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Abstract—Camera networks are resource-constrained dis-
tributed systems that communicate over (wireless) networks
to make decisions collaboratively. For surveillance applications,
these camera nodes take decisions about an object of interest
within incoming videos by coordinating with neighboring nodes,
which is a costly process in terms of both time and energy. Data-
compression methods can bring significant energy savings in cam-
era nodes while transmitting or storing data in the network. Sig-
nal representation using sparse approximations and overcomplete
dictionaries have received considerable attention in recent years
and have been shown to outperform traditional compression
methods. However, distributed dictionary learning itself relies
on consensus-building algorithms, which involve communicating
with neighboring nodes until convergence is achieved. To this end,
we design a novel protocol to enable energy-efficient and robust
dictionary learning in distributed camera networks by leveraging
the spatial correlation of collected multimedia data. We employ
low-computational-complexity metrics to quantify the correlation
across cameras nodes. We also present a feasibility study of
the parameters of the network that impact the performance of
distributed dictionary learning and consensus process in terms of
accuracy of the algorithm and energy consumed by the camera
nodes. The performance of the proposed approach is validated
through extensive simulations using a network simulator and
public datasets as well as via real-world experiments on a testbed
of Raspberry Pi nodes.

Index Terms—Dictionary Learning; Camera Networks; Dis-
tributed Consensus; Image Compression; Mobile Computing.

I. INTRODUCTION

Motivation: Cameras networks are real-time distributed
systems that cover large spaces and communicate over (wire-
less) networks to make decisions collaboratively. These cam-
eras refer to a system of physically distributed camera nodes
that may or may not have overlapping fields of view [1] and
that allow us to see a subject of interest from several angles,
helping resolve the problem of occlusion faced by individual
cameras. Camera networks have been used in surveillance
applications where the videos by the cameras are sent to
a centralized location and are analyzed offline by the law-
enforcement agencies. Sending video data (generated through-
out the time of operation at 30-60 fps) from a large number
of cameras in a network to a central server is expensive (in
terms of time and energy of camera nodes) and inherently
unscalable. The combination of large numbers of nodes, secu-
rity concerns, expectation of fast response times, and delay in
communicating data to the central node pushes us away from
server-based architectures.

There has been some recent works focusing on smart
distributed camera networks that combine video sensing, pro-
cessing, and communication on a single embedded platform.
These camera nodes analyze the object of interest online on in-
coming videos and take decisions by running computationally-
intensive computer-vision algorithms for detection and track-
ing of object of interest [2]. This requires communication
between the camera nodes that involves multiple transmissions
of raw data, which is a costly process (in terms of time
and energy) for the resource-constrained nodes and reduces
the mission lifetime of the nodes. These limitations call for
efficient image-compression methods for transmission and
storing of data in the network. Signal representation using
sparse approximations and overcomplete dictionaries [3] have
received considerable attention in recent years in the area
of image feature extraction, data compression, and bit-rate
reduction [4], [5], [6] for both storage and transmission.
The goal of dictionary learning is to learn an overcomplete
dictionary D such that data samples, represented as a matrix
Y , are well approximated by no more than T0 columns of
D. Mathematically, the problem of dictionary learning can be
expressed as(

D,X
)
= argmin

D,X
‖Y −DX‖2F s.t. ∀s, ‖x‖s ≤ T0, (1)

where Y is the data available at a centralized location, X ∈
RK×S are the sparse coefficients of the data having no more
than T0 � n nonzero coefficient per sample, and xs represents
the sth column in X .

Once a dictionary is learned, each node can learn a sparse
approximation of the signal that can be used along with an
image-compression technique to help save significant space
when storing the data and energy when offloading data to a
centralized location or to neighboring nodes. Consensus forms
the communication primitive to be used between neighboring
camera nodes for dictionary learning in a setting where the
data is distributed such as in distributed camera networks [7],
[8]. In particular, consensus is an iterative process where
the camera nodes communicate with their neighbors for a
fixed number of iterations or until convergence. This iterative
communication introduces an additional overhead of energy
consumption on nodes in the network.

Our Vision: We focus on developing energy-efficient
dictionary-learning techniques for distributed camera net-
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Fig. 1: Illustration of three different types of distributed camera networks where image compression using dictionary learning can bring
potential benefits in saving battery capacity of camera nodes in the network. Each sensor node can serve as a Data Provider (DP) or a
Resource Provider (RP). The RP nodes have sophisticated computational capabilities and higher battery capacity than DP nodes. (a) Mars
exploration with Curiosity rover [9]; (b) Underwater environment covered with a network of Autonomous Underwater Vehicles (AUVs).
AUVs serving as DP continuously capture raw data, while RPs—such as Mesobot and Sentry [10]—can create bathymetric maps and perform
sidescan of the seafloor by taking and processing images in deep sea and oceans; (c) Deployment of multiview distributed cameras in a
smart home application.

works. We consider a distributed camera network where the
camera nodes have heterogeneous capabilities in terms of
battery capacity and processor capabilities. We divide these
camera nodes into two categories, namely, Data Provider (DP)
and Resource Provider (RP). The DP nodes are dumb nodes
in the sense that they are severely resource constrained and
have limited computational capabilities. The RPs, on the other
hand, have sophisticated computational capabilities and higher
battery capacity than DP nodes. Figure 1 shows examples
of various futuristic applications of the proposed distributed
solution in harsh environments—such as on Mars and in under-
water environments—as well as for consumer applications—
such as in smart home cameras.

Our Approach: We design a protocol to identify the camera
nodes in the network with spatial correlated data by using
only local knowledge of the network available to the camera
nodes. We use computationally cheap metrics to quantify the
correlation of data among camera nodes. We also present a
feasibility study of the different parameters of the distributed
dictionary learning algorithm and their impact on the accuracy
of the algorithm and residual energy of the nodes in the
network. Distributed dictionary learning can be used to enable
a variety of applications in a distributed camera network such
as background modeling and object classification [8], [11]; in
this paper, we focus on in-network image compression.

Contribution: The following are our main contributions.
• We present via simulations the scalability of consensus in

a wireless distributed computing infrastructure by varying
the wireless network environment variables (i.e., density,
connectivity, and number of consensus iterations).

• We develop a protocol to enable energy-efficient, robust
consensus process on resource-constrained camera nodes
by identifying the network nodes with correlated data.

• We quantify the trade-off in energy savings and loss in
accuracy achieved for in-network image compression by
implementing our protocol on a testbed of Rasberry Pi
nodes.

Paper Outline: The remainder of this paper is organized
as follows. In Sect. II, we study how different consensus

parameters impact the feasibility of convergence. In Sect. III,
we present details of the design of our protocol that is proposed
to bring energy savings to the distributed dictionary-learning
algorithm executed in a camera network. In Sect. IV, we
provide quantitative results that demonstrate the merits of our
contributions. In Sect. V, we cover the work done in the area
of distributed systems employing consensus and analyze the
difference of these approaches from ours. Finally, in Sect. VI,
we conclude our paper and outline future work.

II. DICTIONARY LEARNING AND CONSENSUS IN A
DISTRIBUTED CAMERA NETWORK

In this section we first present different steps of the dis-
tributed dictionary learning algorithm. We then show the
performance of consensus and distributed dictionary learning
in terms of accuracy of the algorithms and energy consumed
by the nodes to run these algorithms in a network. This section
will help us motivate the need to save energy during the
execution of a distributed dictionary learning algorithm.

A. Dictionary Learning in a Distributed Camera Network

Assume N camera nodes used for surveillance form an
ad-hoc network and communicate over a wireless network.
Any wireless communications technology such as Bluetooth,
WiFi Direct, 802.11 ad-hoc mode, or Near-field Communi-
cation (NFC) can be used in this scenario without relying
on any existing fixed infrastructure. Two camera nodes are
considered neighbors when they are in the communication
range of each other. Each node is capable of storing some
local data, performing computations on it, and exchanging
messages with its neighbors. Next, we assume each node i
has a collection of local data, expressed as a matrix Yi ∈
Rn×Si , with Si representing the number of data samples at the
ith node. In case of distributed camera networks, each camera
node is taking images of a scene from a different angle, which
form the data samples at the ith node. We can express all this
distributed data into a single matrix Y = [Y1 · · ·YN ] ∈ Rn×S ,
where S =

∑N
i=1 Si denotes the total number of data samples

distributed across the N nodes.



Fig. 2: Workflow for distributed dictionary learning executed at each
camera node in the network. Task 1, 2, and 3 are executed locally at
each node; whereas Task 4, i.e., consensus, involves communication
between nodes that are in communication range of each other.

We reiterate the dictionary problem here; assume that the
data Y is available at a centralized location, the problem of
learning an overcomplete dictionary D can be expressed as,(

D,X
)
= argmin

D,X
‖Y −DX‖2F s.t. ∀s, ‖x‖s ≤ T0, (2)

where X ∈ RK×S are the sparse coefficients of the data
having no more than T0 � n nonzero coefficient per sample,
and xs represents the sth column in X . In a distributed setting,
the goal of dictionary learning is to have individual nodes
collaboratively learn dictionaries {D̂i}i∈N from global data
Y such that these collaborative dictionaries are close to a
dictionary D that could have been learned from the global
data Y in a centralized fashion. We now explain the different
tasks of this algorithm, as described in [8] (Fig. 2).

Task 1–Sparse Coding: Each ith node uses the local
estimate D̂i of the centralized dictionary D and calculates the
sparse coefficients of its local data by solving the following
equation without collaborating with other nodes,

∀s, x̃(t)i,s = arg min
x∈RK

‖yi,s − D̂(t−1)
i x‖22 s.t.‖x‖0 ≤ T0, (3)

where yi,s and x̃(t)i,s represent the sth sample of the data and its
coefficients at node i at the tth dictionary learning iteration.

Task 2–Dictionary Update: Dictionary update stage in-
volves computing the dominant left (u1)- and right-singular
(v1) vectors of the “reduced" error matrix Ê(t)

i,k,R. The Cloud
K-SVD algorithm of [8] defines d̂

(t)
i,k = u1 and x̂

(t)
i,k,R =

d̂
(t)T

i,k Ê
(t)
i,k,R, where u1 is the dominant vector of a matrix

M̂ (t) that is formally described in [8]. We need to only worry
about calculating u1 collaboratively. To this end, at each node,
M̂

(t)
i = Ê

(t)
i,k,RÊ

(t)
i,k,R is calculated. Our goal now is computing

the dominant eigenvector of M̂ (t) in a collaborative manner. In
order to estimate the eigenvectors in the distributed network,

Cloud K-SVD algorithm uses the distributed power method.
Task 3–Power Method: Power method is an iterative

procedure used to estimate the eigenvectors of a matrix. Power
method is run for a fixed number of iterations or until con-
vergence. Cloud K-SVD algorithm is interested in distributed
power method as Mi’s are distributed in the network. To this
end, each site calculates zi = M̂

(t)
i q̂

(tp−1)
i locally, where

q̂
(tp−1)
i denotes an estimate of the dominant eigenvector of
M̂ (t) at ith site after (tp − 1) power method iterations. We
initialize each site with the same value (qinit). In Cloud K-
SVD, one of the ways that this can be achieved is if each
node uses the same seed for a random number generator. Next,
the sites collaborate to calculate v̂

(tp)
i =

∑
i M̂

(t)
i q̂

(tp−1)
i at

each site. The normalized v̂(tp)i is an estimate of the dominant
eigenvector of M̂ (t).

Task 4–Consensus Averaging: To calculate the approxi-
mation of

∑
i M̂

(t)
i q̂

(tp−1)
i , nodes in the network make use of

the distributed consensus technique. Each node is initialized
as z(0)i = M̂

(t)
i q̂

(tp−1)
i at each node. We now give an example

of how the consensus-averaging problem in a network can be
defined. Let Z(0) = [z

(0)
1 , · · · , z(0)N ]> be the initial value at

each node. Each node achieves perfect consensus averaging
as tc → ∞, where tc is the number of consensus iterations,
and obtains Z(∞)>

i,T = 1
N

∑N
j=1 z

(0)
j = 1

N

∑N
j=1 M̂

(t)
j q̂

(tp−1)
j .

We take advantage of the wireless medium being inher-
ently broadcast and hence use a broadcasting-based consensus
method proposed in [12]. The asynchronous broadcast con-
sensus assumes each node i broadcasts its own data to its
Ni neighboring nodes within its communication range. The
neighbors, which received the data, update their data according
to the weighted average of their current data as follows [12]:

z
(tc+1)
k = γz

(tc)
k + (1− γ)z(tc)i ,∀k ∈ Ni, (4)

where γ ∈ (0, 1) stands for the mixing parameter, which gives
the weight assigned to data values from each node, and Ni
denotes the neighboring nodes of the ith node. The remaining
nodes in the network update their values as,

z
(tc+1)
k = z

(tc)
k ,∀k /∈ Ni. (5)

Image Compression Scheme: Once a dictionary has been
learned by the algorithm explained above, it can be used in
an image-compression scheme in the following way. At the
ith node, for a new incoming image or an image that is to be
sent to the centralized server, we first form the set of vectors
from non-overlapping patches of the image. This is denoted
by {yj}Lj=1 or Y , where L is the number of patches. Next, we
estimate the sparse approximation X of Y using the estimated
dictionary D̂i. The non-zero coefficients are quantized, for
which a uniform quantization scheme along with thresholding
is used [13]. The quantized X matrix is then entropy coded
to form a bit sequence.

B. Network Performance of Distributed Dictionary Learning

We now provide the specifics of our simulator in which
consensus and dictionary learning algorithms are implemented
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Fig. 3: Average mean square error of consensus as the standard deviation of data is varied; (b) Average energy consumed per node in the
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the consensus process is varied.
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Rényi graph; (b) Average representation error of Cloud K-SVD as a function of the number of non-zero coefficients per sparse representation
(sparsity constraint) with 95% confidence interval; (c) Average representation error of Cloud K-SVD as the dictionary learning iterations are
varied for different values of consensus and power iterations.

and present the public datasets used to study the performance
of these algorithms.

Simulation Setup: We consider a static network of 20
randomly deployed digital nodes in a 1000 × 1000 region
in a discrete-event network simulator, ns2 [14]. For our
experiments, ns2 was configured to use (i) a physical layer
including a two-ray ground radio propagation model support-
ing propagation delay, wireless effects, and carrier sense as
well as (ii) the IEEE 802.11 Medium Access Control (MAC)
protocol based on Distributed Coordination Function (DCF).
The ns-2 packet class only allows to define the size of the
packet and does not allow to include the payload with real
data values. We modify this class such that we can add data
to the payload and also update the payload during simulation
to understand the performance of consensus in a distributed
network.

Datasets: We consider both simulated dataset and publicly
available datasets to study the performance of our algorithms.
For simulated dataset, we assume that the data at the nodes
have dimension n = 64 and they follow a Gaussian distribu-
tion with fixed mean and standard deviation. We also use the
publicly available Multi-camera Pedestrian Videos dataset by
EPFL [15].

Distributed consensus: We first study the performance of
the consensus algorithm for a connected network topology of
20 nodes. We modify the existing node functionality in ns2
to make the nodes work asynchronously, which is done via a
timer functionality. The value of the delay variable supplied to
the timer function determines the time delay from the present
instant after which a node should broadcast its data. In our
simulator, each node broadcasts 20 times after which the timer
is not rescheduled. We calculate the mean square error at each
node as the mean square of the difference between average of
the data values under perfect consensus (tc → ∞) and the
data values at the nodes after a fixed number of consensus
iterations. In Fig. 3(a), we plot mean square error of data value
averaged over number of nodes; we see that, as the standard
deviation of the data is increased from 0.3 to 0.9, the consensus
algorithm converges with a higher error.

Battery capacity: We now show the battery consumed by
nodes in a distributed camera network when the consensus is
implemented. These measurements have been made using the
energy model defined in the ns2 simulator. This model sets
the transmit power of the node at 0.2 W and the received
power at 0.1 W. In Fig. 3(b), we show the percentage of
battery capacity consumed by the nodes for different values
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Fig. 5: (a) Field of View (FoV) and the communications range of the cameras for scenario that was mentioned in Fig. 1(c)—as an example,
the FoVs’ of nodes n1–n3 are overlapping, but the FoVs’ of n7–n8 have zero overlap although they are in the communication range of
each other; (b) Connectivity of the cameras, based on their communication range and FoVs’ overlap—the subsets of nodes are selected in
such a way as to leverage the overlap of the neighboring nodes.

of consensus iterations, i.e., number of consensus iterations
as 5 and 10. We see that for battery consumed for consensus
iterations tc = 10 along with tp = 10 power iterations, the
battery consumed by the nodes is up to 12%. To extend the
mission lifetime of the nodes, we will present in the next
section how the communication cost in a network can be
reduced with a small loss in accuracy.

Inactive nodes: We consider a scenario where a certain per-
centage of randomly selected nodes from the network are not
allowed to participate in the consensus process. As mentioned
earlier, we assume there are 20 nodes in the network and
we fix the number of times a node can broadcast its data
to be 20. We again plot average mean square error, averaged
over the number of nodes. We observe in Fig. 3(c) that, as
the number of nodes participating in the consensus process
reduces, the mean squared error of the network increases.
We also see that the consensus process ends earlier as fewer
nodes are broadcasting in comparison to when all the nodes
are participating in consensus.

Graph connectivity: To study the impact of graph connectiv-
ity on the distributed power method algorithm, we implement
a network graph in MATLAB. We generate a random graph
based on the Erdős-Rényi model, which takes as input the
number of nodes/vertices and ρ gives the probability of an
edge between any two nodes in the network, with ρ = 1 indi-
cating that the network graph is fully connected. In Fig. 4(a),
we study the impact of graph connectivity on average error
in eigenvector estimates of distributed power method. We
observe a decrease in estimation error with an increase in
power method iterations; to further decrease the estimation
error, the number of consensus iterations should be increased,
although this would come at the cost of higher energy spent
by nodes in the network.

Sparsity constraints: We now study the impact of the spar-

sity of sparse representations, i.e., maximum number of non-
zero coefficients per sample xs on the average representation
error of Cloud K-SVD, defined as 1

nS

∑N
i=1

∑Si

j=1 ‖yi,j −
Dxi,j‖2. We first create a set of training and test images
using the dataset [15]. Next, we learn the dictionary using
the Cloud K-SVD algorithm. The learned dictionary is used
to find sparse representations of the test dataset and we then
calculate the representation error. In Fig. 4(b), we plot the
average representation error and observe that, as the number
of non-zero coefficients per sparse representation is decreased,
the error increases.

Number of iterations: In the distributed dictionary learning
algorithm [8], three iterations are defined, namely, dictionary-
learning iterations, power-method iterations, and consensus
iterations. In Fig. 4(c), we see that the dictionary-learning
iterations have the greatest impact on the representation error,
i.e., for different values of consensus and power iterations,
only when the dictionary-learning iterations are increased we
observe a decrease in the representation error.

III. ROBUST IN-NETWORK IMAGE COMPRESSION

One of the main sources of energy consumption of camera
nodes during the distributed dictionary-learning process is
due to the communication between sensor nodes required to
achieve consensus (Task 4 in Fig. 2). Node failures due to
exhaustion of battery can leave the network unconnected and,
as a result, can lead to failure to achieve consensus. Our goal
in this paper is to extend the mission time of camera nodes
and, to that end, we need to reduce the communication cost
of dictionary learning. In this section we explain our solution
to handle the limited battery capacity, specifically applied to
the dictionary learning problem. We design a protocol for
the selection of a subset of nodes in the network that have
correlated images/multimedia data so as to not incur a huge



Fig. 6: Illustration of the proposed protocol to reduce energy con-
sumption of the nodes in the network to execute distributed dictionary
learning. Tasks performed locally at each node are shown using black
dots. Task 1 identifies neighbor of each node in the network, Task 2
involves critical node selection procedure at the DPs, Task 3 involves
selecting the nearest RP of each DP, and Task 4 involves identifying
the spatially-correlated nodes.

overhead in terms of energy of the nodes. We also present
different low-complexity metrics to decide how a subset of
nodes from the network can be selected.

A. System Model

We consider a scenario with a number of heterogeneous
camera nodes, e.g., in an Internet of Things (IoTs) scenario,
as shown in Fig. 1(c). The nodes have different roles, i.e.,
DPs and RPs, where RPs are camera nodes with sophisticated
computational capabilities and higher batter capacity than DPs.
In a homogeneous environment, where there is no difference
between the hardware capabilities of devices, we can assume
that the role of RPs can be randomly selected or given to
nodes that have residual battery capacity over a certain value.
The configuration of camera at each node is given by its
Field of View (FoV), which refers to the directional view of a
camera sensor and is assumed to be an isosceles triangle (two-
dimensional approximation) with vertex angle θ and length
of the congruent sides Rs (sensing range of the sensor), and
orientation α [16].

B. Neighborhood Discovery

Neighborhood discovery is a two-step process where each
camera node identifies its own neighbors as well as the
neighbors of its neighbors. To this end, each node broad-
casts a packet with the following information: node ID and
residual battery capacity {nodeID, ResBatCap}. Once each
node receives the information from its neighbors, it updates
its data structure storing nodeID of its neighbors. Each node

also broadcasts its neighbor’s nodeID by using the packet
payload: {nodeID, NnodeID}. Upon receiving this packet,
the neighboring node updates its data structure, which stores
information about the neighbors of its neighbors.

C. Identifying Critical Nodes

A node is defined as a critical node if, when removed from
the network, it will cause any of its neighboring nodes to be
disconnected from the rest of the network. For example, in
Fig. 5(a) n7 is critical to node n8 because when node n7 is
removed, n8 cannot communicate with the rest of the network.
We identify the nodes that have only one neighbor as the end
nodes (ne). Any of the end nodes cannot be critical because
removing them will not make the network disconnected. We
present three steps that each node can use based on its local
information available in order to identify if it is a critical node.
For illustration of these steps, we consider two neighboring
nodes, ni and nj , and assume the following:

1) All RPs are considered critical nodes;
2) If a node has no neighbor other than critical nodes and

it is not a ne, then that node is identified as a critical
node;

3) If the neighbors of node nj are a subset of node ni’s
neighbors, then node ni becomes critical to node nj .

D. Quantifying Spatially-correlated Nodes

We now present various techniques to identify nodes in a
camera network that have correlated camera data. Removing
nodes with redundant data will help save the battery capacity
of the network and will extend the mission lifetime of the cam-
era network. The cameras with spatially correlated data can be
identified in two ways, namely, (i) using camera configuration,
i.e., area of overlap between FoV of two cameras and (ii) using
data collected by the nodes. The former technique is more
helpful when the nodes have been deployed with known FoV
whereas the latter is helpful when the camera configuration
is not known in advance. We allocate a fixed energy budget
for the RPs for this phase, i.e., we assume that each RP can
only spend a pre-defined Esetup [Joules] to identify spatially
correlated nodes in its neighborhood. This is done in such a
way that the overhead of our solution is kept low. We now
explain in detail how these two techniques are implemented.

(i) Via Camera Configuration: Since the FoV of cameras
is limited to the area they observe, the information they get
is directly related to the directional sensing and configuration
of the cameras. Assume a camera’s FoV is described by
(P,R, ~V , α) as in [16], in which P stands for the location of
the camera, R represents the sensing radius, ~V indicates the
sensing direction (i.e., the center line of sight of the camera’s
FoV), and α is the offset angle. Focal length of each camera,
its location, and its sensing direction (shown by f , P , and
~V , respectively) can be estimated as shown in [17]. A model
for the spatial correlation can be derived based on the above
parameters as follows. Suppose that cameras i and j are two
arbitrary cameras that observe an overlapped area of interest;
their disparity function δ (complementary to the correlation
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Fig. 7: Example scenarios—(a-d) room and (e-f) terrace—at a particular time slot taken from cameras with varying viewing angles and field
of view. These images are part of a multiview dataset [15] and are used in our experiments to study the energy-efficiency performance of
distributed dictionary learning.

Fig. 8: Illustration of how the training data Y is collected from the
Berkeley Segmentation Dataset for dictionary learning. We collect
patches of size 8× 8 from an image, which are flattened and placed
at random column indices in Y . We repeat this with multiple images
to create training data matrix Y .

coefficient ν as δ = 1 − ν) is defined as follows [16],

δ = 1
4

(∣∣∣ d sin θd+cos θ

∣∣∣+∣∣∣ d sin θd−cos θ

∣∣∣+∣∣∣ d cos θd+sin θ − 1
∣∣∣+∣∣∣−d cos θd−sin θ + 1

∣∣∣),

where d denotes the camera depth and θ is the
angle between the sensing direction and the x-axis.
Specifically, for two cameras i and j with position
parameters (di, ri, θi) and (dj , rj , θj), respectively, the
disparity between their images can be calculated as,

δij = 1
4

(∣∣∣−di sin θi−ri cos θidi+cos θi
− −dj sin θj−rj cos θj

dj+cos θj

∣∣∣ +∣∣∣di sin θi+ri cos θidi−cos θi − dj sin θj+rj cos θj
dj−cos θj

∣∣∣ +∣∣∣di cos θi−ri sin θidi+sin θi
− dj cos θj−rj sin θj

dj+sin θj

∣∣∣ +∣∣∣−di cos θi+ri sin θidi−sin θi − −dj cos θj+rj sin θj
dj−sin θj

∣∣∣).
(ii) Via Online Data: If the camera configuration is not

available, then the online data collected by the nodes is used
to estimate the nodes in the network that have correlated
data. Each DP identifies the RP node with which it will
communicate based on metrics such as max received signal
strength or residual battery capacity. Next, the RPs have to
identify which of the DPs are spatially correlated and for that
the DPs send a histogram of their collected online image data;
such payload would include {nodeID, HnodeID}. We choose a
normalized similarity metric S(i, j) that gives the intersection
between the histograms of two images [18]. This metric is used

to quantify data correlation between different camera nodes as,

S(i, j) =

∑b−1
k=0 min(Hk

i , H
k
j )∑b−1

k=0H
k
i

(6)

where histogram Hi of node i is a b-dimensional vector.
We make a note here that the nodes that have overlapping

FoVs or are spatially correlated may not necessarily be within
the communication range of each other or can communicate
with the same RP. For example, in Fig. 5(b), we see that
nodes n1–n3 have overlapping FoVs and are also in the
communication range of each other, while nodes n4–n6 have
overlapping FoVs, but are not in the communication range of
each other and only have n5 as their common communication
neighbor; finally, nodes n7 and n8 are only in communication
neighborhood of each other but do not have overlapping FoVs.
In such a scenario, each RP broadcasts the data packets that it
has received from its neighboring RP. This will be only done if
the RP has not exhausted its energy budget (Esetup). In Fig. 6,
we illustrate the timing diagram for nodes in the network and
the corresponding tasks performed by them in order to enable
robust in-network image compression.

IV. PERFORMANCE EVALUATION

The goal of this section is to present the performance
(in terms of energy and accuracy) of distributed dictionary
learning algorithm using our proposed protocol. We present
our results on publicly available multiview camera datasets.
We also discuss experimental results obtained on a testbed
composed of Raspberry Pi nodes and give preliminary results
on the energy required for communication.

Datasets: We use the Multi-camera Pedestrian Videos
dataset [15] by EPFL, which consists of three different scenar-
ios captured by four digital video cameras placed in different
locations. Unfortunately the dataset does not provide any
information about the camera configuration; hence, we identify
nodes that are spatially correlated using online data. The video
format is DV PAL, downsampled to 360×288 pixels at 25 fps.
We show two example sequences from the dataset in Fig. 7.

Reducing the data size: To start the dictionary-learning
process, each camera node captures images. The matrix Yi is
an n×Si matrix, where Si is the number of training samples.
We can consider each image captured by the camera to be a
training sample. However, this would require the cameras to
capture a large number of images and also would increase the
computational complexity of the problem. For example, each
image in the dataset [15] is of size 360 × 288 pixels, which
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Fig. 9: (a) Average representation error achieved in distributed dictionary learning when nodes with spatially correlated data (above a
threshold) are identified and one of them is selected along with nodes which do not have correlated data with any other node; (b) Average
representation error achieved over incoming test frames by using dictionaries learned by using training dataset that has removed data that is
spatially correlated with other nodes; (c) Energy savings obtained in the dictionary learning process by removing spatially correlated nodes.
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Fig. 10: (a) Energy savings for different values of data size and bandwidth when data is offloaded from DPs to RPs; (b and c) Average
representation error with dictionary-learning iterations for Scenarios 1 and 2 using the public dataset [15], respectively.

leads to n being greater than 10, 000, which would increase
tremendously the computational complexity of the problem. To
overcome this problem, we give an example in Fig. 8, where
we take 8× 8 patches from the image, convert each patch to
one-dimensional array, and put it in a column of data matrix
Y . We combine multiple such samples from different images
taken by the camera node and place them at random column
indices. This method significantly reduces the computational
cost at each node. We also pre-process each image by first
converting the color images to gray scale, subtracting the mean
from the images, and normalizing the images.

Spatial Correlation: We consider the dataset in [15], which
consists of four overlapping cameras. In this scenario, since no
information is given about the camera configuration and the
nodes are located in a small room, we assume all the nodes
to be fully connected. We vary the threshold of correlation
coefficient and identify the nodes that have correlated data.
We divide this dataset into training and testing frames, and
use the training images to estimate the dictionary. To this end,
we first identify the nodes whose data will be part of the

training process. We use the intersection of histogram metric
to quantify the spatial correlation between training data at
different nodes. Each node creates a set that includes itself
and the other nodes with which it has correlated data above a
certain threshold. We randomly select one of the nodes from
this set. Nodes that do not have data correlated with any other
node are also included in the dictionary-learning process.

In Fig. 9(a), we plot the average representation error of
distributed dictionary learning; as the threshold for spatial
correlation changes from 1.0 to 0.7, we get an accuracy loss of
3.7% and the energy consumption per node reduces from 12%
to 9% in Fig. 9(c). In Fig. 9(b), we show the performance when
dictionary learned for different values of correlation coefficient
is applied to incoming frames. We note that the dictionary
created for lower threshold coefficient performs worse; inter-
estingly, however, the performance remains constant over the
next 35 incoming frames for which the tests are performed.

Network Performance of Distributed Dictionary Learn-
ing: We consider a scenario where DPs offload their data
to RPs and dictionary learning is executed only at RPs. In



Fig. 10(a), we show the energy and time savings obtained
when only RP nodes participate for different values of d
and r. We see that when d > 250 and r = 1 Mbps, the
overhead resulting from offloading data to RPs by a resource-
constrained DP outweighs the gains; hence, for these parame-
ters, it is better to execute the tasks locally so as to not incur
overhead. However, offloading brings significant benefits for
r = 10 Mbps in terms of both time and energy for any value
of d. In Fig. 10(b and c), we show the average representation
error as the number of dictionary-learning iterations are varied;
as expected, the representation error falls with the increase of
the number of iterations; however, even with such increase,
the error cannot be reduced to match the dictionary learning
using higher spatial correlation coefficient.

Testbed: We also conduct our experiments on 2 Raspberry
Pi nodes, which are small single-board computers with the
following characteristics—Memory: 512 MB RAM, and Pro-
cessor: Broadcom-BCM2835 CPU 700 MHz. These Pi nodes
communicated over a TCP connection. We show in Table I
the communication cost of transmitting eigenvectors of various
size between the two Pi nodes.

TABLE I: Energy required for data transmission of varying sizes
between two Raspberry Pi nodes.

Array Size 1024 512 256 128 64

Energy [J] 0.58 0.40 0.22 0.16 0.13

V. RELATED WORK

We compare here the work done in the area of distributed
camera networks, dictionary learning, and image compression.
We cover different communities in which distributed consen-
sus was studied and consider works that tackled the problem
of energy-efficient consensus.

Mobile Cloud Computing: In the mobile distributed com-
puting community, the issue of limited computational capacity
of devices has been divided into two categories: (i) where
the resource-constrained device offloads its tasks to a remote
cloud. This research involves code partitioning to determine
which tasks in the application will be executed locally and
which in the cloud [19]. COSMOS (proposed in [20]) suggests
a system to fill the gap between the demands for computing
resources by individual mobile devices and the ones cloud
providers offer; and (ii) offloads tasks to mobile devices in
the vicinity, which execute the tasks in parallel and return
results back to the device. Authors in [21] have implemented
a preliminary ad-hoc distributed prototype to offload portions
of a service from a resource-constrained device to a nearby
server. A participatory computing system is proposed in [22]
to derive the minimal workload for individual participating
devices to achieve the overall system performance require-
ment. Serendipity [23] also exploits the remote computational
resources available in other mobile systems in a collaborative
manner. In this paper, we developed an efficient algorithm that

performs in-network processing and relies on the collaboration
among the nodes by exploiting consensus-based algorithms.

Distributed Consensus: Many existing works have con-
sidered consensus for ad-hoc networks via gossip algorithms
where each node uniformly at random contacts a neighbor
within its transmission range and exchanges data [24]. There
have been a few recent works that have focused on gossiping
via broadcasting [12] and geographic gossiping [25]. However,
these works make some unrealistic assumptions that are not
consistent with real-word deployment scenarios such as knowl-
edge of topology, Unit Disk Graph (UDG) models, uniform
distribution of nodes, and homogeneous battery capacity of
nodes.

Distributed Camera Networks: There have been some
works in the area of energy-efficiency optimization of dis-
tributed camera networks. However, these works have fo-
cused on conserving energy for applications such as dis-
tributed tracking, hence the methods introduced in these papers
(i) handover [26] and (ii) using dynamic power management
schemes [27] are suitable only for these applications. Dis-
tributed smart cameras, as proposed in [1], are expected to
have many new applications in the future. When the sensors
in camera networks are geographically separated and have a
limited FoV that does not allow for full communication, a
Kalman Consensus Filter-based algorithm is proposed in [28].

Dictionary Learning: Dictionary learning can be per-
formed in either centralized or distributed structures. For
image processing, dictionaries can be learned in a reconstruc-
tive or discriminative manner. Centralized dictionary learning
may improve the discrimination in learning of dependent
nodes; however, this structure is not efficient as (i) the
nodes have to communicate with a central node (usually at
a far distance), which imposes high communications costs,
especially in extreme environments; (ii) moving the nodes in
order to get closer to the central node imposes extra delays,
which challenges the real-time processing; (iii) the structure
is vulnerable to break if the centralized node fails to provide
the required support. This failure can happen for energy,
communication, or computational restrictions in a network. On
the other hand, when there are multiple sensors in the network,
e.g., camera network, where images are collected and stored in
multiple geographic locations, a distributed solution is the best
way to go since it is efficient and feasible given the energy
and computation limitations, and provides more flexibility and
robusteness against the topology variations of the network. An
algorithm for distributed dictionary learning is discussed in [7]
in which atom update is performed as a set of decentralized
optimization subproblems with consensus constraints.

Image Compression: Image compression is a popular tool
for image data size reduction, so that data transmission in
bandwidth-limited and error-prone channels become feasi-
ble and efficient. Compared to the traditional lossy image
compression methods—such as in Joint Photographic Experts
Group (JPEG) and Discrete Wavelet Transform (DWT)—
dictionary learning can be used to enhance image compression
algorithms. A sparse model seems to fit the natural images



as well as the human visual perception of the images [29].
An improved sparse representation algorithm was proposed
in [30], in which dictionaries with overlapping atoms are
generated in the wavelet coefficient domain and in the pixel
domain so as to remove blocking artifacts. In our paper, we
proposed an efficient algorithm that can be used for image-
compression applications.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an energy-efficient technique to
reduce the cost of dictionary learning in a distributed camera
network to support real-time in-network image compression.
We designed a protocol that identifies spatially-correlated
nodes using local knowledge of the network available to the
camera nodes. To this end, we utilized low-computational-
complexity metrics to quantify the correlation of data among
camera nodes. We also presented via simulations the perfor-
mance in terms of accuracy and energy consumed by the
nodes to run consensus and dictionary-learning algorithms.
The performance of the proposed approach was validated
through extensive simulations using a network simulator and
public datasets as well as via real-world experiments on a
small testbed of Raspberry Pi nodes.

As future work, we will verify the performance of our
proposed solution with experiments on a platform composed of
multiple heterogeneous devices. We also plan to identify when
the dictionary-learning algorithm should be re-triggered as the
environment in which camera nodes are situated changes. Our
goal will be to obtain high-accuracy results from the algorithm
while at the same time not incur high energy consumption due
to frequent re-triggering of the algorithm.
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