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Identifiability of Kronecker-structured Dictionaries
for Tensor Data

Zahra Shakeri, Anand D. Sarwate, and Waheed U. Bajwa

Abstract—This paper derives sufficient conditions for local
recovery of coordinate dictionaries comprising a Kronecker-
structured dictionary that is used for representing Kth-order
tensor data. Tensor observations are assumed to be generated
from a Kronecker-structured dictionary multiplied by sparse
coefficient tensors that follow the separable sparsity model. This
work provides sufficient conditions on the underlying coordinate
dictionaries, coefficient and noise distributions, and number of
samples that guarantee recovery of the individual coordinate
dictionaries up to a specified error, as a local minimum of
the objective function, with high probability. In particular, the
sample complexity to recover K coordinate dictionaries with
dimensions mk × pk up to estimation error εk is shown to be
maxk∈[K]O(mkp

3
kε
−2
k ).

Index Terms—Dictionary identification, dictionary learning,
Kronecker-structured dictionary, sample complexity, sparse re-
presentations, tensor data, Tucker decomposition.

I. INTRODUCTION

Rapid advances in sensing and data acquisition techno-
logies are increasingly resulting in individual data samples
or signals structured by multiple modes. Examples include
hyperspectral video (four modes; two spatial, one temporal,
and one spectral), colored depth video (five modes; two
spatial, one temporal, one spectral, and one depth), and four-
dimensional tomography (four modes; three spatial and one
temporal). Such data form multiway arrays and are called
tensor data [2], [3].

Typical feature extraction approaches that handle tensor
data tend to collapse or vectorize the tensor into a long
one-dimensional vector and apply existing processing met-
hods for one-dimensional data. Such approaches ignore the
structure and inter-mode correlations in tensor data. More
recently, several works instead assume a structure on the
tensor of interest through tensor decompositions such as the
CANDECOMP/PARAFAC (CP) decomposition [4], Tucker
decomposition [5], and PARATUCK decomposition [3] to
obtain meaningful representations of tensor data. Because
these decompositions involve fewer parameters, or degrees of
freedom, in the model, inference algorithms that exploit such
decompositions often perform better than those that assume
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the tensors to be unstructured. Moreover, algorithms utilizing
tensor decompositions tend to be more efficient in terms of
storage and computational costs: the cost of storing the decom-
position can be substantially lower, and numerical methods can
exploit the structure by solving simpler subproblems.

In this work, we focus on the problem of finding sparse
representations of tensors that admit a Tucker decomposition.
More specifically, we analyze the dictionary learning (DL)
problem for tensor data. The traditional DL problem for
vector-valued data involves constructing an overcomplete basis
(dictionary) such that each data sample can be represented by
only a few columns (atoms) of that basis [6]. To account for the
Tucker structure of tensor data, we require that the dictionary
underlying the vectorized versions of tensor data samples
be Kronecker structured (KS). That is, it is comprised of
coordinate dictionaries that independently transform various
modes of the tensor data. Such dictionaries have successfully
been used for tensor data representation in applications such
as hyperspectral imaging, video acquisition, distributed sen-
sing, magnetic resonance imaging, and the tensor completion
problem (multidimensional inpainting) [7], [8]. To provide
some insights into the usefulness of KS dictionaries for tensor
data, consider the hypothetical problem of finding sparse
representations of 1024 × 1024 × 32 hyperspectral images.
Traditional DL methods require each image to be rearranged
into a one-dimensional vector of length 225 and then learn
an unstructured dictionary that has a total of (225p) unknown
parameters, where p ≥ 225. In contrast, KS DL only requires
learning three coordinate dictionaries of dimensions 1024×p1,
1024 × p2, and 32 × p3, where p1, p2 ≥ 1024, and p3 ≥ 32.
This gives rise to a total of [1024(p1 + p2) + 32p3] unknown
parameters in KS DL, which is significantly smaller than 225p.
While such “parameter counting” points to the usefulness of
KS DL for tensor data, a fundamental question remains open in
the literature: what are the theoretical limits on the learning of
KS dictionaries underlying Kth-order tensor data? To answer
this question, we examine the KS-DL objective function and
find sufficient conditions on the number of samples (or sample
complexity) for successful local identification of coordinate
dictionaries underlying the KS dictionary. To the best of our
knowledge, this is the first work presenting such identification
results for the KS-DL problem.

A. Our Contributions
We derive sufficient conditions on the true coordinate

dictionaries, coefficient and noise distributions, regularization
parameter, and the number of data samples such that the KS-
DL objective function has a local minimum within a small
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neighborhood of the true coordinate dictionaries with high pro-
bability. Specifically, suppose the observations are generated
from a true dictionary D0 ∈ Rm×p consisting of the Kronec-
ker product of K coordinate dictionaries, D0

k ∈ Rmk×pk , k ∈
{1, . . . ,K}, where m =

∏K
k=1mk and p =

∏K
k=1 pk. Our

results imply that N = maxk∈[K] Ω(mkp
3
kε
−2
k ) samples are

sufficient (with high probability) to recover the underlying
coordinate dictionaries D0

k up to the given estimation errors
εk, k ∈ {1, . . . ,K}.

B. Relationship to Prior Work

Among existing works on structured DL that have focused
exclusively on the Tucker model for tensor data, several have
only empirically established the superiority of KS DL in
various settings for 2nd and 3rd-order tensor data [8]–[13].

In the case of unstructured dictionaries, several works do
provide analytical results for the dictionary identifiability
problem [14]–[21]. These results, which differ from each
other in terms of the distance metric used, cannot be trivially
extended for the KS-DL problem. In this work, we focus
on the Frobenius norm as the distance metric. Gribonval et
al. [20] and Jung et al. [21] also consider this metric, with the
latter work providing minimax lower bounds for dictionary
reconstruction error. In particular, Jung et al. [21] show that
the number of samples needed for reliable reconstruction (up
to a prescribed mean squared error ε) of an m× p dictionary
within its local neighborhood must be at least on the order
of N = Ω(mp2ε−2). Gribonval et al. [20] derive a competing
upper bound for the sample complexity of the DL problem and
show that N = Ω(mp3ε−2) samples are sufficient to guarantee
(with high probability) the existence of a local minimum of
the DL cost function within the ε neighborhood of the true
dictionary. In our previous works, we have obtained lower
bounds on the minimax risk of KS DL for 2nd-order [22] and
Kth-order tensors [23], [24], and have shown that the number
of samples necessary for reconstruction of the true KS dicti-
onary within its local neighborhood up to a given estimation
error scales with the sum of the product of the dimensions of
the coordinate dictionaries, i.e., N = Ω(p

∑K
k=1mkpkε

−2).
Compared to this sample complexity lower bound, our upper
bound is larger by a factor maxk p

2
k.

In terms of the analytical approach, although we follow the
same general proof strategy as the vectorized case of Gribonval
et al. [20], our extension poses several technical challenges.
These include: (i) expanding the asymptotic objective function
into a summation in which individual terms depend on coor-
dinate dictionary recovery errors, (ii) translating identifica-
tion conditions on the KS dictionary to conditions on its
coordinate dictionaries, and (iii) connecting the asymptotic
objective function to the empirical objective function using
concentration of measure arguments; this uses the coordinate-
wise Lipschitz continuity property of the KS-DL objective
function with respect to the coordinate dictionaries. To address
these challenges, we require additional assumption on the
generative model. These include: (i) the true dictionary and
the recovered dictionary belong to the class of KS dictionaries,
and (ii) dictionary coefficient tensors follow the separable

sparsity model that requires nonzero coefficients to be grouped
in blocks [24], [25].

C. Notational Convention and Preliminaries

Underlined bold upper-case, bold upper-case and lower-
case letters are used to denote tensors, matrices and vectors,
respectively, while non-bold lower-case letters denote scalars.
For a tensor X, its (i1, . . . , iK)-th element is denoted as
xi1...iK . The i-th element of vector v is denoted by vi and
the ij-th element of matrix X is denoted as xij . The k-th
column of X is denoted by xk and XI denotes the matrix
consisting of the columns of X with indices I. We use |I|
for the cardinality of the set I. Sometimes we use matrices
indexed by numbers, such as X1, in which case a second index
(e.g., x1,k) is used to denote its columns. We use vec(X) to
denote the vectorized version of matrix X, which is a column
vector obtained by stacking the columns of X on top of one
another. We use diag (X) to denote the vector comprised of the
diagonal elements of X and Diag (v) to denote the diagonal
matrix, whose diagonal elements are comprised of elements of
v. The elements of the sign vector of v, denoted as sign(v),
are equal to sign(vi) = vi/|vi|, for vi 6= 0, and sign(vi) = 0
for vi = 0, where i denotes the index of any element of v.
We also use sin(v) to denote the vector with elements sin(vi)
(used similarly for other trigonometric functions). Norms are
given by subscripts, so ‖v‖0, ‖v‖1, and ‖v‖2 are the `0, `1,
and `2 norms of v, while ‖X‖2 and ‖X‖F are the spectral
and Frobenius norms of X, respectively. We use [K] to denote
{1, 2, . . . ,K} and X1:K to denote {Xk}Kk=1.

We write X⊗Y for the Kronecker product of two matrices
X ∈ Rm×n and Y ∈ Rp×q , where the result is an mp ×
nq matrix and we have ‖X ⊗Y‖F = ‖X‖F ‖Y‖F [26]. We
also use

⊗
k∈K Xk , X1 ⊗ · · · ⊗ XK . We define HX ,

(X>X)−1, X+ , HXX>, and PX , XX+ for full rank
matrix X. In the body, we sometimes also use ∆f(X;Y) ,
f(X)− f(Y).

For matrices X1 and X2 of appropriate dimensions, we
define their distance to be d(X,Y) = ‖X − Y‖F . For X0

belonging to some set X , we define

Sε(X0) ,
{
X ∈ X : ‖X−X0‖F = ε

}
,

Bε(X0) ,
{
X ∈ X : ‖X−X0‖F < ε

}
,

B̄ε(X0) ,
{
X ∈ X : ‖X−X0‖F ≤ ε

}
. (1)

Note that while Sε(X0) represents the surface of a sphere,
we use the term “sphere” for simplicity. We use the standard
“big-O” (Knuth) notation for asymptotic scaling.

1) Tensor Operations and Tucker Decomposition for Ten-
sors: A tensor is a multidimensional array where the order of
the tensor is defined as the number of dimensions in the array.

Tensor Unfolding: A tensor X ∈ Rp1×p2×···×pK of order
K can be expressed as a matrix by reordering its elements to
form a matrix. This reordering is called unfolding: the mode-k
unfolding matrix of a tensor is a pk ×

∏
i6=k pi matrix, which

we denote by X(k). Each column of X(k) consists of the vector
formed by fixing all indices of X except the one in the kth-
order. The k-rank of a tensor X is defined by rank(X(k));
trivially, rank(X(k)) ≤ pk.



3

Tensor Multiplication: The mode-k matrix product of
the tensor X and a matrix A ∈ Rmk×pk , denoted by
X ×k A, is a tensor of size p1 × . . . pk−1 × mk ×
pk+1 · · ·×pK whose elements are (X×kA)i1...ik−1jik+1...iK =∑pk
ik=1 xi1...ik−1ikik+1...iK

ajik . The mode-k matrix product of
X and A and the matrix multiplication of X(k) and A are
related [3]:

Y = X×k A⇔ Y(k) = AX(k). (2)

Tucker Decomposition: The Tucker decomposition decom-
poses a tensor into a core tensor multiplied by a matrix
along each mode [3], [5]. We take advantage of the Tuc-
ker model since we can relate the Tucker decomposition to
the Kronecker representation of tensors [25]. For a tensor
Y ∈ Rm1×m2×···×mK of order K, if rank(Y(k)) ≤ pk holds
for all k ∈ [K] then, according to the Tucker model, Y can
be decomposed into:

Y = X×1 D1 ×2 D2 ×3 · · · ×K DK , (3)

where X ∈ Rp1×p2×···×pK denotes the core tensor and
Dk ∈ Rmk×pk are factor matrices. The following is implied
by (3) [3]:

Y(k) = DkX(k)(DK ⊗ · · · ⊗Dk+1 ⊗Dk−1 ⊗ · · · ⊗D1)>.

Since the Kronecker product satisfies vec(BXA>) = (A ⊗
B) vec(X), (3) is equivalent to

vec(Y) =
(
DK ⊗DK−1 ⊗ · · · ⊗D1

)
vec(X), (4)

where vec(Y) , vec(Y(1)) and vec(X) , vec(X(1)).
2) Definitions for Matrices: We use the following de-

finitions for a matrix D with unit-norm columns: δs(D)
denotes the restricted isometry property (RIP) constant of
order s for D [27]. We define the worst-case coherence of
D as µ1(D) = max i,j

i6=j

∣∣d>i dj∣∣. We also define the order-s

cumulative coherence of D as

µs(D) , max
|J |≤s

max
j 6∈J
‖D>Jdj‖1. (5)

Note that for s = 1, the cumulative coherence is equivalent to
the worst-case coherence and µs(D) ≤ sµ1(D) [20]. For D =⊗

k∈[K] Dk, where Dk’s have unit-norm columns, µ1(D) =
maxk∈[K] µ1(Dk) [28, Corollary 3.6] and it can be shown
that1:

µs(D) ≤ max
k∈[K]

µsk(Dk)

( ∏
i∈[K],
i 6=k

(1 + µsi−1(Di))

)
. (6)

The rest of the paper is organized as follows. We formulate
the KS-DL problem in Section II. In Section III, we provide
analysis for asymptotic recovery of coordinate dictionaries
composing the KS dictionary and in Section IV, we present
sample complexity results for identification of coordinate
dictionaries that are based on the results of Section III. Finally,
we conclude the paper in Section V. In order to keep the main
exposition simple, proofs of the lemmas and propositions are
relegated to appendices.

1The proof of (6) is provided in Appendix C.

II. SYSTEM MODEL

We assume the observations are Kth-order tensors Y ∈
Rm1×m2×···×mK . Given generating coordinate dictionaries
D0
k ∈ Rmk×pk , coefficient tensor X ∈ Rp1×p2×···×pK , and

noise tensor W, we can write y , vec(Y) using (4) as2

y =

( ⊗
k∈[K]

D0
k

)
x + w, ‖x‖0 ≤ s, (7)

where x = vec(X) ∈ Rp denotes the sparse genera-
ting coefficient vector, D0 =

⊗
D0
k ∈ Rm×p denotes

the underlying KS dictionary, and w = vec(W) ∈ Rm
denotes the underlying noise vector. Here, D0

k ∈ Dk =
{Dk ∈ Rmk×pk , ‖dk,j‖2 = 1,∀j ∈ [pk]} for k ∈ [K], p =∏
k∈[K] pk and m =

∏
k∈[K]mk.3 We use

⊗
for
⊗

k∈[K] in
the following for simplicity of notation. We assume we are
given N noisy tensor observations, which are then stacked in
a matrix Y = [y1, . . . ,yN ]. To state the problem formally,
we first make the following assumptions on distributions of x
and w for each tensor observation.

Coefficient distribution: We assume the coefficient tensor
X follows the random “separable sparsity” model. That is,
x = vec(X) is sparse and the support of nonzero entries of x
is structured and random. Specifically, we sample sk elements
uniformly at random from [pk], k ∈ [K]. Then, the random
support of x is {J ⊆ [p], |J | = s} and is associated with

{J1 × J2 × · · · × JK : Jk ⊆ [pk], |Jk| = sk, k ∈ [K]}

via lexicographic indexing, where s =
∏
k∈[K] sk, and the

support of x1:N ’s are assumed to be independent and identi-
cally distributed (i.i.d.). This model requires nonzero entries
of the coefficient tensors to be grouped in blocks and the
sparsity level associated with each coordinate dictionary to
be small [25].4

We now make the same assumptions for the distribution of
x as assumptions A and B in Gribonval et al. [20]. These
include: (i) E

{
xJx

>
J |J

}
= E

{
x2
}
Is, (ii) E

{
xJσ

>
J |J

}
=

E {|x|} Is, where σ = sign(x), (iii) E
{
σJσ

>
J |J

}
= Is, (iv)

magnitude of x is bounded, i.e., ‖x‖2 ≤ Mx almost surely,
and (v) nonzero entries of x have a minimum magnitude, i.e.,
minj∈J |xj | ≥ xmin almost surely. Finally, we define κx ,
E {|x|} /

√
E {x2} as a measure of the flatness of x (κx ≤ 1,

with κx = 1 when all nonzero coefficients are equal [20]).
Noise distribution: We make following assumptions on the

distribution of noise, which is assumed i.i.d. across data
samples: (i) E

{
ww>

}
= E

{
w2
}
Im, (ii) E

{
wx>|J

}
=

E
{
wσ>|J

}
= 0, and (iii) magnitude of w is bounded, i.e.,

‖w‖2 ≤Mw almost surely.
Our goal in this paper is to recover the underlying coordi-

nate dictionaries, D0
k, from N noisy realizations of tensor data.

2We have reindexed Dk’s in (4) for ease of notation.
3Note that the Dk’s are compact sets on their respective oblique manifolds

of matrices with unit-norm columns [20].
4In contrast, for coefficients following the random non-separable sparsity

model, the support of the nonzero entries of the coefficient vector are assumed
uniformly distributed over {J ⊆ [p] : |J | = s}.
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To solve this problem, we take the empirical risk minimization
approach and define

fy (D1:K) , inf
x′∈Rp

{
1

2

∥∥∥y − (⊗Dk

)
x′
∥∥∥2
2

+ λ‖x′‖1
}
, and

FY (D1:K) ,
1

N

N∑
n=1

fyn (D1:K) , (8)

where λ is a regularization parameter. In theory, we can
recover the coordinate dictionaries by solving the following
regularized optimization program:

min
Dk∈Dk

k∈[K]

FY (D1:K) . (9)

More specifically, given desired errors {εk}Kk=1, we want a
local minimum of (9) to be attained by coordinate dictio-
naries D̂k ∈ Bεk(D0

k), k ∈ [K]. That is, there exists a set
{D̂k}k∈[K] ⊂

{
Dk ∈ Bεk(D0

k)
}
k∈[K]

such that FY(D̂1:K) ≤
FY(D1:K).5 To address this problem, we first minimize the
statistical risk:

min
Dk∈Dk

k∈[K]

fP (D1:K) , min
Dk∈Dk

k∈[K]

Ey {fy (D1:K)} . (10)

Then, we connect FY (D1:K) to fP (D1:K) using concentra-
tion of measure arguments and obtain the number of samples
sufficient for local recovery of the coordinate dictionaries.
Such a result ensures that any KS-DL algorithm that is guaran-
teed to converge to a local minimum, and which is initialized
close enough to the true KS dictionary, will converge to a
solution close to the generating coordinate dictionaries (as
opposed to the generating KS dictionary, which is guaranteed
by analysis of the vector-valued setup [20]).

III. ASYMPOTOTIC IDENTIFIABILITY RESULTS

In this section, we provide an identifiability result for the
KS-DL objective function in (10). The implications of this
theorem are discussed in Section V.

Theorem 1. Suppose the observations are generated accor-
ding to (7) and the dictionary coefficients follow the separable
sparsity model of Section II. Further, assume the following
conditions are satisfied:

sk ≤
pk

8
(
‖D0

k‖2 + 1
)2 , (11)

max
k∈[K]

{
µsk(D0

k)
}
≤ 1

4
, µs(D

0) <
1

2
,

and

E
{
x2
}

MxE {|x|}
>

24
√

3(4.5K/2)K

(1− 2µs(D0))

max
k∈[K]

{
sk
pk

∥∥∥D0
k
>
D0
k − I

∥∥∥
F

(∥∥D0
k

∥∥
2

+ 1
)}

. (12)

5We focus on the local recovery of coordinate dictionaries (i.e., D̂k ∈
Bεk (D0

k)) due to ambiguities in the general DL problem. This ambiguity is a
result of the fact that dictionaries are invariant to permutation and sign flips of
dictionary columns, resulting in equivalent classes of dictionaries. Some works
in the literature on conventional overcome this issue by defining distance
metrics that capture the distance between these equivalent classes [15]–[17].

Define

Ck,min , 8(3
K+1

2 )κ2x

(
sk
pk

)∥∥∥D0
k
>
D0
k − I

∥∥∥
F

(∥∥D0
k

∥∥
2

+ 1
)
,

Cmax ,
1

3K(1.5)K/2
E {|x|}
Mx

(1− 2µs(D
0)). (13)

Then, the map D1:K 7→ fP (D1:K) admits a local minimum
D̂ =

⊗
k∈[K] D̂k such that D̂k ∈ Bεk(D0

k), k ∈ [K], for any
εk > 0 as long as

λ ≤ xmin

8× 3(K−1)/2
, (14)

λCk,min

E {|x|}
< εk <

λCmax

E {|x|}
, k ∈ [K], (15)

and
Mw

Mx
< 3(1.5)K/2

(
λKCmax

E {|x|}
−
∑
k∈[K]

εk

)
. (16)

A. Discussion

Theorem 1 captures how the existence of a local minimum
for the statistical risk minimization problem depends on vari-
ous properties of the coordinate dictionaries and demonstrates
that there exists a local minimum of fP (D1:K) that is in local
neighborhoods of the coordinate dictionaries. This ensures
asymptotic recovery of coordinate dictionaries within some
local neighborhood of the true coordinate dictionaries, as
opposed to KS dictionary recovery for vectorized observati-
ons [20, Theorem 1].

We now explicitly compare conditions in Theorem 1 with
the corresponding ones for vectorized observations [20, Theo-
rem 1]. Given that the coefficients are drawn from the separa-
ble sparsity model, the sparsity constraints for the coordinate
dictionaries in (11) translate into

s

p
=
∏
k∈[K]

sk
pk
≤ 1

8K
∏
k

(
‖D0

k‖2 + 1
)2 . (17)

Therefore, we have
s

p
= O

(
1∏

k‖D0
k‖22

)
= O

(
1

‖D0‖22

)
.

Using the fact that
∥∥D0

∥∥
2
≥ ‖D0‖F /

√
m =

√
p/
√
m,

this translates into sparsity order s = O (m). Next, the left
hand side of the condition in (12) is less than 1. Moreover,
from properties of the Frobenius norm, it is easy to show
that

∥∥∥D0
k
>
D0
k − I

∥∥∥
F
≥
√
pk(pk −mk)/mk. The fact that∥∥D0

k

∥∥
2
≥ √pk/

√
mk and the assumption µsk(D0

k) ≤ 1/4
imply that the right hand side of (12) is lower bounded by
Ω
(

maxk sk
√

(pk −mk)/m2
k

)
. Therefore, Theorem 1 applies

to coordinate dictionaries with dimensions pk ≤ m2
k and

subsequently, KS dictionaries with p ≤ m2. Both the sparsity
order and dictionary dimensions are in line with the scaling
results for vectorized data [20].

B. Proof Outline

For given radii 0 < εk ≤ 2
√
pk, k ∈ [K], the spheres

Sεk(D0
k) are non-empty. This follows from the construction
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of dictionary classes, Dk’s. Moreover, the mapping D1:K 7→
fP (D1:K) is continuous with respect to the Frobenius norm
‖Dk−D′k‖F on all Dk,D

′
k ∈ Rmk×pk , k ∈ [K] [29]. Hence,

it is also continuous on compact constraint sets Dk’s. We
derive conditions on the coefficients, underlying coordinate
dictionaries, Mw, regularization parameter, and εk’s such that

∆fP (ε1:K) , inf
Dk∈Sεk (D

0
k)

∆fP
(
D1:K ;D0

1:K

)
> 0. (18)

This along with the compactness of closed balls B̄εk(D0
k) and

the continuity of the mapping D1:K 7→ fP (D1:K) imply the
existence of a local minimum of fP (D1:K) achieved by D̂1:K

in open balls, Bεk(D0
k)’s, k ∈ [K].

To find conditions that ensure ∆fP (ε1:K) > 0, we take the
following steps: given coefficients that follow the separable
sparsity model, we can decompose any DJ , |J | = s, as

DJ =
⊗

Dk,Jk
, (19)

where |Jk| = sk for k ∈ [K].6 Given a generating σ =
sign(x), we obtain x̂ by solving fy (D1:K) with respect to x′,
conditioned on the fact that sign(x̂) = σ̂ = σ. This eliminates
the dependency of fy (D1:K) on infx′ by finding a closed-
form expression for fy (D1:K) given σ̂ = σ, which we denote
as φy (D1:K |σ). Defining

φP (D1:K |σ) , E {φy (D1:K |σ)} , (20)

we expand ∆φP
(
D1:K ;D0

1:K |σ
)

using (19) and separate the
terms that depend on each radius εk = ‖Dk−D0

k‖F to obtain
conditions for sparsity levels sk, k ∈ [K], and coordinate
dictionaries such that ∆φP

(
D1:K ;D0

1:K |σ
)
> 0. Finally, we

derive conditions on Mw, coordinate dictionary coherences
and εk’s that ensure σ̂ = σ and ∆fP

(
D1:K ;D0

1:K

)
=

∆φP
(
D1:K ;D0

1:K |σ
)
.

Remark 1. The key assumption in the proof of Theorem 1 is
expanding DJ according to (19). This is a consequence of
the separable sparsity model for dictionary coefficients. For a
detailed discussion on the differences between the separable
sparsity model and the random sparsity model for tensors, we
refer the readers to our earlier work [22].

Remark 2. Although some of the forthcoming lemmas needed
of Theorem 1 impose conditions on Dk’s as well as true coor-
dinate dictionaries D0

k’s, we later translate these conditions
exclusively in terms of D0

k’s and εk’s.

The proof of Theorem 1 relies on the following propositions
and lemmas. The proofs of these are provided in Appendix A.

Proposition 1. Suppose the following inequalities hold for
k ∈ [K]:

sk ≤
pk

8(‖D0
k‖2 + 1)2

and max
k∈[K]

{
δsk(D0

k)
}
≤ 1

4
. (21)

Then, for

λ̄ ,
λ

E {|x|}
≤ 1

8× 3(K−1)/2
, (22)

6The separable sparsity distribution model implies sampling without repla-
cement from columns of Dk .

any collection of {εk : εk ≤ 0.15, k ∈ [K]}, and for all Dk ∈
Sεk(D0

k), we have :

∆φP
(
D1:K ;D0

1:K |σ
)
≥ sE{x2}

8

∑
k∈[K]

εk
pk

(
εk − εk,min(λ̄)

)
,

(23)

where

εk,min(λ̄) ,
3(K−1)/2

2

(
1.5

K−1
2 + 2(K+1)λ̄

)
λ̄Ck,min.

In addition, if

λ̄ ≤ 0.15

maxk∈[K] Ck,min
, (24)

then εk,min(λ̄) < 0.15. Thus, ∆φP
(
D1:K ;D0

1:K |σ
)
> 0 for

all εk ∈ (εk,min(λ̄), 0.15], k ∈ [K].

The proof of Proposition 1 relies on the following lemmas
as well as supporting lemmas from the analysis of vectorized
data [20, Lemmas 4,6,7,15,16].

Lemma 1. Let D =
⊗

Dk where δs(Dk) < 1 for k ∈ [K],
and J be a support set generated by the separable sparsity
model. Then any DJ , |J | = s, can be decomposed as DJ =⊗

Dk,Jk
, where |Jk| = sk and rank(Dk,Jk

) = sk, for
k ∈ [K]. Also, the following relations hold for this model:7

PDJ =
⊗

PDk,Jk
,D+
J =

⊗
D+
k,Jk

,HDJ =
⊗

HDk,Jk
,

(25)

where P and H are defined in Section I-C.

Lemma 2. Given D1:K and D0
1:K , the difference⊗

Dk −
⊗

D0
k

=
∑
k∈[K]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K , (26)

where without loss of generality, each D̃k,i is equal to either
D0
i or Di, for k ∈ [K].

We drop the k index from D̃k,i for ease of notation
throughout the rest of the paper.

Lemma 3. Let σ ∈ {−1, 0, 1}p be an arbitrary sign vector
and J = J (σ) be its support. Define8

φy (D1:K |σ) , inf
x∈Rp

supp(x)⊂J

1

2

∥∥∥y − (⊗Dk

)
x
∥∥∥2
2

+ λσ>x.

(27)

If D>k,Jk
Dk,Jk

is invertible for k ∈ [K], then x̂ minimizes
φy (D1:K |σ), where

x̂J =
(⊗

D+
k,Jk

)
y − λ

(⊗(
D>k,Jk

Dk,Jk

)−1)
σJ ,

(28)

and x̂J c = 0. Thus, φy (D1:K |σ) can be expressed in closed

7The equations follow from basic properties of the Kronecker product [26].
8The quantity φy (D1:K |σ) is not equal to φy (D1:K) conditioned on σ

and the expression is only used for notation.
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form as:

φy (D1:K |σ) =
1

2
‖y‖22 −

1

2
y>
(⊗

PDk,Jk

)
y

+ λσ>J

(⊗
D+
k,Jk

)
y − λ2

2
σ>J

(⊗
HDk,Jk

)
σJ . (29)

Lemma 4. Assume max
{
δsk(D0

k), δsk(Dk)
}
< 1 for k ∈

[K] and let D̃k be equal to either D0
k or Dk. For

∆φP
(
D1:K ;D0

1:K

∣∣σ) , φP (D1:K |σ)− φP
(
D0

1:K |σ
)
,
(30)

we have

∆φP
(
D1:K ;D0

1:K

∣∣σ)
=

E{x2}
2

∑
k∈[K]

EJ1

{
Tr
[
D0

1
>
PD̃1,J1

D0
1

]}
. . .

EJk

{
Tr
[
D0
k
>

(Imk
−PDk,Jk

)D0
k

]}
. . .EJK

{
Tr
[
D0
K
>
PD̃K,JK

D0
K

]}
− λE{|x|}

∑
k∈[K]

EJ1

{
Tr
[
D̃+

1,J1
D0

1

]}
. . .

EJk

{
Tr
[
Isk −D+

k,Jk
D0
k

]}
. . .EJK

{
Tr
[
D̃+
K,JK

D0
K

]}
+
λ2

2

∑
k∈[K]

EJ1

{
Tr
[
HD̃1,J1

]}
. . .

EJk

{
Tr
[
HD0

k,Jk
−HDk,Jk

]}
. . .EJK

{
Tr
[
HD̃K,JK

]}
.

(31)

Lemma 5. For any Dk ∈ Dk satisfying RIP of order sk, given
Jk ⊂ [pk] and |Jk| = sk, the following relations hold:

‖Dk,Jk
‖2 =

∥∥∥Dk,Jk

>
∥∥∥
2
≤
√

1 + δsk(Dk), (32)

δsk(Dk) ≤ µsk−1(Dk). (33)

Lemma 6 (Lemma 4 [20]). Let Dk’s be coordinate dictiona-
ries such that δsk(Dk) < 1. Then for any Jk ⊂ pk, |Jk| = sk,
HDk,Jk

exists and∥∥∥HDk,Jk

∥∥∥
2
≤ 1

1− δsk(Dk)
,
∥∥∥D+

k,Jk

∥∥∥
2
≤ 1√

1− δsk(Dk)
,

(34)

and for any D′k such that ‖Dk − D′k‖F ≤ εk <√
1− δsk(Dk):

1− δsk(D′k) ≥ (
√

1− δsk(Dk)− εk)2 , 1− δk. (35)

Lemma 7 (Lemma 6 [20]). Given any D1
k,D

2
k ∈ Dk,

there exist Vk ∈ Rmk×pk with diag
(
D1
k
>
Vk

)
= 0 and

diag
(
V>k Vk

)
= Ipk and a vector θk , θk(D1

k,D
2
k) ∈

[0, π]pk , such that

D2
k = D1

kCk(θk) + VkSk(θk), (36)

where Ck(θk) , Diag (cos(θk)) and Sk(θk) ,
Diag (sin(θk)). Moreover,

2

π
θk,j ≤ ‖d2

k,j − d1
k,j‖2 = 2 sin

(
θk,j
2

)
≤ θk,j , and

2

π
‖θk‖2 ≤ ‖D2

k −D1
k‖F ≤ ‖θk‖2, (37)

where j ∈ [pk]. Similarly, there exists V′k such that D1
k =

D2
kCk(θk) + V′kSk(θk), where diag

(
D2
k
>
V′k

)
= 0.

Lemma 8. Fix D1:K and D0
1:K , and suppose

{Ak} , {Bk} , {δk} satisfy the following:

Ak ≥ max
{
‖D>kDk − Ipk‖F , ‖D0

k
>
D0
k − Ipk‖F

}
,

Bk ≥ max
{
‖Dk‖2, ‖D0

k‖2
}
, and

δk ≥ max
{
δsk(Dk), δsk(D0

k)
}
. (38)

Then for all θk , θk(Dk,D
0
k), k ∈ [K], we have

∆φP
(
D1:K ;D0

1:K |σ
)

≥ sE{x2}
2

∑
k∈[K]

‖θk‖2
pk

[
‖θk‖2

(
1− sk

pk

B2
k

1− δk
− λ̄κ2xδ−k

)

−
(
δ−k + 2λ̄

∏
i∈[K]

1

1− δi

)
λ̄κ2x

sk
pk

2AkBk
1− δk

]
, (39)

where λ̄ ,
λ

E {|x|}
and δ−k ,

∏
i∈[K]
i 6=k

√
1 + δi
1− δi

.

Proposition 1 shows ∆φP
(
D1:K ;D0

1:K |σ
)
> 0. However,

given x̂, the solution of φy (D1:K |σ), σ̂ = sign (x̂) is not
necessarily equal to the sign of the generating σ. We derive
conditions that ensure x̂ is almost surely the unique minimizer
of fy (D1:K) and σ̂ = σ. We introduce the following
proposition for this purpose.

Proposition 2. Let the generating coordinate dictionaries
{D0

k ∈ Dk} satisfy:

µs(D
0) <

1

2
, max

k
{δsk(D0

k)} < 1

4
. (40)

Suppose λ̄ =
λ

E {|x|}
≤ xmin

2E {|x|}
and

max
k∈[K]

{εk} ≤ min
{
λ̄Cmax, 0.15

}
. (41)

If the following is satisfied:

Mw

Mx
< 3(1.5)K/2

(
λ̄KCmax −

∑
k∈[K]

εk

)
, (42)

then for any D1:K such that Dk ∈ Sεk(D0
k), for k ∈

[K], x̂ that is defined in (28) is almost surely the minimi-
zer of the map x′ 7→ 1

2 ‖y − (
⊗

Dk)x′‖22 + λ‖x′‖1 and
∆φP

(
D1:K ;D0

1:K |σ
)

= ∆fP
(
D1:K ;D0

1:K

)
.

Remark 3. Note that µs(D0) < 1
2 in (40) can be satisfied by

ensuring that the right hand side of (6) is less than 1
2 . One

way this can be ensured is by enforcing strict conditions on
coordinate dictionaries; for instance, µsk(D0

k) ≤ 1
2K

.
The proof of Proposition 2 relies on the following lemmas

and [20, Lemmas 10–13].

Lemma 9 (Lemma 13 [20]). Assume µs(D) <
1

2
. If

min
j∈J
|xj | ≥ 2λ, and ‖y −Dx‖2 < λ(1− 2µs(D)) (43)
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hold for generating x, then x̂ defined in (28) is the unique
solution of minx′

1
2 ‖y − (

⊗
Dk)x′‖2 + λ‖x′‖1.

Lemma 10. For any D0 =
⊗

D0
k and D =

⊗
Dk such

that Dk ∈ B̄εk(D0
k), for k ∈ [K], suppose the following

inequalities are satisfied:

max
k∈[K]

{δsk(D0
k)} ≤ 1

4
, and max

k∈[K]
εk ≤ 0.15. (44)

Then, we have

µs(D) ≤ µs(D0) + 2(1.5)K/2
√
s

( ∑
k∈[K]

εk

)
. (45)

Proof of Theorem 1: To prove this theorem, we use
Proposition 1 to show that ∆φP

(
D1:K ;D0

1:K |σ
)
> 0, and

then use Proposition 2 to show that ∆φP
(
D1:K ;D0

1:K |σ
)

=
∆fP

(
D1:K ;D0

1:K

)
. The assumptions in (11) ensure that

the conditions in (21) and (40) are satisfied for Proposi-
tion 1 and Proposition 2, respectively. Assumptions (12)
and (14) ensure that the conditions in (22) and (24) are
satisfied for Proposition 1, λ̄ ≤ xmin

2E {|x|}
holds for Pro-

position 2, and maxk∈[K]{Ck,min} < Cmax. Hence, accor-
ding to Proposition 1, ∆φP

(
D1:K ;D0

1:K |σ
)
> 0 for all

εk ∈ (λ̄Ck,min, 0.15], k ∈ [K]. Finally, using the assumption
in (16) implies ∆φP

(
D1:K ;D0

1:K |σ
)

= ∆fP
(
D1:K ;D0

1:K

)
for all εk ≤ λ̄Cmax, k ∈ [K]. Furthermore, the assump-
tion in (14) implies Cmaxλ̄ ≤ 0.15. Consequently, for any
{εk > 0, k ∈ [K]} satisfying the conditions in (15), D1:K →
fP (D1:K) admits a local minimum D̂ =

⊗
D̂k such that

D̂k ∈ Bεk(D0
k), k ∈ [K].

IV. FINITE SAMPLE IDENTIFIABILITY RESULTS

We now focus on leveraging Theorem 1 and solving (9) to
derive finite-sample bounds for KS dictionary identifiability.
Compared to Gribonval et al. [20], who use Lipschitz con-
tinuity of the objective function with respect to the larger KS
dictionary, our analysis is based on “coordinate-wise Lipschitz
continuity” with respect to the coordinate dictionaries.

Theorem 2. Suppose the observations are generated accor-
ding to (7) and the dictionary coefficients follow the separable
sparsity model of Section II such that (11) to (16) are satisfied.
Next, fix any ξ ∈ (0,∞). Then, for any number of observations
satisfying

N = max
k∈[K]

Ω

(
p2k(ξ +mkpk)

(εk − εk,min(λ̄))2(
2K(1 + λ̄2)M2

x

s2E{x2}2
+

(
Mw

sE{x2}

)2))
, (46)

with probability at least 1− e−ξ, D1:K 7→ FY (D1:K) admits
a local minimum D̂ =

⊗
D̂k such that D̂k ∈ Bεk(D0

k), for
k ∈ [K].

A. Discussion

Let us make some remarks about implications of Theorem 2.
First, sample complexity has an inverse relationship with

TABLE I: Comparison of upper and lower bounds on the sample
complexity of dictionary learning for vectorized DL and KS DL.

Vectorized
DL KS DL

Minimax Lower Bound mp2

ε2
[21]

p
∑
kmkpk
ε2

[24]

Achievability Bound mp3

ε2
[20] max

k

mkp
3
k

ε2k

signal to noise ratio (SNR),9 which we define as

SNR ,
E{‖x‖22}
E{‖w‖22}

=
sE{x2}
mE{w2}

. (47)

Looking at the terms on the right hand side of (46) in
Theorem 2, Mx/(sE

{
x2
}

) is related to the deviation of ‖x‖2
from its mean, E {‖x‖2}, and depends on the coefficient
distribution, while Mw/(sE

{
x2
}

) is related to 1/SNR and
depends on the noise and coefficient distributions.

Second, we notice dependency of sample complexity on the
recovery error of coordinate dictionaries. We can interpret εk
as the recovery error for D0

k. Then, the sample complexity
scaling in (46) is proportional to maxk ε

−2
k . We note that

the sample complexity results obtained in [20] that are in-
dependent of ε ,

∥∥D−D0
∥∥
F

only hold for the noiseless
setting and the dependency on ε−2 is inevitable for noisy
observations [20]. Furthermore, given the condition on the
range of εk’s in (15), εk’s cannot be arbitrarily small, and
will not cause N to grow arbitrarily large.

Third, we observe a linear dependence between the sample
complexity scaling in (46) and coordinate dictionaries’ dimen-
sions, i.e., maxkO(mkp

3
k). Comparing this to the O(mp3) =

O
(∏

kmkp
3
k

)
scaling in the unstructured DL problem [20],

the sample complexity in the KS-DL problem scales with the
dimensions of the largest coordinate dictionary, as opposed to
the dimensions of the larger KS dictionary.

We also compare this sample complexity upper bound
scaling to the sample complexity lower bound scaling in
our previous work [22, Corollary 1], where we obtained
N = Ω

(
p
∑
kmkpkε

−2/K
)

as a necessary condition for
recovery of KS dictionaries.10 In terms of overall error ε, our
result translates into N = maxk Ω

{
2KK2p(mkp

3
k)ε−2

}
as a

sufficient condition for recovery of coordinate dictionaries. The
lower bound depended on the average dimension of the coor-
dinate dictionaries,

∑
kmkpk/K, whereas we observe here a

dependence on the dimensions of the coordinate dictionaries
in terms of the maximum dimension, maxkmkpk. We also
observe an increase of order maxk p

2
k in the sample complexity

upper bound scaling. This gap suggests that tighter bounds

9Sufficient conditioning on N implies O-scaling for sample complexity.
10We have the following relation between ε and εk’s:

ε ≤
∑

k∈[K]

( ∏
i∈[K]
i6=k

∥∥∥D̃k

∥∥∥
F

)∥∥Dk −D0
k

∥∥
F
≤ √p

∑
k∈[K]

εk.

Assuming all εk’s are equal, this then implies ε2k ≥ ε
2/(K2p).
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can be obtained for lower and/or upper bounds. A summary
of these results is provided in Table I for a fixed K.

B. Proof Outline

We follow a similar approach used in [20, Theorem 2] for
vectorized data. We show that, with high probability,

∆FY(ε1:K) , inf
Dk∈Sεk (D

0
k)

∆FY

(
D1:K ;D0

1:K

)
(48)

converges uniformly to its expectation,

∆fP(ε1:K) , inf
Dk∈Sεk (D

0
k)

∆fP
(
D1:K ;D0

1:K

)
. (49)

In other words, with high probability,

|∆FY(ε1:K)−∆fP(ε1:K)| ≤ ηN , (50)

where ηN is a parameter that depends on the probability and
other parameters in the problem. This implies ∆FY(ε1:K) ≥
∆fP(ε1:K) − 2ηN . In Theorem 1, we obtained conditions
that ensure ∆fP(ε1:K) > 0. Thus, if 2ηN < ∆fP(ε1:K)
is satisfied, this implies ∆FY(ε1:K) > 0, and we can use
arguments similar to the proof of Theorem 1 to show that
D1:K 7→ FY (D1:K) admits a local minimum D̂ =

⊗
D̂k,

such that D̂k ∈ Bεk(D0
k), for k ∈ [K].

In Theorem 1, we showed that under certain
conditions, fP(D1:K ;D0

1:K) = ∆φP
(
D1:K ;D0

1:K |σ
)
.

To find ηN , we uniformly bound deviations of
D1:K 7→ ∆φy

(
D1:K ;D0

1:K |σ
)

from its expectation on{
Sεk(D0

k)
}K
k=1

. Our analysis is based on the coordinate-
wise Lipschitz continuity property of ∆φy

(
D1:K ;D0

1:K |σ
)

with respect to coordinate dictionaries. Then, to ensure
2ηN < ∆φP

(
D1:K ;D0

1:K |σ
)
, we show that 2ηN is less

than the right-hand side of (23) and obtain conditions on
the sufficient number of samples based on each coordinate
dictionary dimension and recovery error.

The proof of Theorem 2 relies on the following definition
and lemmas. The proofs of these are provided in Appendix B.

Definition 1 (Coordinate-wise Lipschitz continuity). A
function f : D1× · · ·×DK → R is coordinate-wise Lipschitz
continuous with constants (L1, . . . , LK) if there exist real
constants {Lk ≥ 0}Kk=1, such that for {Dk,D

′
k ∈ Dk}

K
k=1:

|f (D1:K)− f (D′1:K)| ≤
∑
k∈[K]

Lk ‖Dk −D′k‖F . (51)

Lemma 11 (Rademacher averages [20]). Consider F to be
a set of measurable functions on measurable set X and N
i.i.d. random variables X1, . . . , XN ∈ X . Fix any ξ ∈ (0,∞).
Assuming all functions are bounded by B, i.e., |f(X)| ≤ B,
almost surely, with probability at least 1− e−ξ:

sup
f∈F

(
1

N

∑
n∈[N ]

f (Xn)− EX {f (X)}
)

≤ 2

√
π

2
EX,β1:N

{
sup
f∈F

(
1

N

∑
n∈[N ]

βnf (Xn)

)}
+B

√
2ξ

N
,

(52)

where β1:N ’s are independent standard Gaussian random
variables.

Lemma 12. Let H be a set of real-valued functions on Dk ∈
Bεk(D0

k), k ∈ [K], that are bounded by B almost everywhere
and are coordinate-wise Lipschitz continuous with constants
(L1, . . . , LK) . Let h1, h2, . . . , hN be independent realizations
from H with uniform Haar measure on H. Then, fixing ξ ∈
(0,∞), we have with probability greater than 1− e−ξ that:

sup
Dk∈Bεk

(D0
k)

k∈[K]

∣∣∣∣ 1

N

∑
n∈[N ]

hn(D1:K)− E {h(D1:K)}
∣∣∣∣

≤ 4

√
π

2N

( ∑
k∈[K]

Lkεk
√
Kmkpk

)
+B

√
2ξ

N
. (53)

Lemma 13 (Lemma 5 [20]). For any δk < 1, Dk,D
′
k such

that max(δsk(Dk), δsk(D′k)) ≤ δk, and Jk ⊂ pk, |Jk| = sk,
we have

‖I−D+
k,Jk

D′k,Jk
‖2 ≤ (1− δk)−1/2‖Dk −D′k‖F ,

‖HDk,Jk
−HD′k,Jk

‖2 ≤ 2(1− δk)−3/2‖Dk −D′k‖F ,

‖D+
k,Jk
−D′

+
k,Jk
‖2 ≤ 2(1− δk)−1‖Dk −D′k‖F , and

‖PDk,Jk
−PD′k,Jk

‖2 ≤ 2(1− δk)−1/2‖Dk −D′k‖F . (54)

Lemma 14. Consider D0
k ∈ Dk and εk’s such that

εk <
√

1− δsk(D0
k), for k ∈ [K] and define

√
1− δk ,√

1− δsk(D0
k)− εk > 0. The function ∆φy

(
D1:K ;D0

1:K |σ
)

is almost surely coordinate-wise Lipschitz continuous on{
Bεk(D0

k)
}K
k=1

with Lipschitz constants

Lk , (1− δk)−1/2
(
Mx

( ∏
k∈[K]

√
1 + δsk(D0

k)

)
+Mw

+ λ
√
s
∏
k∈[K]

(1− δk)−1/2
)2

, (55)

and
∣∣∆φy (D1:K ;D0

1:K |σ
)∣∣ is almost surely bounded on{

Bεk(D0
k)
}K
k=1

by
∑
k∈[K] Lkεk.

Proof of Theorem 2: From Lemmas 12 and 14, we have
that with probability at least 1− e−ξ:

sup
Dk∈Bεk

(D0
k)

k∈[K]

∣∣∆φy (D1:K ;D0
1:K |σ

)
−∆φP

(
D1:K ;D0

1:K |σ
) ∣∣

≤
√

2

N

∑
k∈[K]

Lkεk

(
2
√
πmkpk +

√
ξ
)
, (56)

where Lk is defined in (55). From (56), we obtain
∆φy

(
D1:K ;D0

1:K |σ
)

> ∆φP
(
D1:K ;D0

1:K |σ
)
− 2ηN

where ηN =
√

2
N

∑
k∈[K] Lkεk

(
2
√
πmkpk +

√
ξ
)
.

In Theorem 1, we derived conditions that ensure
∆fy(D1:K ;D0

1:K) = ∆φy
(
D1:K ;D0

1:K |σ
)

and
∆fP(D1:K ;D0

1:K) = ∆φP
(
D1:K ;D0

1:K |σ
)
. Therefore,

given that the conditions in Theorem 1 are satisfied,
∆FY(ε1:K) > ∆fP(ε1:K) − 2ηN , and the existence
of a local minimum of FY(D1:K) within radii εk
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around D0
k, k ∈ [K], is guaranteed with probability

at least 1 − e−ξ as soon as 2ηN < ∆fP(ε1:K).
According to (23), ∆φP

(
D1:K ;D0

1:K |σ
)

≥
sE{x2}

8

∑
k∈[K]

εk
pk

(
εk − εk,min(λ̄)

)
; therefore, it is

sufficient to have for all k ∈ [K]:√
8

N
Lkεk

(
2
√
πmkpk +

√
ξ
)
<
sE{x2}εk

(
εk − εk,min(λ̄)

)
8pk

,

which translates into N ≥ maxk∈[K]Nk, where

Nk =
(

2
√
πmkpk +

√
ξ
)2( 24.5Lkpk

sE{x2}(εk − εk,min(λ̄))

)2

.

(57)

Furthermore, we can upper bound Lk by

Lk
(a)

≤
√

2

(
1.25K/2Mx +Mw + 2K/2λ

√
s

)2

(b)

≤
√

2c1

((
1.25K + 2K λ̄2

)
M2
x +M2

w

)
, (58)

where c1 is some positive constant, (a) follows from the fact
that given the assumption in (21), assumptions in Lemma 14
are satisfied with

√
1− δk ≥

√
1/2 for any εk ≤ 0.15, and

(b) follows from the following inequality:

λ = λ̄E {|x|} =
1

s
λ̄E {‖x‖1} ≤

1√
s
λ̄E {‖x‖2} ≤

1√
s
λ̄Mx.

Substituting (58) in (57) and using
(√
ξ + 2

√
πmkpk

)2 ≤
c2(ξ +mkpk) for some positive constant c2, we get

Nk = Ω

(
p2k(mkpk + ξ)

(
2K(1 + λ̄2)M2

x +M2
w

s2E{x2}2(εk − εk,min(λ̄))2

))
= Ω

(
p2k(mkpk + ξ)

(εk − εk,min(λ̄))2

(
2K(1 + λ̄2)M2

x

s2E{x2}2
+

M2
w

s2E{x2}2

))
.

and N ≥ maxk∈[K]Nk.

Remark 4. To bound deviations of ∆φy
(
D1:K ;D0

1:K |σ
)

from its mean, we can also use the bound provided in [29,
Theorem 1] that prove uniform convergence results using
covering number arguments for various classes of dictionaries.

In this case, we get ηN ≤ c
√

(
∑
kmkpk + ξ) logN

N
for some

constant c, where an extra
√

logN term appears compared to
(53). Therefore, Lemma 12 provides a tighter upper bound.

V. CONCLUSION

In this paper, we focused on local recovery of coordinate
dictionaries comprising a Kronecker-structured dictionary used
to represent Kth-order tensor data. We derived a sample com-
plexity upper bound for coordinate dictionary identification
up to specified errors by expanding the objective function
with respect to individual coordinate dictionaries and using the
coordinate-wise Lipschitz continuity property of the objective
function. This analysis is local in the sense that it only
guarantees existence of a local minimum of the KS-DL ob-
jective function within some neighborhood of true coordinate
dictionaries. Global analysis of the KS-DL problem is left

for future work. Our results hold for dictionary coefficients
generated according to the separable sparsity model. This
model has some limitations compared to the random sparsity
model and we leave the analysis for the random sparsity model
for future work also. Another future direction of possible
interest includes providing practical KS-DL algorithms that
achieve the sample complexity scaling of Theorem 2.

APPENDIX A

Proof of Lemma 2: To prove the existence of such a
formation for any K ≥ 2, we use induction. For K = 2, we
have

(D1 ⊗D2)−
(
D0

1 ⊗D0
2

)
=
(
D1 −D0

1

)
⊗D0

2 + D1 ⊗
(
D2 −D0

2

)
=
(
D1 −D0

1

)
⊗D2 + D0

1 ⊗
(
D2 −D0

2

)
. (59)

For K such that K > 2, we assume the following holds:⊗
k∈[K]

Dk −
⊗
k∈[K]

D0
k

=
∑
k∈[K]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K . (60)

Then, for K + 1, we have:⊗
k∈[K+1]

Dk −
⊗

k∈[K+1]

D0
k

=

( ⊗
k∈[K]

Dk

)
⊗DK+1 −

( ⊗
k∈[K]

D0
k

)
⊗D0

K+1

(a)
=

( ⊗
k∈[K]

Dk −
⊗
k∈[K]

D0
k

)
⊗D0

K+1

+

( ⊗
k∈[K]

Dk

)(
DK+1 −D0

K+1

)
(b)
=

( ∑
k∈[K]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K

)

⊗D0
K+1 +

( ⊗
k∈[K]

Dk

)(
DK+1 −D0

K+1

)
(c)
=

∑
k∈[K+1]

D̃k,1 ⊗ · · · ⊗
(
Dk −D0

k

)
⊗ · · · ⊗ D̃k,K+1,

(61)

where (a) follows from (59), (b) follows from (60) and (c)
follows from replacing D0

K+1 with D̃k,K+1 in the first K
terms of the summation and Dk’s with D̃K+1,k, for k ∈ [K],
in the (K + 1)th term of the summation.

Proof of Lemma 3: Using the same definition as Gri-
bonval et al. [20, Definition 1], taking the derivative of
φy (D1:K |σ) with respect to x and setting it to zero, we get
the expression in (28) for x̂. Substituting x̂ in (27), we get

φy (D1:K |σ) =
1

2

[
‖y‖22 −

((⊗
D>k,Jk

)
y − λσJ

)>
(⊗

(D>k,Jk
Dk,Jk

)−1
)((⊗

D>k,Jk

)
y − λσJ

)]
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(a)
=

1

2
‖y‖22 −

1

2
y>
(⊗

PDk,Jk

)
y

+ λσ>J

(⊗
D+
k,Jk

)
y − λ2

2
σ>J

(⊗
HDk,Jk

)
σJ ,

where (a) follows from (25).

Proof of Lemma 4: We use the expression for
φy (D1:K |σ) from (29). For any D =

⊗
Dk,D

′ =
⊗

D′k,
Dk,D

′
k ∈ Dk, we have

∆φy (D1:K ;D′1:K |σ) = φy (D1:K |σ)− φy (D′1:K |σ)

=
1

2
y>
(⊗

PD′k,Jk
−
⊗

PDk,Jk

)
y

− λσ>J
(⊗

D′
+
k,Jk
−
⊗

D+
k,Jk

)
y

+
λ2

2
σ>J

(⊗
HD′k,Jk

−
⊗

HDk,Jk

)
σJ . (62)

We substitute y =
(⊗

D0
k

)
x + w =

(⊗
D0
k,Jk

)
xJ + w

and break up the sum in (62) into 6 terms:

∆φy (D1:K ;D′1:K |σ) =
∑
i∈[6]

∆φi (D1:K ;D′1:K |σ) , (63)

where

∆φ1 (D1:K ;D′1:K |σ) =
1

2
x>
(⊗

D0
k

)>
(⊗

PD′k,Jk
−
⊗

PDk,Jk

)(⊗
D0
k

)
x

(a)
=

1

2
x>
(⊗

D0
k

)>( ∑
k∈[K]

PD̃1,J1
⊗ · · ·⊗

(
PD′k,Jk

−PDk,Jk

)
⊗ · · · ⊗PD̃K,JK

)(⊗
D0
k

)
x

=
1

2
x>
( ∑
k∈[K]

(
D0

1
>
PD̃1,J1

D0
1

)
⊗ · · ·⊗(

D0
k
>

(PD′k,Jk
−PDk,Jk

)D0
k

)
⊗ · · ·⊗(

D0
K
>
PD̃K,JK

D0
K

))
x,

∆φ2 (D1:K ;D′1:K |σ) = w>
( ∑
k∈[K]

(
PD̃1,J1

D0
1

)
⊗ · · ·⊗

(
(PD′k,Jk

−PDk,Jk
)D0

k

)
⊗ · · · ⊗

(
PD̃K,JK

D0
K

))
x,

∆φ3 (D1:K ;D′1:K |σ) =
1

2
w>
( ∑
k∈[K]

PD̃1,J1
⊗ · · ·⊗

(
PD′k,Jk

−PDk,Jk

)
⊗ · · · ⊗PD̃K,JK

)
w,

∆φ4 (D1:K ;D′1:K |σ) = −λσ>J
( ∑
k∈[K]

(
D̃+

1,J1
D0

1

)
⊗ · · ·⊗

(
(D′

+
k,Jk
−D+

k,Jk
)D0

k

)
⊗ · · · ⊗

(
D̃+
K,JK

D0
K

))
x,

∆φ5 (D1:K ;D′1:K |σ) = −λσ>J
( ∑
k∈[K]

D̃+
1,J1
⊗ · · ·⊗

(
D′

+
k,Jk
−D+

k,Jk

)
⊗ · · · ⊗ D̃+

K,JK

)
w, and

∆φ6 (D1:K ;D′1:K |σ) =
λ2

2
σ>J

( ∑
k∈[K]

HD̃1,J1
⊗ · · ·⊗

(
HD′k,Jk

−HDk,Jk

)
⊗ · · · ⊗HD̃K,JK

)
σJ , (64)

where (a) follows from Lemma 2 and analysis for deriva-
tion of {∆φi (D1:K ;D′1:K |σ)}6i=2 are omitted due to space
constraints. Now, we set D′ = D0 and take the expectation
of ∆φy

(
D1:K ; {D0

k}|σ
)

with respect to x and w. Since the
coefficient and noise vectors are uncorrelated,

E
{

∆φ2
(
D1:K ;D0

1:K |σ
)}

= E
{

∆φ5
(
D1:K ;D0

1:K |σ
)}

= 0.

We can restate the other terms as:

∆φ1
(
D1:K ;D0

1:K |σ
)

(b)
=

1

2
Tr

[
xJx

>
J

∑
k∈[K]

(
D0

1
>
PD̃1,J1

D0
1

)
⊗ · · ·⊗

(
D0
k
>

(Imk
−PDk,Jk

)D0
k

)
⊗ · · · ⊗

(
D0
K
>
PD̃K,JK

D0
K

)]
,

∆φ3
(
D1:K ;D0

1:K |σ
)

=
1

2
Tr

[
ww>

( ∑
k∈[K]

PD̃1,J1
⊗ · · · ⊗

(
PD0

k,Jk
−PDk,Jk

)
⊗ · · · ⊗PD̃K,JK

)]
,

∆φ4
(
D1:K ;D0

1:K |σ
)

(c)
= −λTr

[
xJσ

>
J

( ∑
k∈[K]

(
D̃+

1,J1
D0

1

)
⊗ · · ·⊗

(
Isk −D+

k,Jk
D0
k

)
⊗ · · · ⊗

(
D̃+
K,JK

D0
K

))]
, and

∆φ6
(
D1:K ;D0

1:K |σ
)

=
λ2

2
Tr

[
σJσ

>
J

( ∑
k∈[K]

HD̃1,J1
⊗ · · ·⊗

(
HD0

k,Jk
−HDk,Jk

)
⊗ · · · ⊗HD̃K,JK

)]
, (65)

where (b) and (c) follow from the facts that PD0
k,Jk

D0
k = D0

k

and D0+
k,Jk

D0
k = Isk , respectively. Taking the expectation of

the terms in (65), we get

E
{

∆φ1
(
D1:K ;D0

1:K |σ
)}

(d)
=

E{x2}
2

EJ
{ ∑
k∈[K]

Tr
[
D0

1
>
PD̃1,J1

D0
1

]
. . .

Tr
[
D0
k
>

(Imk
−PDk,Jk

)D0
k

]
. . .Tr

[
D0
K
>
PD̃K,JK

D0
K

]}
=

E{x2}
2

∑
k∈[K]

EJ1

{
Tr
[
D0

1
>
PD̃1,J1

D0
1

]}
. . .

EJk

{
Tr
[
D0
k
>

(Imk
−PDk,Jk

)D0
k

]}
. . .

EJK

{
Tr
[
D0
K
>
PD̃K,JK

D0
K

]}
,

E{∆φ3
(
D1:K ;D0

1:K |σ
)
}



11

=
E{w2}

2
EJ
{

Tr

[ ∑
k∈[K]

PD̃1,J1
⊗ · · ·⊗

(
PD0

k,Jk
−PDk,Jk

)
⊗ · · · ⊗PD̃K,JK

]}
=

E{w2}
2

EJ
{ ∑
k∈[K]

Tr
[
PD̃1,J1

]
. . .Tr

[
PD0

k,Jk
−PDk,Jk

]
. . .Tr

[
PD̃K,JK

]}
(e)
= 0,

E
{

∆φ4
(
D1:K ;D0

1:K |σ
)}

= −λE{|x|}
∑
k∈[K]

EJ1

{
Tr
[
D̃+

1,J1
D0

1

]}
. . .

EJk

{
Tr
[
Isk −D+

k,Jk
D0
k

]}
. . .EJK

{
Tr
[
D̃+
K,JK

D0
K

]}
,

E
{

∆φ6
(
D1:K ;D0

1:K |σ
)}

=
λ2

2

∑
k∈[K]

EJ1

{
Tr
[
HD̃1,J1

]}
. . .

EJk

{
Tr
[
HD0

k,Jk
−HDk,Jk

]}
. . .EJK

{
Tr
[
HD̃K,JK

]}
.

(66)

where (d) follows from the relation Tr(A ⊗ B) =
Tr[A] Tr[B] [26] and (e) follows from the fact that PDk,Jk

’s
are orthogonal projections onto subspaces of dimension sk and
Tr
[
PD0

k,Jk
−PDk,Jk

]
= sk − sk = 0. Adding the terms in

(66), we obtain the expression in (31).

Proof of Lemma 5: Equation (32) follows from the
definition of RIP and (33) follows from Gerschgorin’s disk
theorem [26], [30], [31].

Proof of Lemma 8: To lower bound
∆φP

(
D1:K ;D0

1:K |σ
)
, we bound each term in (31) separately.

For the first term E
{

∆φ1
(
D1:K ;D0

1:K |σ
)}

, we have

EJk

{
Tr
[
D0
k
>
PD̃k,Jk

D0
k

]}
= EJk

{∥∥∥PD̃k,Jk
D0
k,Jk

∥∥∥2
F

}
.

(67)

If D̃k = D0
k, then

EJk

{∥∥∥PD0
k,Jk

D0
k,Jk

∥∥∥2
F

}
(a)
=

sk
pk

∥∥D0
k

∥∥2
F

= sk, (68)

where (a) follows from [20, Lemma 15]. If D̃k = Dk, then

EJk

{∥∥∥PDk,Jk
D0
k,Jk

∥∥∥2
F

}
(b)
= EJk

{∥∥[DkC
−1
k ]Jk

∥∥2
F

}
(c)
=
sk
pk

∥∥DkC
−1
k

∥∥2
F

(d)
=

sk
pk

pk∑
j=1

1

cos2(θ(k,j))

(e)

≥ sk
pk
pk = sk,

where (b) is a direct consequence of Lemma 7; we can
write D0

k = DkC
−1
k − VkTk where Ck = Diag (cos(θk)),

Tk = Diag (tan(θk)) and θk,j denotes the angle between dk,j
and d0

k,j . Hence PDk,Jk
D0
k,Jk

= [DkC
−1
k ]Jk

. Moreover, (c)
follows from [20, Lemma 15], (d) follows from the fact that
‖dk,j‖2 = 1, and (e) follows from the fact that cos(θk,j) < 1.

Similarly, we have

EJk

{
Tr
[
D0
k
>

(Imk
−PDk,Jk

)D0
k

]}
= EJk

{∥∥∥(Imk
−PDk,Jk

)D0
k,Jk

∥∥∥2
F

}
(f)

≥ sk
pk
‖θk‖22

(
1− sk

pk

B2
k

1− δk

)
, (69)

where (f) follows from similar arguments as in Gribonval et
al. [20, Equation (72)]. Putting it all together, we have

E
{

∆φ1
(
D1:K ;D0

1:K |σ
)}

≥ E{x2}
2

∑
k∈[K]

( ∏
i∈[K]
i 6=k

si

)
sk
pk
‖θk‖22

(
1− sk

pk

B2
k

1− δk

)

=
sE{x2}

2

∑
k∈[K]

‖θk‖22
pk

(
1− sk

pk

B2
k

1− δk

)
. (70)

Next, to lower bound E
{

∆φ4
(
D1:K ;D0

1:K |σ
)}

, we upper
bound

∣∣E{∆φ4
(
D1:K ;D0

1:K |σ
)}∣∣. If D̃k = D0

k, we have

EJk

{
Tr
[
D0+

k,Jk
D0
k,Jk

]}
= EJk

{Tr [Isk ]} = sk, (71)

otherwise, if D̃k = Dk, we get∣∣EJk

{
Tr
[
Dk,Jk

+D0
k

]}∣∣
(g)

≤ skEJk

{∥∥∥D+
k,Jk

D0
k,Jk

∥∥∥
2

}
≤ skEJk

{
‖D+

k,Jk
‖2‖D0

k,Jk
‖2
}

(h)

≤ sk

(
1√

1− δsk(Dk)

)(√
1 + δsk(D0

k)

)
(i)

≤ sk

√
1 + δk
1− δk

, (72)

where (g) follows from the fact that for a square matrix A ∈
Rq×q , Tr [A] ≤ q‖A‖2, (h) follows from (32) and (34) and
(i) follows from (38). Similar to [20, Equation (73)], we also
have ∣∣∣EJk

{
Tr
[
Isk −D+

k,Jk
D0
k

]}∣∣∣
≤ sk
pk

‖θk‖22
2

+
s2k
p2k

AkBk
1− δk

‖θk‖2. (73)

Thus, defining δ−k ,
∏
i∈[K]
i 6=k

√
1 + δi
1− δi

, we get

E
{

∆φ4
(
D1:K ;D0

1:K |σ
)}

≥ −λE{|x|}
∑
k∈[K]

δ−k

( ∏
i∈[K]
i6=k

si

)
(
sk
pk

‖θk‖22
2

+
s2k
p2k

AkBk
1− δk

‖θk‖2
)

= −λsE{|x|}
∑
k∈[K]

δ−k
pk

(
‖θk‖22

2
+
sk
pk

AkBk
1− δk

‖θk‖2
)
.

(74)
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To lower bound E
{

∆φ6
(
D1:K ;D0

1:K |σ
)}

, we upper
bound

∣∣E{∆φ6
(
D1:K ;D0

1:K |σ
)}∣∣. For any D̃k, we have∣∣∣EJk

{
Tr
[
HD̃k,Jk

]}∣∣∣ ≤ EJk

{
sk

∥∥∥HD̃k,Jk

∥∥∥
2

} (j)

≤ sk
1− δk

,

(75)

where (j) follows from (34) and (38). Similar to Gribonval et
al. [20, Equation (74)], we also have∣∣∣EJk

{
Tr
[
HD0

k,Jk
−HDk,Jk

]}∣∣∣ ≤ s2k
p2k

4AkBk
(1− δk)2

‖θk‖2.

Thus, we get

E{∆φ6
(
D1:K ;D0

1:K |σ
)
}

≥ −λ
2

2

∑
k∈[K]

( ∏
i∈[K]
i 6=k

si
1− δi

)(
s2k
p2k

4AkBk
(1− δk)2

‖θk‖2
)

= −λ
2s

2

∑
k∈[K]

1

pk

( ∏
i∈[K]

1

1− δi

)(
sk
pk

4AkBk
1− δk

‖θk‖2
)
.

(76)

Adding (70), (74), and (76), we get (39).
Proof of Proposition 1: To show that

∆φP
(
D1:K ;D0

1:K |σ
)
> 0, we use Lemma 8 and prove

that the right hand side of (39) is positive under certain
conditions. First, we ensure the conditions in (35) and (38)
hold for Lemma 6 and Lemma 8, respectively. We set δk =

1

2
,

δsk(Dk) =
1

2
and δsk(D0

k) =
1

4
, for k ∈ [K]. For εk ≤ 0.15,

this ensures:√
1− δsk(Dk) ≥

√
1− δsk(D0

k)− εk, and

max
{
δsk(D0

k), δsk(Dk)
}
≤ δk, (77)

and implies δk < 1 (condition for Lemmas 4 and 13). Next,
we find conditions that guarantee:

sk
pk

B2
k

1− δk
+ λ̄κ2xδ−k

(a)
=

2B2
ksk
pk

+ λ̄κ2x (3)
(K−1)/2 ≤ 1

2
,

(78)

where (a) follows from replacing δk with
1

2
. If we take

sk
pk
≤

1

8B2
k

and λ̄ ≤ 1

8× 3(K−1)/2
, given the fact that κ2x ≤ 1, (78)

is satisfied.11 Consequently, we can restate (39) as

∆φP
(
D1:K ;D0

1:K |σ
)
≥ sE{x2}

4

∑
k∈[K]

‖θk‖2
pk

[
‖θk‖2

− 8
(

3(K−1)/2 + 2(K+1)λ̄
)
λ̄κ2x

sk
pk
AkBk

]
. (79)

From [20, Proof of Proposition 2], we use the following
relations:

Bk ≤ B0
k + εk ≤ B0

k + 1, Ak ≤ A0
k + 2Bkεk, k ∈ [K],

(80)

11These numbers are chosen for a simplified proof and can be modified.

where A0
k ,

∥∥∥D0
k
>
D0
k − Ipk

∥∥∥
F

and B0
k ,

∥∥D0
k

∥∥
2

and (80)

follows from matrix norm inequalities [20]. Defining γk ,

16

(
3(K−1)/2 + 2(K+1)λ̄

)
λ̄κ2x

B2
ksk
pk

for k ∈ [K] and using

κ2x ≤ 1, we have

γk ≤ 2

(
3(K−1)/2 +

2(K+1)

8× 3(K−1)/2

)(
1

8× 3(K−1)/2

)
≤ 2

(
1

8
+

4

64

)
≤ 1

2
. (81)

Then, for Dk ∈ Sεk(D0
k), k ∈ [K], we get

∆φP
(
D1:K ;D0

1:K |σ
)

(b)

≥ sE{x2}
4

∑
k∈[K]

εk
pk

(
εk −

γk
2

Ak
Bk

)
(c)

≥ sE{x2}
4

∑
k∈[K]

εk
pk

(
εk −

γk
2

A0
k + 2Bkεk
Bk

)

≥ sE{x2}
4

∑
k∈[K]

εk
pk

(
εk(1− γk)− γk

2

A0
k

Bk

)
(d)

≥ sE{x2}
8

∑
k∈[K]

εk
pk

(
εk − γk

A0
k

Bk

)
, (82)

where (b) follows from (79), (c) follows from (80), and (d)
follows from (81). Hence, we can write

∆φP
(
D1:K ;D0

1:K |σ
)
≥sE{x

2}
8

∑
k∈[K]

εk
pk

(
εk − εk,min(λ̄)

)
,

(83)

where we define

εk,min(λ̄) , γk
A0
k

Bk

= 16
(

3(K−1)/2 + 2(K+1)λ̄
)
λ̄κ2x

sk
pk
A0
kBk

=
2

3(K+1)/2

(
3(K−1)/2 + 2(K+1)λ̄

)
λ̄Ck,min, (84)

and Ck,min is defined in (13). The lower bound in (83) holds
for any εk ≤ 0.15 and Dk ∈ Sεk(D0

k), k ∈ [K]. Finally,
since 3(K−1)/2 + 2(K+1)λ̄ ≤ 0.5× 3(K+1)/2, the assumption
λ̄ ≤ 0.15/(maxk∈[K] Ck,min) implies that εk,min(λ̄) ≤ 0.15
for k ∈ [K]. Therefore, ∆φP

(
D1:K ;D0

1:K |σ
)
> 0 for all

εk ∈ (εk,min(λ̄), 0.15], k ∈ [K].

Proof of Lemma 10: Considering j 6∈ J , associated with
(j1, . . . , jk) 6∈ (J1 × · · · × JK), we have

‖D>Jdj‖1
(a)

≤ ‖D0
J
>
d0
j‖1 + ‖D0

J
>

(dj − d0
j )‖1 + ‖(DJ −D0

J )>dj‖1
≤ µs(D0) +

√
s
[
‖D0
J
>

(dj − d0
j )‖2 + ‖(DJ −D0

J )>dj‖2
]

≤ µs(D0) +
√
s

[ ∥∥∥⊗D0
k,Jk

>
∥∥∥
2

∥∥∥⊗(
dk,jk − d0

k,jk

)∥∥∥
2

+
∥∥∥⊗Dk,Jk

−
⊗

D0
k,Jk

∥∥∥
2
‖dj‖2

]
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(b)

≤ µs(D
0) +

√
s

[( ∏
k∈[K]

√
1 + δsk(D0

k)

)
( ∑
k∈[K]

∥∥∥d̃1,j1

∥∥∥
2
. . .
∥∥dk,jk − d0

k,jk

∥∥
2
. . .

∥∥∥d̃k,jK∥∥∥
2

)

+
∑
k∈[K]

∥∥∥D̃1,J1

∥∥∥
2
. . .
∥∥Dk,Jk

−D0
k,Jk

∥∥
2
. . .

∥∥∥D̃k,Jk

∥∥∥
2

]
(c)

≤ µs(D
0) +

√
s

[( ∏
k∈[K]

√
1 + δsk(D0

k)

)( ∑
k∈[K]

εk

)

+
∑
k∈[K]

( ∏
i∈[K]
i6=k

∥∥∥D̃i,Ji

∥∥∥
2

)
εk

]
(d)

≤ µs(D
0) + 2(1.5)K/2

√
s

( ∑
k∈[K]

εk

)
, (85)

where (a) follows from the triangle inequality, (b) follows from
(26), (c) follows from (33), and, (d) follows from substituting
the upper bound value from (44) for δsk(D0

k). For D̃i = D0
i ,∥∥D0

i,Ji

∥∥
2
≤
√

1 + δsi(D
0
i ) ≤

√
5
4 < 1.5 and for D̃i = Di,

according to (80), we have ‖Di,Ji
‖2 ≤

∥∥D0
i,Ji

∥∥
2

+ εi ≤√
5
4 + 0.15 < 1.5.

Proof of Proposition 2: We follow a similar approach
to Gribonval et al. [20]. We show that the conditions in (43)
hold for Lemma 9. We have∥∥∥y − (⊗Dk

)
x
∥∥∥
2

≤
∥∥∥(⊗D0

k,Jk
−
⊗

Dk,Jk

)
xJ

∥∥∥
2

+ ‖w‖2

≤Mx

∑
k∈[K]

∥∥D̃1,J1
⊗ · · · ⊗

(
D0
k,Jk
−Dk,Jk

)
⊗ · · ·⊗

D̃K,JK

∥∥
2

+Mw

≤Mx

∑
k∈[K]

∥∥∥D̃1,J1

∥∥∥
2
. . .
∥∥D0

k,Jk
−Dk,Jk

∥∥
2
. . .
∥∥∥D̃K,JK

∥∥∥
2

+Mw

≤Mx

∑
k∈[K]

( ∏
i∈[K]
i 6=k

∥∥∥D̃i,Ji

∥∥∥
2

)
εk +Mw

(a)

≤ (1.5)(K−1)/2Mx

∑
k∈[K]

εk +Mw, (86)

where (a) follows from (40) and the fact that for D̃i = D0
i ,∥∥D0

i,Ji

∥∥
2
≤
√

1 + δsi(D
0
i ) ≤

√
5
4 < 1.5 and for D̃i = Di,

according to (80), we have ‖Di,Ji‖2 ≤
∥∥D0

i,Ji

∥∥
2

+ εi ≤√
5
4 + 0.15 < 1.5. Hence, we get

λ(1− 2µs(D))−
∥∥∥y − (⊗Dk

)
x
∥∥∥
2

≥ λ(1− 2µs(D))− (1.5)(K−1)/2Mx

∑
k∈[K]

εk −Mw

(b)

≥ λ(1− 2µs(D
0))− (1.5)K/2

(
4λ
√
s+ (1.5)−1/2Mx

)

∑
k∈[K]

εk −Mw

(c)

≥ λ(1− 2µs(D
0))− 3(1.5)K/2Mx

∑
k∈[K]

εk −Mw

= 3(1.5)K/2Mx

(
Kλ̄Cmax −

∑
k∈[K]

εk

)
−Mw, (87)

where (b) follows from (45) and (c) follows from (43)
(2λ
√
s ≤ xmin

√
s ≤Mx) and (45). If εk < Cmaxλ̄, k ∈ [K],

the assumption on the noise level in (42) implies that the right-
hand side of (87) is greater than zero and λ(1 − 2µs(D)) >
‖y − (

⊗
Dk)x‖2. Thus, according to Lemma 9, x̂ is almost

surely the unique solution of minx
1
2 ‖y − (

⊗
Dk)x′‖2 +

λ‖x′‖1 and ∆φP
(
D1:K ,D

0
1:K |σ

)
= ∆fP

(
D1:K ,D

0
1:K

)
.

APPENDIX B
Proof of Lemma 12: According to

Lemma 11, we have to upper bound
E
{

supDk∈Bεk
(D0

k),k∈[K]

∣∣∣ 1N ∑n∈[N ] βnhn(D1:K)
∣∣∣}.

Conditioned on the draw of functions h1, . . . , hN , consider
the Gaussian processes AD1:K

= 1
N

∑
n∈[N ] βnhn(D1:K)

and CD1:K
=
√

K
N

∑
k∈[K]

(
Lk
∑
i∈[mk]

∑
j∈[pk] ζ

k
ij(Dk −

D0
k)ij

)
, where {βn}Nn=1’s and

{
ζkij
}
, k ∈ [K], i ∈ [mk], j ∈

[pk]’s are independent standard Gaussian vectors. We have

E
{∣∣AD1:K

−AD′1:K

∣∣2}
=

1

N2

∣∣∣∣ ∑
n∈[N ]

hn(D1:K)− hn(D′1:K)

∣∣∣∣2
(a)

≤ 1

N

( ∑
k∈[K]

Lk‖Dk −D′k‖F
)2

(b)

≤ K

N

∑
k∈[K]

L2
k‖Dk −D′k‖2F

= E
{∣∣CD1:K

− CD′1:K

∣∣2} , (88)

where (a) follows from coordinate-wise Lipschitz continuity
of h and (b) follows from Cauchy-Schwartz inequality. Hence,
using Slepian’s Lemma [32], we get

E
{

sup
Dk∈Bεk

(D0
k)

k∈[K]

AD1:K

}
≤ E

{
sup

Dk∈Bεk
(D0

k)

k∈[K]

CD1:K

}

=

√
K

N

( ∑
k∈[K]

LkεkE
{
‖ζk‖F

})

=

√
K

N

( ∑
k∈[K]

Lkεk
√
mkpk

)
.

(89)

Thus, we obtain E

{
supDk∈Bεk

(D0
k)

k∈[K]

∣∣∣ 1N ∑n∈[N ] βnhn(D1:K)
∣∣∣}

≤ 2
√

K
N

(∑
k∈[K] Lkεk

√
mkpk

)
.
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Proof of Lemma 14: We expand ∆φy
(
D1:K ;D0

1:K |σ
)

according to (63) and bound each term of the sum separately.
Looking at the first term, we get∣∣∆φ1 (D1:K ;D0

1:K |σ
)∣∣ (a)=

∣∣∣∣12x>D0>
( ∑
k∈[K]

PD̃1,J1
⊗ · · ·⊗

(
PD′k,Jk

−PDk,Jk

)
⊗ · · · ⊗PD̃K,JK

)
D0x

∣∣∣∣
(b)

≤ 1

2
‖x‖22

( ∏
k∈[K]

∥∥D0
k,Jk

∥∥2
2

)( ∑
k∈[K]

∥∥∥PD0
k,Jk
−PDk,Jk

∥∥∥
2( ∏

i∈[K]
i6=k

∥∥∥PD̃i,Ji

∥∥∥
2

))
(c)

≤ M2
x

( ∏
k∈[K]

(
1 + δsk(D0

k)
))

( ∑
k∈[K]

(1− δk)−1/2‖Dk −D0
k‖F

)
, (90)

where (a) follows from (64), (b) follows from the fact that∥∥D0
J
∥∥
2

=
∏
k∈[K]

∥∥∥D0
k,Jk

∥∥∥
2
, and (c) follows from the defi-

nition of RIP, equation (54), and
∥∥PD̃i,Ji

∥∥
2

= 1. Following a
similar approach and expanding the rest of the terms, we get∣∣∆φ2 (D1:K ;D0

1:K |σ
)∣∣

≤ ‖w‖2 ‖x‖2

( ∏
k∈[K]

∥∥D0
k,Jk

∥∥2
2

)
( ∑
k∈[K]

∥∥∥PD0
k,Jk
−PDk,Jk

∥∥∥
2

( ∏
i∈[K]
i6=k

∥∥∥PD̃i,Ji

∥∥∥
2

))
(d)

≤ 2MwMx

( ∏
k∈[K]

(
1 + δsk(D0

k)
)1/2)

( ∑
k∈[K]

(1− δk)−1/2‖Dk −D0
k‖F

)
,

∣∣∆φ3 (D1:K ;D0
1:K |σ

)∣∣ ≤ 1

2
‖w‖22( ∑

k∈[K]

∥∥∥PD0
k,Jk
−PDk,Jk

∥∥∥
2

( ∏
i∈[K]
i6=k

∥∥∥PD̃i,Ji

∥∥∥
2

))

≤M2
w

( ∑
k∈[K]

(1− δk)−1/2‖Dk −D0
k‖F

)
,

∣∣∆φ4 (D1:K ;D0
1:K |σ

)∣∣ = λ ‖σJ ‖2 ‖x‖2

( ∏
k∈[K]

∥∥D0
Jk

∥∥
2

)
( ∑
k∈[K]

∥∥∥D0+
k,Jk
−D+

k,Jk

∥∥∥
2

( ∏
i∈[K]
i6=k

∥∥∥D̃+
i,Ji

∥∥∥
2

))
(e)

≤ 2λ
√
sMx

( ∏
k∈[K]

(
1 + δsk(D0

k)
)1/2)

( ∑
k∈[K]

(1− δk)−1
( ∏
i∈[K]
i 6=k

(1− δi)−1/2
)
‖Dk −D0

k‖F
)
,

∣∣∆φ5 (D1:K ;D0
1:K |σ

)∣∣ = λ ‖σJ ‖2 ‖w‖2( ∑
k∈[K]

∥∥∥D0+
k,Jk
−D+

k,Jk

∥∥∥
2

( ∏
i∈[K]
i 6=k

∥∥∥D̃+
i,Ji

∥∥∥
2

))

≤ 2λ
√
sMw( ∑
k∈[K]

(1− δk)−1
( ∏
i∈[K]
i6=k

(1− δi)−1/2
)
‖Dk −D0

k‖F
)
,

∣∣∆φ6 (D1:K ;D0
1:K |σ

)∣∣ =
λ2

2
‖σJ ‖22( ∑

k∈[K]

∥∥∥HD0
k,Jk
−HDk,Jk

∥∥∥
2

( ∏
i∈[K]
i6=k

∥∥∥HD̃i,Ji

∥∥∥
2

))
(f)

≤ λ2s

( ∑
k∈[K]

(1− δk)−
3
2

( ∏
i∈[K]
i 6=k

(1− δi)−1
)
‖Dk −D0

k‖F
)
,

where (e) and (f) follow from (34) and (54). Adding all the
terms together, we get∣∣∆φy (D1:K ;D0

1:K |σ
)∣∣ ≤ ∑

k∈[K]

Lk‖Dk −D0
k‖F . (91)

where Lk is defined in (55).

APPENDIX C

Proof of the coherence relation for KS dictio-
naries: To prove (6), we define the set A =
{∀jk ∈ Jk, (j1, . . . , jK) 6∈ (J1, . . . ,JK)}. We have

µs(D) = max
|J |≤s

max
j 6∈J
‖D>Jdj‖1

= max
|Jk|≤sk
k∈[K]

max
A

∥∥∥(⊗D>k,Jk

)(⊗
dk,jk

)∥∥∥
1

= max
|Jk|≤sk
k∈[K]

max
A

∥∥∥⊗D>k,Jk
dk,jk

∥∥∥
1

= max
|Jk|≤sk
k∈[K]

max
A

∏
k∈[K]

∥∥D>k,Jk
dk,jk

∥∥
1

≤ max
k∈[K]

µsk(Dk)

( ∏
i∈[K],
i 6=k

(1 + µsi−1(Di))

)
. (92)
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