameter) including bronchoscopes and pediatric scopes use
coherent fiber optic bundles to transmit images to an eyepiece or
sensor at the proximal end. Fiber bundles are also used for
confocal, multi-photon, and epi-fluorescence endomicroscopy.
Configurations that use a single optical fiber typically require a
mechanism for distal beam scanning. Fiber bundles avoid this
challenge, but the number of resolvable points is limited to the
number of fibers within the bundle.

Post-processing techniques including Fourier filtering, spatial
averaging, or interpolation can be applied to images acquired
through a fiber bundle [1]. These methods can improve the visual
appearance of images by removing the fiber bundle mask pattern,
but the information content is still limited by the fiber packing
density. Other techniques include image-compounding, combining
multiple images as the distal end of the fiber bundle is laterally
displaced between frames [2]. Bedard et al. use a similar concept,

but avoid the need to physically move the bundle by using a prism
at the distal tip to spectrally encode spatially offset images that are
captured in a snapshot multispectral image [3]. Image registration
protocols have been developed to reconstruct a high-resolution
image from a sequence of shifted, low-resolution frames for both
known [4] and unknown [5, 6] displacements. Ravi et al. showed
that deep learning algorithms further improve this approach [7].
Recently, Vyas et al reported bundle-shifting confocal
endomicroscopy with a nearly two-fold resolution improvement
[8]. All the approaches discussed above improve the appearance
of images acquired through fiber optic bundles, but each is based
on individual fibers resolving only a single pixel of information.

Alternative approaches aiming to resolve multiple points
include wavefront shaping for imaging through a single multimode
fiber [9]. Ohayon et al implemented wavefront shaping
endoscopy for deep brain imaging, but fiber bending remains a
challenge of this technique [10]. However, a recent exploration of
step-index and graded-index multimode fibers suggests a path
forward [9], while Shin et al demonstrated a compressed sensing
approach for confocal endomicroscopy that is insensitive to
bending of the fiber bundle [11]. Unfortunately, the bundle is used
only to deliver structured light to the sample, instead of collecting
emitted light, making clinical implementation difficult at present.

This letter proposes a framework for resolution improvement
using computational imaging (CI). Our approach requires
collecting multiple images, or “observations”, of an object through
different coded masks. We then use sparse-recovery algorithms to
reconstruct an image that resolves multiple pixels within the
diameter of each fiber in the bundle, producing images with a
resolution determined by the density of elements in the mask
rather than the number of fibers in the bundle.

We use a CI framework based on coded masks located at a
conjugate image plane, which we previously evaluated when
imaging without a fiber bundle [12]. We extended the
mathematical forward model from this earlier framework to
account for imaging through a fiber bundle. Since the inter-fiber
gaps are opaque, information about regions of the object located
behind these gaps is lost and the algorithms can only recover



details within the intra-fiber regions where light is collected. A
binary {0, 1} matrix, B, is included within our system model to
designate where spatial information about the sample is acquired.
To construct this matrix, circle detection is used to set a value of 1
for pixels found to lie within fiber boundaries, and 0 for pixels in
the inter-fiber regions. We choose the dimensions of our target
reconstructed image, X, to match those of an m x m mask, M,
placed at a conjugate image plane. The object is then imaged
through £ different random binary masks. Our forward model for
asingle n x n pixel camera observation ¥} is defined as:

Y, = BO{D.[h + (M;©X)]D_} + noise (1)

where #* denotes linear convolution, ® denotes elementwise
multiplication, 4 is a Gaussian convolution kernel that accounts for
system non-idealities [12], and D, and D, indicate two-dimensional
downsampling. Equation (1) can be modified to fit the general
format of y;, = Apx + noise for sparse recovery, where a vector
representation of the m? x 1 object, x; is solved for using multiple
known system dependent measurement matrices, A;, and
vectorized n? x 1 observations, y;:

¥Yix = TgDT,Ty, x + noise (2)

where Ty, is an m x m’ diagonal matrix with mask elements on
the diagonal, T}, is a block Toeplitz convolution matrix obtained
from h, D combines downsampling in both directions, and T is a
diagonal matrix with the entries of B on its diagonal. Thus, the
system-dependent measurement matrix for each observation
through our imaging setup can be expressed as Ay = TgDT Ty, .
To realize the zero-mean distribution characteristic of
measurement matrices used in traditional sparse-recovery setups,
we shift the mean value of our masks by subtracting 0.5 from all
entries, and we shift the values in the associated observations by
subtracting from each an image of a uniform object taken through
amask with all entries set to 0.5 [13].

The benchtop platform constructed to test this computational
endoscopy approach (Fig. 1) is configured to image fluorescent
objects. A 470nm LED with a 429-474 nm bandpass filter
(Semrock FF01-452/45-25) illuminates the sample. Sample
fluorescence is imaged onto a digital micromirror device (DMD)
embedded in a TI LightCrafter 6500 module that rapidly switches
between sets of random binary masks, each containing 700 x 700
elements with 2 x 2 binning of DMD mirrors for an effective mask
size of 350 x 350. The modulated image of the object is then
projected onto one end of a flexible fiber optic bundle (Schott
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Fig. 1. System diagram for computational endoscopy. Synthetic
objects are displayed directly at the mask plane.
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Image Bundle 1621157) containing 18,000 individual multimode
fibers, each 11.9 um in diameter. Projection optics were selected
to achieve a demagnification of 10x from the DMD to the distal face
of the bundle. This relates to 490,000 mask elements mapping
onto a region of approximately 2,445 fibers. Relay optics image
the proximal end face of the bundle through a 506-594 nm
bandpass filter (Semrock FF01-550/88-25) and onto a CCD
camera (Point Grey Research, GRAS-14S5M-C), such that
approximately 100 pixels sample each fiber core.

Fig. 2 illustrates experimental results for a synthetic resolution
target [Fig. 2(a)], generated in software, displayed with mask
patterns imposed on the DMD, and then imaged through the fiber
bundle via the projection and relay optics shown in Fig. 1. This
allowed the system performance to be quantified by comparing
pixel values obtained by computational reconstruction with the
known pixel values of the synthetic object. The zoomed-in panels
in Figs. 2(c)-(1) highlight details of the imaged target at the single
fiber level. The inter-fiber cladding creates areas within the field-
of-view (FOV) where object detail is blocked. Our CI approach
does not aim to recover this missing data. Rather, we employ CI to
recover intra-fiber details, producing images containing multiple
resolved pixels within the diameter of individual fibers. The
regions of the object that can be reconstructed are then illustrated
in Figs. 2(e) and 2(f) as the original object with the bundle pattern
overlaid. The raw image captured through the bundle is
representative of conventional endoscopy. Figs. 2(g) and 2(h)
show cropped regions of this image, illustrating that small object
features are not resolved.

We reconstructed images by applying two separate sparse-
recovery algorithms to the same set of observations. Algorithm
choice is driven by the non-negativity constraint for reconstructed
images. Previously, we used an algorithm based on Nesterov’'s
proximal gradient (NPG) [14], which provided satisfactory results
[12], but was computationally expensive due to a complex
underlying implementation. Here, we use a computationally
efficient least squares method [15] that imposes the non-negativity
constraint and penalizes the L2-norm of the anisotropic total
variation [16]. Images reconstructed with this total variation non-
negativity-confined (TVNN) algorithm [Fig. 2(k) and 2(1)] are
visually similar to reconstructions with the NPG algorithm [Fig.
2(i) and 2(j)], but are generated 8.6 times faster. For images
processed in MATLAB v9.1 on a standard PC (Intel i7 processor @
3.4 GHz, 16 GB RAM), the reconstruction process takes 110 s for
TVNN and 945 s for NPG. Zoomed-in panels of the full 700 x 700
reconstructed images are presented in Fig. 2. Both algorithms
recover intra-fiber details that are not captured with the
conventional fiber bundle imaging method. Specifically, the blue
highlighted area illustrates that corners and edges of line pairs can
be resolved with CI and the red area illustrates that multiple line
pairs are resolved within a single fiber. For each individual fiber,
the CI reconstructions recover 17 pixels, a number dictated by the
size of the displayed masks. While roughly 70 mask elements are
mapped onto each fiber, 2 x 2 element binning results in
approximately 17 unique elements per fiber. Fig. 2(b) shows line
profiles across the single fibers indicated by the red arrows. Three
maxima and two minima (corresponding to the two black lines)
are resolved in the CI images. This generates approximately 17
resolved points within each fiber. In contrast, each fiber in the
conventional bundle irnage provides only one pointin the image.
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Fig. 2. Experimental results for the synthetic resolution target in (a).
(b) Plot of line profiles across a single fiber (red arrows in (d-1)). (c, d)
Zoom in of a 1.6 x 0.7 mm region (blue) and a 0.7 x 0.2 mm region
(red) on the displayed target. (e, f) Ideal reconstruction of intra-fiber
details. (g h) Conventional bundle image. (i-1) CI reconstructions with
200 observations using (i, j) NPG algorithm and (k,I) TVNN algorithm.
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Fig. 3. Relative reconstruction error with increasing number of
observations for NPG and TVNN on the same dataset shown in Fig. 2.

Further quantitative measures demonstrate the relationship
between the number of observations (masked images) and CI
reconstruction accuracy [Fig. 3]. “Reconstruction error” is the
normalized relative error obtained by comparing the displayed
(true) image to the conventional and CI reconstructed images.
Both algorithms outperform conventional imaging. Using more
observations is beneficial for both NPG and TVNN reconstructions.
However, beyond 80 observations, additional measurements do
not significantly improve the reconstructed image quality.

Building on the quantitative evaluation in Figs. 2 and 3, we next
imaged real objects with the platform illustrated in Fig. 1, including
a mixture of 40 pm and 50 pum diameter fluorescent beads
(Phosphorex Polystyrene Microspheres). A 10x objective
(Olympus Plan N) and 150 mm focal length achromatic lens were
used to project an image of the beads onto the DMD. The “ground
truth” image of the beads in Fig. 4(a) is a cropped region of a 980 x
1240 image taken with an independent “witness” camera
positioned prior to the fiber bundle. When the same beads are
imaged through the fiber bundle [Fig. 4(b)], the black inter-fiber
cladding and pixilation due to individual fibers reduces overall
brightness and image quality such that the edges of the beads are
not well defined. Fig. 4(c) is the result of basic post processing of a
single observation, applying bicubic interpolation to Fig. 4(b) to
replace the fiber bundle mask pattern with values interpolated

from the fibers. After interpolation the images appear more
continuous and brighter, but integrity at the edges of the beads is
not restored. Our CI method using the TVNN algorithm with 200
observations [Fig. 4(d)] captures the curved edges of the beads
with better definition than the representative conventional fiber
bundle image in Fig. 4(b). By removing the bundle mask pattern
with interpolation of our CI reconstructed image, the outline of the
beads becomes even clearer and bright spots within the interior
can be distinguished. Comparing Fig. 4(c) and 4(e) clarifies that
our CI method is closer to the ground truth image than the
representative conventional fiber bundle image. Furthermore, it is
easier to distinguish the 40 um from the 50 um beads with the CI
method [Fig. 4(e)].

The middle row of Fig. 4 illustrates similar results, but for a
different object on a different scale. Here, lens paper coated in
fluorescent highlighter is imaged through the platform using a 4x
objective (Olympus Plan N) and a 150 mm focal length achromatic
lens as the imaging optics. The red arrows indicate an area where
individual paper fibers are better defined when CI is used with
interpolation, compared to when interpolation is applied to the
raw fiber bundle image. The blue arrows highlight where
overlapping fibers can be distinguished in the CI image, but are not
easily discerned in the conventional fiber bundle image.

The bottom row of Fig. 4 provides results for a trans-illuminated
H&E stained histopathology section of normal colon tissue. The
structure of the muscle tissue layers (top half of Fig. 4(k)), and
crypts (bottom half of Fig. 4(k)) are characteristics of interest to
pathologists. These features are visible in the ground truth image
[Fig. 4(k)]. However, fine details are not discernable in the
conventional fiber bundle image, with or without inter-fiber
interpolation (Figs. 4(m) and 4(1), respectively). Computational
imaging recovers tissue detail including crypt structure and
organization [Fig. 4(0)]. The reduction in apparent brightness for
ClI reconstructed images (Figs. 4(i) and 4(n)) is partially due to the
dark inter-fiber cladding regions and partially an artifact of system
modeling errors where there is a mismatch between the
mathematical model and physical system. Pixel values within
individual fibers were similar to those in the ground truth image.

Many endoscopy applications work with a FOV on the order of
millimeters to centimeters. Fig. 5 illustrates that computational
endoscopy is scalable to macroscopic objects and potentially
compatible with in vivo imaging. Fig. 5(a) shows a ground truth
image of a human fingertip coated with fluorescent highlighter. At
this scale, the computational endoscopy technique clearly recovers
the narrow ridge patterns of the fingerprint [Fig. 5(c)] that are not
resolved in conventional fiber bundle imaging [Fig. 5(b)].

In conclusion, we developed a framework to integrate CI with
fiber bundle systems that is scalable to different FOVs and resolves



Fig. 4. (a, f k) Ground truth images. (b, g 1) Single images captured through the bundle, representing conventional fiber-bundle imaging. (c, h, m)
Bicubic interpolation on images (b, g 1). (d, i, n) CI reconstruction with 200 observations. (e, j, 0) Cl images (d, i, n) with bicubic interpolation.

17 pixels within the diameter of a single fiber. This approach does
not attempt to recover detail from object regions within the inter-
fiber cladding, but represents a step toward using sparse-recovery
algorithms for resolution improvement in fiber-bundle-based
endoscopes. However, two key challenges remain. First, image
reconstruction time must be reduced, potentially by reducing the
number of observations. At present, we do not use optimized
algorithms to solve ill-conditioned CI problems. In our context this
would mean recovering 17 points per fiber with fewer than 17
observations. Second, using a DMD for mask generation is
impractical in the confined spaces inherent to endoscopy. One
option for miniaturization would use a small glass window
patterned with a chrome-etched mask that is rotated in front of the
bundle tip with a miniature actuator. Using such a rotating mask
pattern for CI in our platform when imaging the synthetic target in
Fig. 2(a) produced an image with a reconstruction error of 0.0344
when using 100 observations, similar to results presented for
random masks using the same number of observations (error
0f0.0336). Furthermore, if the CI principles presented here are
combined with spectral multiplexing, it may be possible to

Fig. 5. Fluorescent highlighter applied to the fingertip. (a) Ground truth
image. (b) Single image captured through the bundle with
interpolation. (c) Cl reconstruction with interpolation.

reconstruct a high-resolution image in a single snapshot [17],
eliminating the need for moving parts. We believe the
introduction of CI concepts to endoscopy has the potential to
advance progress toward in vivo optical biopsy.

Funding. National Science Foundation (NSF) (CCF-1453073,
ECCS-1509260).
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