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Abstract—This paper proposes an algorithm for clustering of
two-dimensional data. Instead of “flattening” data into vectors,
the proposed algorithm keeps samples as matrices and stores
them as lateral slices in a third-order tensor. It is then assumed
that the samples lie near a union of free submodules and their
representations under this model are obtained by imposing a
low tensor-rank constraint and a structural constraint on the
representation tensor. Clustering is carried out using an affinity
matrix calculated from the representation tensor. Effectiveness of
the proposed algorithm and its superiority over existing methods
are demonstrated through experiments on two image datasets.

Index Terms—Clustering, free submodule, tensor multi-rank

I. INTRODUCTION

CLUSTERING of two-dimensional data, e.g., images, has
attracted increasing attention recently. One particular ap-

proach that has proven to be remarkably effective at clustering
images involves treating imaging data as lying near a union
of subspaces (UoS) and clustering the images based on their
closeness to individual subspaces. This approach, which is
broadly referred to as subspace clustering, has resulted in
state-of-the-art clustering performance in many settings; an
incomplete list of works in this regard includes [1]–[9].

Traditional literature on subspace clustering, despite its
effectiveness, ignores spatial aspects of images. Indeed, works
like [1]–[9] require flattening of images into vectors before
clustering can be carried out. However, there is an increasing
realization that exploitation of the spatial aspects of imaging
data using multilinear algebra tools [10]–[14] can lead to
improved performance of many tasks [15]–[22]. Our goal in
this paper is to leverage techniques from both multilinear
algebra and abstract algebra for improved image clustering.

The main contribution of this paper is a clustering algorithm
that accounts for the two-dimensional structure of images. The
algorithm is based on a tensor factorization method proposed
in [12], which rests on the notion of the t-product [12], [13]—a
generalization of matrix multiplication for third-order tensors.
The key idea of our work is to collect images as lateral slices
in a three-dimensional array (i.e., tensor) and model them as
lying near a union of free submodules (UoFS) [18]–[20]. We
then represent the data tensor as a t-product of the tensor itself
and a low-rank, structured coefficient tensor; an affinity matrix
can be built afterward from the structured, low-tensor rank
representations for clustering.

In terms of prior work, this paper is closely related to
[18], [20]. Both these works are also based on the UoFS
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model. However, [18] imposes a sparsity constraint on the
representation tensor, while [20] requires each frontal slice
of the representation tensor to be low rank. In contrast, we
require the representation tensor to be both structured and low
tensor rank. In order to impose the low tensor-rank condition,
we make use of the tensor nuclear norm (TNN) [13]. In order
to structurally constrain the representation tensor, we rely on
the heuristic that inner products between images belonging
to different free submodules should be small. The resulting
algorithm, termed structure-constrained low-rank submodule
clustering (SCLRSmC), outperforms [18], [20] in experiments
on real-world image datasets. We conclude by noting that TNN
has been utilized in [9] for clustering of multi-view data [23].
The algorithm of [9], however, is still based on the UoS model
and reduces to a variant of [4], [5] for single-view data.

Notation: We use calligraphic uppercase, bold uppercase,
bold lowercase, and non-bold letters for tensors, matrices,
vectors, and scalars, respectively. For a third-order tensor A,
ai,j,k denotes its (i, j, k)-th element, A(i, :, :), A(:, i, :) and
A(:, :, i) or A(i) denote its i-th horizontal, lateral and frontal
slices, respectively, while the (i, j)-th mode-1, mode-2 and
mode-3 fiber (or tube) are represented by A(:, i, j), A(i, :, j)
and A(i, j, :), respectively. We use Â = fft(A, [ ], 3) to denote
the (orthonormal) Fourier transform along mode-3 of A. The
inner product of two tensors A,B ∈ Rn1×n2×n3 is defined
as 〈A,B〉 =

∑
i,j,k ai,j,kbi,j,k. For a matrix A, its nuclear,

`1, and `∞ norms are denoted by ‖A‖∗ (sum of singular
values), ‖A‖1 =

∑
i,j |ai,j | and ‖A‖∞ = maxi,j |ai,j |,

respectively. Further, the Frobenius and infinity norms of a
tensor A ∈ Rn1×n2×n3 are defined as ‖A‖F =

√∑
i,j,k a

2
i,j,k

and ‖A‖∞ = maxi ‖A(i)‖∞, respectively.

II. TECHNICAL BACKGROUND

In this section, we briefly describe the tensor algebra facts
that will be used throughout this paper; further details about
many of these facts can be found in [12], [13].

Definition 1 (Identity tensor). The identity tensor I ∈
Rn1×n1×n3 is a tensor whose first frontal slice is an n1 × n1
identity matrix and all other frontal slices are zero matrices.

Definition 2 (Tensor transpose). Let A ∈ Rn1×n2×n3 , then
AT is an n2×n1×n3 tensor obtained by transposing each of
A’s frontal slices and then reversing the order of the transposed
frontal slices 2 through n3, i.e., the transposed frontal slices
indexed 2, . . . , n3 become frontal slices n3, . . . , 2 in AT .

Definition 3 (t-product [13]). Let A ∈ Rn1×n2×n3 and B ∈
Rn2×n4×n3 be two tensors, then the t-product A∗B is an n1×
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n4 × n3 tensor C whose (i, p)-th tube C(i, p, :) is C(i, p, :) =∑n2

j=1A(i, j, :)◦B(j, p, :), where i = 1, . . . , n1, p = 1, . . . , n4,
and ◦ denotes circular convolution between two fibers.

The t-product is analogous to matrix multiplication: the cir-
cular convolution between tubes replaces scalar multiplication
between matrix elements. Based on the relationship between
circular convolution and the discrete Fourier transform (DFT),
the t-product in the spatial domain corresponds to matrix
multiplication of the frontal slices in the Fourier domain; that
is, Ĉ(k) = Â(k)B̂(k), k = 1, . . . , n3, where Â(k) denotes the
k-th frontal slice of the tensor Â.

Definition 4 (Orthogonal tensor). A tensor Q ∈ Rn1×n1×n3

is orthogonal if Q ∗ QT = QT ∗ Q = I.

Next, we define the tensor singular value decomposition
(t-SVD) of third-order tensors.

Definition 5 (t-SVD [12]). Let A ∈ Rn1×n2×n3 be a tensor,
then its t-SVD is given by A = U ∗ S ∗ VT , where U ∈
Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors, while
S ∈ Rn1×n2×n3 is an f-diagonal tensor, defined as one whose
frontal slices are diagonal matrices.

Note that the t-SVD of a tensor can be readily compu-
ted using SVDs of frontal slices of the Fourier tensor. Let
SVD(Â(k)) = Û(:, :, k)Ŝ(:, :, k)V̂(:, :, k), k = 1, . . . , n3, then

U = ifft(Û , [ ], 3), S = ifft(Ŝ, [ ], 3), V = ifft(V̂, [ ], 3), (1)

where ifft(Û , [ ], 3) denotes inverse DFT along mode-3 of Û .

Definition 6 (Tensor multi-rank [13]). The tensor multi-rank
of A ∈ Rn1×n2×n3 is a vector p ∈ Rn3 with the k-th element
equal to the rank of the k-th frontal slice of Â.

Finally, the tensor nuclear norm (TNN) of A ∈ Rn1×n2×n3

is defined as the sum of the singular values of all the frontal
slices of Â [17], i.e., ‖A‖~ =

∑min(n1,n2)
i=1

∑n3

k=1 |ŝi,i,k|,
where ŝi,i,k denotes the (i, i, k)-th entry of the tensor Ŝ .

III. STRUCTURE-CONSTRAINED LOW-RANK SUBMODULE
CLUSTERING OF IMAGING DATA

The basic problem corresponds to a collection of N images
Y = {Yj ∈ Rn1×n3}Nj=1 that belong to L distinct categories.
The challenge is to segment Y into L subcollections (i.e.,
clusters). Clustering algorithms such as [1]–[9] approach this
problem by vectorizing Yj’s into yj ∈ RM ,M = n1n3, and
assuming that the yj’s belong to a union of L low-dimensional
subspaces in RM . While this vectorization approach works
well in many settings, it is susceptible to errors in challenging
environments since it does not explicitly take into account the
spatial aspects of images. In this paper, we move away from
the union-of-subspaces model and instead rely on a union-of-
free-submodules (UoFS) model that arranges Yj’s as lateral
slices of a tensor Y ∈ Rn1×N×n3 .

To motivate the UoFS model, we briefly discuss some
abstract algebra concepts in relation to tensors of size n1 ×
N×n3. Let Kn3 denote the set of all tubes in R1×1×n3 . Then
Kn3

forms a commutative ring under regular addition and the
t-product, with identity element given by ~e = [1, 0, 0, .., 0]

∗ ∗ ∗

= + + +…

Ԧ𝑔1 Ԧ𝑔2 Ԧ𝑔𝑛1

𝒟1 𝒟2 𝒟𝑛1𝒳

Fig. 1. Any element of the free module Kn1
n3 over the commutative ring Kn3

can be expressed as a t-linear combination of the generating set.

[12]. Next, let Kn1
n3

denote the set of n1×1×n3 lateral slices.
We can think of the members of Kn1

n3
as vectors of length

n1 in which each element itself is a 1× 1× n3 tube. It then
follows that Kn1

n3
forms a free module of dimension n1 over

Kn3
since one can construct a generating set {

−→
D i ∈ Kn1

n3
}n1
i=1

such that any
−→
X ∈ Kn1

n3
can be uniquely represented as a

t-linear combination of the
−→
D i’s:

−→
X =

∑n1

i=1

−→
D i ∗ ~gi for

~gi ∈ Kn3
[11] (see Fig. 1). Thus, the free module Kn1

n3
over

the ring Kn3
generalizes the concept of a vector space over

a field. The advantage of this representation is that it allows
data to be generated from shifted copies of the generating set,
making any resulting method robust to spatial shifts [18], [19].

We now return to the tensor Y ∈ Rn1×N×n3 and consider
each Yj as an element

−→
Y j ∈ Kn1

n3
. Now consider the analogue

of a vector subspace in the context of a free module, viz., a
free submodule. Specifically, an s-dimensional free submodule
Sn1
n3

of Kn1
n3

is a subset of Kn1
n3

in which each element can be
represented as a t-linear combination of s < n1 elements of
Kn1
n3

. Our assumption is that the images, viewed as lateral
slices, belong to a union of L free submodules {`Sn1

n3
}L`=1 of

dimensions {s` < n1}L`=1. Our goal then is to segment images
into clusters with each cluster corresponding to a submodule.

A. Structure-constrained Low-rank Submodule Clustering

Our approach to clustering images under the UoFS model
involves exploitation of the self-expressiveness property of free
submodules: an image belonging to a free submodule can be
represented as a t-linear combination of other images belon-
ging to the same free submodule.1 Mathematically, this means
there exists a tensor Z ∈ RN×N×n3 such that Y ≈ Y ∗ Z .
In addition, since images belonging to one submodule should
struggle to represent images belonging to another submodule,
we should look for Z’s that are permutations of f-block
diagonal tensors (i.e., whose frontal slices are block-diagonal
matrices). Once we obtain a representation tensor, say, Z∗, that
satisfies these requirements, we can build an affinity matrix
W with (i, j)-th entry wi,j = ‖Z∗(i, j, :)‖F + ‖Z∗(j, i, :)‖F
and use spectral clustering [24] to obtain final clustering.2 The
challenge then is developing a method that leverages the self-
expressiveness property to learn a representation tensor Z that
enforces the UoFS structure on the lateral slices of Y .

There exist a number of recipes in the literature on sub-
space clustering for learning of self-expressive representations.
Among these, the low-rank constraint of [4] and the structure

1This is similar to the self-expressiveness property that is exploited in the
literature on subspace clustering. Note that an implicit assumption in use of
such properties is that the number of linearly independent images in each
cluster exceeds dimensionality of the underlying geometric structure.

2In this paper, we assume the number of clusters L is known a priori.
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constraint of [6] produce some of the best results. We extend
these ideas to free submodule clustering and learn a Z that
not only approximates the data tensor (Y ≈ Y ∗ Z), but that
also has a small multi-rank (measured in `1 norm) as well as
a pronounced f-block diagonal structure. To obtain Z with a
low multi-rank, we minimize its TNN ‖Z‖~. This is because
TNN is the tightest convex relaxation of `1 norm of the tensor
multi-rank [17]. To explicitly impose the f-block diagonal
structure on Z , we use the intuition that images belonging
to different free submodules should have lower correlations.
We capture this intuition in terms of a dissimilarity matrix
M ∈ [0, 1]

N×N whose (i, j)-th entry is defined as follows:
let Ỹ be the tensor obtained by normalizing each lateral slice
of Y by its corresponding Frobenius norm ‖Y(:, i, :)‖F ; then,
mi,j = 1 − exp

(
− 1−|〈Ỹ(:,i,:),Ỹ(:,j,:)〉|

σ

)
, where σ denotes the

empirical average of all 1−|〈Ỹ(:, i, :), Ỹ(:, j, :)〉|’s. Integrating
the goals of a low multi-rank, f-block diagonal structure, and
small approximation error into a single objective function,
we finally pose the problem of structure-constrained low-rank
submodule clustering (SCLRSmC) as follows:

min
Z
‖Z‖~ + λ1

n3∑
k=1

‖M� Z(k)‖1 + λ2‖Y − Y ∗ Z‖2F , (2)

where � denotes elementwise multiplication, while λ1 and λ2
are penalty parameters.

B. An Augmented Lagrangian Method for SCLRSmC

To solve (2) in an efficient manner, we resort to “variable
splitting” of Z , which transforms (2) into the following:

min
C,Q,Z

‖C‖~ + λ1

n3∑
k=1

‖M�Q(k)‖1 + λ2‖Y − Y ∗ Z‖2F

subject to Z = C, and Z = Q. (3)

This constrained problem can now be solved using augmented
Lagrangian (AL) methods [25]. Specifically, the AL of (3) is

L(C,Q,Z,G1,G2, µ) = ‖C‖~ + λ1

n3∑
k=1

‖M�Q(k)‖1

+ λ2‖Y − Y ∗ Z‖2F + 〈G1,Z − C〉+ 〈G2,Z −Q〉

+
µ

2

(
‖Z − C‖2F + ‖Z −Q‖2F

)
, (4)

where the tensors G1 and G2 comprise Lagrange multipliers
and µ ≥ 0 is the AL penalty parameter [25]. We can now use
any inexact AL technique [26], [27] and solve (2) by iteratively
minimizing the AL L(C,Q,Z,G1,G2, µ) over one tensor at a
time while keeping the others fixed.

Updating C: Keeping other tensors in (4) fixed, the sub-
problem of updating C at the (t+ 1)-th iteration has the form

C(t+1)=argmin
C

‖C‖~ + 〈G(t)1 ,Z(t) − C〉+ µ(t)

2
‖Z(t) − C‖2F

= argmin
C

‖C‖~ +
µ(t)

2

∥∥∥∥∥C −
(
Z(t) +

G(t)1

µ(t)

)∥∥∥∥∥
2

F

. (5)

This subproblem can be solved using [9, Theorem 2].

Updating Q: Fixing other tensors in (4), the subproblem
of updating Q can be expressed as

Q(t+1) = argmin
Q

λ1

n3∑
k=1

‖M�Q(k)‖1 + 〈G(t)2 ,Z(t) −Q〉

+
µ(t)

2
‖Z(t) −Q‖2F . (6)

We can decompose (6) into n3 independent subproblems, with
the k-th frontal slice Q(k)(t+1)

of Q being updated as

min
Q

λ1‖M�Q‖1 +
µ(t)

2

∥∥∥∥∥Q− (Z(k)(t) +
G

(k)(t)

2

µ(t)
)

∥∥∥∥∥
2

F

, (7)

which has a closed-form solution given in [6, Proposition 3].
Updating Z: The subproblem of updating Z has the form

Z(t+1) = argmin
Z

λ2‖Y − Y ∗ Z‖2F + 〈G(t)1 ,Z − C(t+1)〉+

〈G(t)2 ,Z −Q(t+1)〉+ µ(t)

2
(‖Z − C(t+1)‖2F + ‖Z −Q(t+1)‖2F )

= argmin
Z

λ2‖Y − Y ∗ Z‖2F

+
µ(t)

2

(
‖Z − P(t+1)

1 ‖2F + ‖Z − P(t+1)
2 ‖2F

)
, (8)

where P(t+1)
1 = C(t+1) − G

(t)
1

µ(t) and P(t+1)
2 = Q(t+1) − G

(t)
2

µ(t) .
We now transform (8) into the Fourier domain to obtain

Ẑ(t+1) = argmin
Ẑ

λ2‖Ŷ − Ŷ ⊗ Ẑ‖2F

+
µ(t)

2

(
‖Ẑ − P̂(t+1)

1 ‖2F + ‖Ẑ − P̂(t+1)
2 ‖2F

)
, (9)

where ⊗ denotes slicewise multiplication. We again break (9)
into n3 subproblems, with update of the k-th frontal slice of
Ẑ given by Ẑ(k)(t+1)

= argminẐ(k) f(Ẑ
(k)) with f(Ẑ(k)) =

λ2‖Ŷ(k)− Ŷ(k)Ẑ(k)‖2F + µ(t)

2 (‖Ẑ(k)− P̂
(k)(t+1)

1 ‖2F +‖Ẑ(k)−
P̂

(k)(t+1)

2 ‖2F ). It can then be shown that

Ẑ(k)(t+1)

= (2λ2Ŷ
(k)T Ŷ(k) + 2µ(t)I)−1(

2λ2Ŷ
(k)T Ŷ(k) + µ(t)(P̂

(k)(t+1)

1 + P̂
(k)(t+1)

2 )
)
. (10)

After updating each frontal slice of Ẑ(t+1), the final update
for Z(t+1) can be expressed as Z(t+1) = ifft(Ẑ(t+1), [ ], 3).
The overall algorithm is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

We evaluate the clustering performance of SCLRSmC on
the UCSD dynamic scenes dataset3 and the MNIST dataset4.
The reported results, corresponding to ρ = 1.9, µ(0) = 0.1,
µmax = 1010, and ε = 10−5, are compared with those obtai-
ned using several state-of-the-art clustering methods, namely,
SLRSmC [20], SSmC [18], SSC [5], LRR [4], and SC-LRR
[6]. Note that the parameters in each of these methods are
tuned to achieve the best clustering performance.

The UCSD dynamic scene dataset consists of 18 video
sequences and manifests a variety of challenges since the

3http://www.svcl.ucsd.edu/projects/background subtraction/
4http://yann.lecun.com/exdb/mnist/
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Algorithm 1 An Inexact AL Method for SCLRSmC
Input: Data Y , matrix M, and parameters λ1, λ2, ρ, µmax, ε.
Initialize: Penalty parameter µ(0), tensors C(0) = Q(0) =

Z(0) = G(0)1 = G(0)2 ← 0 ∈ RN×N×n3 , and t← 0.
1: while not converged do
2: Fix other tensor variables and update C by solving (5).
3: Fix other tensor variables and update Q by solving (6).
4: Fix other tensor variables and update Z by solving (8).
5: G(t+1)

1 ← G(t)1 + µ(t)(Z(t+1) − C(t+1)).
6: G(t+1)

2 ← G(t)2 + µ(t)(Z(t+1) −Q(t+1)).
7: µ(t+1) ← min(µmax, ρµ

(t)).
8: break if

max


‖Z(t+1) − C(t+1)‖∞, ‖Z(t+1) −Q(t+1)‖∞
‖Z(t+1) −Z(t)‖∞, ‖C(t+1) − C(t)‖∞
‖Q(t+1) −Q(t)‖∞

 < ε.

9: t← t+ 1.
10: end while
Output: Representation tensor Z∗ = Z(t+1).

videos involve significant camera motion and highly dyna-
mic backgrounds such as water, smoke, and fire. We select
10 sequences from the dataset, labeled birds, boats, bottle,
chopper, cyclists, flock, hockey, landing, ocean, and skiing.
Each of these sequences comprises 30 to 246 images, which
we downsample to 90 × 135. Our results correspond to
random selection of L ∈ {3, 4, 5, 6, 7} sequences from the 10
categories, which are then input to the clustering algorithms.
The final results are shown in Table I, which correspond to an
average of 20 randomly selected sequences for each value of
L. Clearly, SCLRSmC outperforms other methods by a large
margin, which demonstrates its effectiveness.

TABLE I
CLUSTERING ERROR (%) ON THE UCSD DYNAMIC SCENES DATASET

WITH DIFFERENT NUMBER OF CLUSTERS (L)

L SCLRSmC SLRSmC SSmC SSC LRR SC-LRR
3 1.27 10.69 21.59 3.11 9.28 7.14
4 3.83 16.81 29.29 16.91 18.86 10.9
5 4.59 26.36 33.16 17.35 20.46 20.23
6 3.77 25.55 27.93 18.57 19.80 20.41
7 4.11 28.83 31.72 19.71 21.24 25.25

Our next set of results corresponds to the relatively easier
MNIST dataset [28], which comprises 70,000 centered 28×28
images of handwritten digits. Subspace clustering methods are
ideal for this dataset since it can be argued that vectorized
images of each digit in this dataset approximately lie near a
subspace [29]. Similar to [7], we consider clustering of digits
{2, 4, 8} and randomly select 100 images of each of these
digits (i.e., N = 300). The results, averaged over 20 random
trials, are presented in the first row of Table II. Within the class
of submodule clustering methods (SCLRSmC, SLRSmC, and
SSmC), we observe that SCLRSmC outperforms the other two
methods. At the same time, SC-LRR and SSC—both of which
are based on the UoS model—outperform SCLRSmC. We
conjecture that the reason for this is perfect spatial alignment
of MNIST digits. Specifically, the approximation Y ≈ Y ∗ Z

means SCLRSmC is trying to represent every pixel in a given
row of an image as a linear combination of all pixels in
the corresponding rows of other images. While this imparts
robustness to spatial shifts, it also means SCLRSmC solves
a significantly harder problem in the case of aligned images.
Indeed, in the case of perfect alignment, every pixel in an
image should be representable as a linear combination of
corresponding pixels in other images. This is precisely the
problem solved by subspace clustering, which likely explains
its superior performance in the case of aligned images.

TABLE II
CLUSTERING ERROR (%) ON THE MNIST HANDWRITTEN DIGIT DATASET

SCLRSmC SLRSmC SSmC SSC LRR SC-LRR
Aligned 10.5 24.7 28.88 5.57 19.58 3.42
Shifted 15.5 21.83 28.88 42.75 46.42 36.82

(a) (b)

Fig. 2. Visualization of the dissimilarity matrix M for (a) aligned and
(b) spatially shifted MNIST images (L = 3). Here, lighter shades of gray
represent higher dissimilarity among images.

In order to validate our earlier conjecture as well as test
the robustness of SCLRSmC against spatial shifts, we modify
the MNIST dataset by adding a random (left or right) 6-pixel
horizontal shift to each image [18]. Note that these spatial
shifts also reduce correlations among images belonging to the
same category. This, in turn, changes the dissimilarity matrix
M, which plays a central role in SCLRSmC. It can, however,
be seen from Fig. 2 that these changes are not catastrophic
(compare, e.g., Fig. 2(a) and Fig. 2(b)). In particular, while
the block diagonal structure of M gets less pronounced in
the case of spatially shifted images, it is not completely
eliminated. Finally, the clustering results under the modified
MNIST dataset are reported in the second row of Table II. We
make two observations from these results. First, SCLRSmC
now outperforms all other methods. Second, performance of
all subspace clustering methods significantly degrades in the
presence of unaligned data. This points to the usefulness of
the UoFS model for clustering of unaligned imaging data.

V. CONCLUSION

In this paper, we presented a novel method for clustering of
imaging data. The proposed method stacks images as lateral
slices in a third-order tensor and then models them as lying
near a union of low-dimensional free submodules. In order to
segment images into their respective free submodules, it makes
use of the self-expressiveness property of free submodules
and uses an inexact augmented Lagrangian method to learn
a representation tensor that has a low multi-rank and f-block
diagonal structure. Numerical experiments performed on two
real-world datasets demonstrate usefulness of the proposed
method, especially for clustering of unaligned images. Pos-
sible future works include improving the method further for
perfectly aligned images and developing its online variants.
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