
BYRDIE: A BYZANTINE-RESILIENT DISTRIBUTED LEARNING ALGORITHM

Zhixiong Yang and Waheed U. Bajwa

Department of Electrical and Computer Engineering,
Rutgers University–New Brunswick, Piscataway, NJ 08854
{zhixiong.yang, waheed.bajwa}@rutgers.edu

ABSTRACT

In this paper, a Byzantine-resilient distributed coordinate descent
(ByRDiE) algorithm is introduced to accomplish machine learning
tasks in a fully distributed fashion when there are Byzantine failu-
res in the network. When data is distributed over a network, it is
sometimes desirable to implement a fully distributed learning algo-
rithm that does not require sharing of raw data among the network
entities. To this end, existing distributed algorithms usually count
on the cooperation of all nodes in the network. However, real-world
applications often encounter situations where some nodes are either
not reliable or are malicious. Such situations, in which some nodes
do not behave as intended, can be modeled as having undergone By-
zantine failures. Generally, Byzantine failures are hard to detect and
can lead to break down of distributed learning algorithms. In this
paper, it is shown that ByRDiE can provably tolerate Byzantine fai-
lures in the network under certain assumptions on the network topo-
logy and the machine learning tasks. ByRDiE accomplishes this by
incorporating a local “screening” step into the update of a distributed
coordinate descent algorithm. Finally, numerical results reported in
the paper confirm the robustness of ByRDiE to Byzantine failures.

Index Terms— Byzantine failure, distributed optimization, em-
pirical risk minimization, machine learning, multiagent networks

1. INTRODUCTION

In machine learning, learning of models require the use of (labeled or
unlabeled) training data. Traditionally, training data have been assu-
med available at a centralized location. In some recent applications,
such as the internet-of-things, multiagent networks, and large-scale
machine learning, training data tend to be distributed across different
locations. Training of machine learning models in this setting of dis-
tributed datasets is often referred to as distributed learning [1, 2].

While distributed learning has received a lot of attention in re-
cent years, most existing works make a simplified assumption that
all nodes in the network operate as expected. Unfortunately, this as-
sumption does not always hold true in practice; examples include
cyber attacks, malfunctioning equipments and undetected failures
[3,4]. When a node arbitrarily deviates from its intended behavior, it
is termed to have undergone Byzantine failure [5]. While Byzantine
failures are hard to detect in general, they can easily jeopardize the
operation of the whole network [6–8].

In particular, with just a simple strategy, one can show that a
single Byzantine node in the network can lead to failures of most

This work is supported in part by the NSF under award CCF-1453073,
by the ARO under award W911NF-17-1-0546, and by the DARPA Lagrange
Program under ONR/SPAWAR contract N660011824020.

state-of-the-art distributed learning algorithms [22]. The main con-
tribution of this paper is to introduce and analyze an algorithm that
completes distributed learning in the presence of Byzantine failures.

1.1. Related work and our contributions

A distributed learning problem can often be modeled as a distribu-
ted optimization problem by defining and minimizing a loss function
on the training data of each node. Several types of distributed opti-
mization algorithms have been introduced in the past to solve this
problem. These include gradient-based methods [10–12], augmen-
ted Lagrangian-based methods [13–15] and second-order methods
[16,17]. While any of these algorithms can be used to solve a distri-
buted learning problem, they all make the idealistic assumption that
there are no failures in the network.

Byzantine-resilient algorithms have been studied extensively
over the years [5, 18]. Byzantine-resilient algorithms for scalar
averaging distributed consensus were studied in [19]. The algo-
rithms proposed in [9, 22] extend this work from scalar consensus
to scalar-valued distributed optimization, but they cannot be used in
vector settings. The work in [24] introduces a method to implement
distributed support vector machine (SVM) under Byzantine failures
but the method does not generalize to other learning problems. A
recent work [20] solves a vector-valued distributed learning problem
under Byzantine failures, but it requires a central processing center.
Because of this, it is not applicable in fully distributed settings.

There are several limitations of works like [9, 19–24]. One of
the limitations is that the proposed algorithms pursue the minimizer
of a convex combination of local empirical risk functions. This mi-
nimizer is usually different from the minimizer of the exact average
of local loss functions. As such, there are no guarantees that the
outputs of these algorithms result in either the minimum empirical
risk or the minimum statistical risk. Another limitation is that, when
forced to work with vectors, existing Byzantine-resilient algorithms
require a strong assumption on the network topology [25]. Specifi-
cally, the smallest size of neighborhood of each node in the vector
setting depends linearly on the dimensionality of the problem. This
is impractical for most learning problems since the dimensionality
of the training samples is usually much larger than the size of the
neighborhood of each node.

Our work has two main contributions. First, we propose a coor-
dinate descent-based distributed algorithm that can solve a high-
dimensional distributed learning problem under mild assumptions on
the network topology and the (regularized) loss function. To the best
of our knowledge, this problem had been unsolved prior to this work.
It is worth noting here that the semi-distributed Byzantine-resilient
learning problem studied in works such as [20] is very different from
the fully distributed setting of this work. Byzantine nodes are much
more powerful and dangerous when there is no central processor in

the network that can coordinate different steps of the learning algo-
rithm. Second, while existing works can only achieve the minimum
of a convex combination of local empirical risk functions, we pro-
vide theoretical guarantees that the output of our algorithm conver-
ges to the minimum of the statistical risk under the assumption of
independent and identically distributed (i.i.d.) training samples.

1.2. Notation and organization

All vectors are taken to be column vectors. We use [a]k and [A]ij to
denote the k-th element of vector a and the (i, j)-th element of ma-
trix A, respectively. We use ‖a‖ to denote `2-norm of a and ‖a‖∞
to denote its `∞-norm. Given a set, | · | denotes its cardinality, while
(·)T denotes the transpose operation. Finally, we use Of(w, (x, y))
to denote the gradient of a function f(w, (x, y)) with respect to w.

The rest of this paper is organized as follows. Section 2 gives
the problem formulation. Section 3 discusses the ByRDiE algorithm
along with the theoretical guarantees. Numerical results are provided
in Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

Given a network in which each node has access to some local trai-
ning data, the main goal of this paper is to learn a machine learning
model from the data in a distributed fashion, even in the presence of
Byzantine failures.

2.1. Distributed learning model

We consider a network of M nodes, expressed as a directed, static
graph G(J, E). Here, the set J := {1, . . . ,M} represents nodes in
the network, while the set of edges E represents communication links
between different nodes. Specifically, (j, i) ∈ E if and only if node
i can receive information from node j and vice versa. Each node j
has access only to a local training set Sj = {(xjn, yjn)}|Sj |

n=1. Let
x ∈ RP represent the training features satisfying ‖x‖ ≤ B for some
constant B and y be its label. For classification, y ∈ {−1, 1}, and
for regression, y ∈ R.1 We assume that all training samples are i.i.d.
and drawn from an unknown distribution D, i.e., (xjn, yjn) ∼ D.
For simplicity, we assume that the cardinalities of local training sets
are the same, i.e., |Sj | = N . The generalization to the case when
Sj’s are not equal is trivial.

The goal in distributed learning is to learn a function using the
distributed training data that correctly maps x to y. One popular
mapping is y = wTx. To find a “good” w, one first defines a
loss function `(w, (x, y)), where the value of loss function incre-
ases when the difference between the mapping of x and y increases.
To avoid over fitting, a regularizer R(w) is often added to the loss
function. Then one can solve for w by statistically minimizing a re-

gularized loss function f(w, (x, y))
4
= R(w) + `(w, (x, y)). The

regularized f(w, (x, y)) is often referred to as risk function. In this
paper, we focus on the class of convex differentiable loss functions
and strongly convex and smooth regularizers2. Examples include
square loss (1−y ·wTx)2, square hinge loss max(0, 1−y ·wTx)2,
logistic loss ln(1+e−y·w

T x) andR(w) = λ
2
‖w‖2. In this paper, we

1Note that while the main problem is being formulated here under the
supervised setting, our proposed framework and the final results are equally
applicable under both unsupervised and semi-supervised settings.

2A function R(w) is strongly convex if it satisfies R(zw1+(1−z)w2) <
zR(w1) + (1− z)R(w2) for any 0 < z < 1. Further, R(w) is smooth if it
is differentiable for all orders.

make the following Lipschitz continuity assumption on the gradient
of f(·).

Assumption 1. The risk function f = R(w)+ `(w, (x, y)) satisfies
‖Of(w1, (x, y))− Of(w2, (x, y))‖ ≤ L‖w1 − w2‖.

Note that Assumption 1 implies that the risk function itself is
also Lipschitz, i.e., ‖f(w1, (x, y))−f(w2, (x, y))‖ ≤ L′‖w1−w2‖
[30]. Ideally, we need to learn the “best” mapping as follows:

w∗ = arg min
w∈W

E(x,y)∼D[f(w, (x, y))]. (1)

Here, W ⊂ RP denote the feasible set for w. In this work, we
take W to be the closed and compact set {w : ‖w‖∞ ≤ Γ}. Note
that solving an unconstrained problem is equivalent to solving (1)
on the constraint set W with Γ large. Extensions to other convex
constraint sets can be carried out with slight modifications to our
main algorithm, but would not be pursued in this work. Next, we
make another assumption.

Assumption 2. For any w ∈ W , the loss function `(w, (x, y)) is
bounded almost surely over all training samples, i.e., `(w, (x, y)) ≤
C <∞, ∀(x, y) ∈

⋃
j∈J Sj .

Note that Assumption 2 would be satisfied for datasets with finite-
valued training samples because of the Lipschitz continuity of
`(w, (x, y)) and the compactness of W .

Since D is unknown, we can not solve for w∗ directly. In many
distributed learning problems, a broadly adopted alternative is to de-
fine and minimize the average of all local empirical risk functions,

i.e., 1
M

M∑
j=1

f̂(w, Sj)
4
= R(w) + 1

MN

M∑
j=1

N∑
n=1

`(w, (xjn, yjn)). To

achieve this goal, we need nodes to cooperate with each other by
communicating over edges. Specifically, define the neighbourhood
of j as Nj := {i ∈ J : (i, j) ∈ E}. We say that node i is a neig-
hbour of node j if i ∈ Nj . Distributed learning algorithms proceed
iteratively. In each iteration of the algorithm, node j is expected to
accomplish two tasks: (1) update a local variable wj according to
some rule gj(·), and (2) broadcast the updated local variable to other
nodes, where node i can receive the broadcasted information from
node j only if j ∈ Ni.

2.2. Byzantine failure model

While distributed learning via message passing is well-understood
[15, 26, 27], existing protocols require all nodes in the network to
operate as intended. In contrast, the main assumption in this paper
is that some of the nodes in the network can undergo Byzantine fai-
lures, formally defined as follows.

Definition 1. A node j ∈ J is said to be Byzantine if during any
iteration, it either updates its local variable using an update function
g′j(·) 6= gj(·) or it broadcasts some value other than the intended
update to its neighbors.

In this paper, we assume there are at most b Byzantine nodes in
the network. Let J ′ ⊂ J denote the set of non-faulty nodes. Without
loss of generality, we assume that non-faulty nodes are labeled from
1 to |J ′|. We now provide some definitions and assumptions that are
common in the literature; see, e.g., , [22].

Definition 2. A subgraph G′ of G is called a reduced graph if it
is generated from graph G by (i) removing all Byzantine nodes al-
ong with all their incoming and outgoing edges, and (ii) removing
additionally up to b incoming edges from each non-faulty node.

Definition 3. A “source component” of graph G′ is a collection of
nodes such that each node in the source component has a directed
path to every other node in G′.

Assumption 3. All reduced graphs G′ generated from G(J, E) con-
tain a source component of cardinality at least b+ 1.

Assumption 3 is to ensure that there is enough redundancy in
the graph to tolerate Byzantine failures. Note that the total number
of different reduced graphs one can generate from G is finite as long
as M is finite. So, in theory, the assumption can be checked for
any graph with a finite number of nodes. However, checking this
assumption efficiently still remains an open question. In the case
of Erdös–Rényi graphs used in our experiments, however, we have
observed that Assumption 3 is typically satisfied whenever the ratio
of the average incoming degree of the graph and the number of By-
zantine nodes is high enough. Note that it is not necessary for our
algorithm to know the exact value of b. For example, we can set b as
an upper bound on the number of Byzantine nodes. As long as the
network topology assumption is satisfied, our proposed algorithm
can can tolerate up to b Byzantine nodes.

The goal of this paper is to develop a Byzantine fault-tolerant
algorithm for distributed learning under Assumptions 1–3. In par-
ticular, under the assumption of at most b Byzantine nodes in the
network, we need to accomplish the following: (i) achieve consen-
sus among nonfaulty nodes, i.e., wrj = wri ∀i, j ∈ J ′ as the number
of iterations r → ∞; (ii) ensure that wrj → w∗ ∀j ∈ J ′ as the
sample size N →∞.

3. BYRDIE: BYZANTINE-RESILIENT DISTRIBUTED
COORDINATE DESCENT

Our goal is to find the global optimum of the problem

wopt = arg min
w∈W

R(w) +
1

MN

M∑
j=1

N∑
n=1

`(w, (xjn, yjn)) (2)

at each node j ∈ J ′ and show that wopt → w∗ as N → ∞. We al-
ready know from prior work [28] that the exact optimum of (2) is not
achievable when b ≥ 1. As an alternative, existing works [21–23,25]
pursue a convex combination of local empirical risks. In contrast, we
introduce an algorithm called Byzantine-Resilient Distributed coor-
dinate dEscent (ByRDiE) and show that the algorithm achieves the
statistical optimum at each node j ∈ J ′ in the presence of Byzantine
failures when the training data is i.i.d..

The idea behind ByRDiE is to convert a vector-valued opti-
mization problem into a sequence of scalar-valued subproblems at
each dimension using coordinate descent. Afterward, it performs a
Byzantine-resilient exact line search in each dimension. The process
of ByRDiE is shown in Algorithm 1. This implementation can be
broken into a coordinate descent loop (step 2) and an inner loop
(step 4). The outer loop is the coordinate descent loop that breaks
the vector optimization problem into P scalar-valued subproblems.
The inner loop solves each subproblem and ensures resilience to
Byzantine failures.

We assume that the total number of iterations r̄ for coordinate
descent is specified during the initialization. The number of iterati-
ons T (r̄) for each scalar-valued subproblem within coordinate des-
cent is assumed to be a function of r̄ that satisfies T (r̄) → ∞ as
r̄ → ∞. We use [wrj (t)]k to denote the k-th element of wj at the
r-th iteration of the coordinate descent loop and the t-th iteration
of the k-th subproblem (coordinate). Without loss of generality, we
initialize [w1

j]k = 0, ∀k = 1, ..., P .

Algorithm 1 ByRDiE for distributed learning
Input: S1, S2, . . . , SM , b, {ρ(t)}∞t=1, r̄, T (r̄)

1: Initialize [w1
j (1)]k ← 0 , j = 1, . . . , |J ′|, k = 1, . . . , P

2: for r = 1, 2, 3, . . . , r̄ do
3: for k = 1, 2, 3, . . . , P do
4: for t = 1, 2, 3, . . . , T (r̄) do
5: for j = 1, 2, 3, . . . , |J ′| do In parallel
6: Receive [wri (t)]k from all i ∈ Nj
7: Find N s

j (r, k, t), N l
j (r, k, t), N ∗j (r, k, t) accor-

ding to (3), (4) and (5).
8: Update [wrj (t+ 1)]k as in (6)
9: end for

10: end for
11: [wr+1

j (1)]k ← [wrj (T (r̄))]k ∀j ∈ J ′, k = 1, . . . , P
12: end for
13: end for
Output: {wr̄j (T (r̄))}j∈J′

At the beginning of each inner loop (for some r and k), every
node initializes from [wrj (1)]k. Then during each iteration t, every
node engages in the following: broadcast, screening and update.
In the broadcast step, node j receives [wri (t)]k from all neighbors
i ∈ Nj . During this step, a node can receive values from both By-
zantine and non-faulty neighbors. The main idea of screening is to
remove some values that are “too large” or “too small” so that the va-
lues being used for update in each iteration will be upper and lower
bounded by a set of values generated by non-faulty nodes. We thus
break Nj into 3 subsets N ∗j (r, k, t), N s

j (r, k, t) and N l
j (r, k, t),

which are defined as the following:

N s
j (r, k, t) = arg min

X:X⊂Nj ,|X|=b

∑
i∈X

[wri (t)]k, (3)

N l
j (r, k, t) = arg max

X:X⊂Nj ,|X|=b

∑
i∈X

[wri (t)]k, (4)

N ∗j (r, k, t) = Nj \ N s
j (r, k, t) \ N l

j (r, k, t). (5)

One way of finding the three sets is by a sorting process. Node
j sorts [wri (t)]k’s in an increasing order for all i ∈ Nj , breaking
ties arbitrarily. Then node j adds the neighbors that broadcast the
b largest [wri (t)]k’s into N l

j (t). Similarly, node j can evaluate
N s
j (r, k, t). Then it adds all the neighbors that are not inN l

j (r, k, t)
orN s

j (r, k, t) intoN ∗j (r, k, t). The step is called screening because
node j only selects [wri (t)]k’s from N ∗j (r, k, t) to update its local
value. Note that there might still be [wri (t)]k’s received from By-
zantine nodes in N ∗j (r, k, t). With a slight abuse of notation, we
use [Of̂(wrj (t), Sj)]k to denote the k-th element of Of̂ at the t-th
iteration of the k-th inner loop and the r-th iteration of the outer
loop. Finally, the update rule at node j can be described as follows:

[wrj (t+ 1)]k =
1

|Nj | − 2b+ 1

∑
i∈N∗j (r,k,t)∪{j}

[wri (t)]k

− ρ(t)[Of̂(wrj (t), Sj)]k, (6)

where {ρ(t)}∞t=1 is a sequence of stepsizes satisfying 0 < ρ(t+1) ≤

ρ(t),
∞∑
t=1

ρ(t) = ∞ and
∞∑
t=1

ρ2(t) < ∞. Note that Assumption 3

is required to ensure that the screening step within the inner loop
can reliably thwart the Byzantine nodes [22]. The next inner loop
starts with the output of the previous inner loop. Each coordinate

descent iteration r starts with the first dimension and ends after the
P -th dimension is processed, which is a standard coordinate descent
process. We now state our main result.

Theorem 1. Let Assumptions 1, 2 and 3 hold. Then all non-faulty
nodes in the network achieve consensus, i.e., ∃w∞ such that ∀j ∈
J ′, wr̄j (T (r̄))

r̄−→ w∞. Further, we also have

E(x,y)∼D[f(w∞, (x, y))]
N−→ E(x,y)∼D[f(w∗, (x, y))] (7)

in probability.

Note that both the empirical risk and the statistical risk functions
are strongly convex. Therefore, Theorem 1 can also be interpreted as
wr̄j (T (r̄))→ w∗ due to the uniqueness of the minimum of strongly
convex functions. The rigorous proof of this theorem can be found
in the extended version of this work [29]. Here we heuristically des-
cribe why the algorithm works. First, the output of each inner loop
can be shown to be the minimum of a convex combination of all lo-
cal loss functions with respect to one dimension k as T (r̄) → ∞.
Then, given the data samples are i.i.d., this minimum converges to
the minimum of the statistical risk with respect to the k-th dimension
in probability as a function of N . Thus as k increases from 1 to P
and r increases from 1 to r̄, the outer loop can be viewed as repeating
the following steps: (1) minimize the statistical risk along dimension
k, and (2) switch to a different k. This process is a well-understood
coordinate descent process, which can be shown to converge to the
minimum of the statistical risk as r̄ →∞.

4. NUMERICAL RESULTS

In this section, we use our algorithm for classificaion of the
MNIST8M handwritten digits dataset [31] distributed over a net-
work of 800 nodes to show two facts: (i) the classic distributed
learning algorithms fail when there are Byzantine failures in the
network, and (ii) ByRDiE is Byzantine resilient and its performance
is comparable to the case when there are no Byzantine failures in
the network. We use a linear support vector machine (SVM) to
train the classifier. The dimensionality of each image in MNIST8M
is 784 and the network has 800 nodes, so the network does not
satisfy the strong constraint of [23]. In particular, there is no exis-
ting distributed method that solves this classification problem in the
presence of Byzantine failures to the best of our knowledge. So we
use the accuracy of centralized SVM as the baseline. We perform
training using ByRDiE and compare our results with both the base-
line and distributed gradient descent (DGD) [10]. We perform four
sets of experiments: (1) Collect all training samples together and
run centralized SVM; (2) SVM via DGD with Byzantine failures
in the network; (3) SVM via ByRDiE with Byzantine failures in
the network; and (4) Centralized SVM using the local data on each
node.

We model the problem as a simple binary classification problem
of distinguishing between digits ‘5’ and ‘8’, which are the two most
inseparable digits. We distribute training samples onto 800 nodes
with 250 digit ‘5’ and 250 digit ‘8’ per node. The test set is of size
40,000 with an equal number of both digits. We use an Erdös–Rényi
graph with 800 nodes and probability of being connected to be 0.5.
We randomly pick 20 nodes to be Byzantine nodes, each of which
broadcasts random vectors to its neighbors in each iteration.

Two metrics should be taken into account for these experiments:
accuracy and consensus. Accuracy is measured by the rate of classi-
fying test samples correctly. We model the accuracy and consensus

Table 1. MNIST8M dataset test
Algorithm Sample size Accuracy Consensus

Centralized SVM 400000 × 1 92.30% N/A
SVM via DGD 500 × 800 50% NO

SVM via ByRDiE 500 × 800 91.83% YES
Local SVM 500 × 1 88.08% N/A

0 5 10 15 20 25 30 35

Iterations

50

55

60

65

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

Accuracy on MNIST8M

Local
ByRDiE
Centralized
DGD

Fig. 1. The average accuracy of all local classifiers on the test data-
set is used as the metric of performance of algorithms. The solid line
is the accuracy of the centralized method with all training samples,
which is the baseline of performance. The accuracy of ByRDiE is
close to the baseline while DGD fails because of the Byzantine fai-
lures. The gap between ByRDiE and training using local data shows
that by taking advantage of cooperation among all nodes, ByRDiE
can maintain a competitive performance even when there are Byzan-
tine failures in the network.

metrics as functions of outer loop iterations, i.e., one round of upda-
tes from the first dimension to the last. If the `2-norm of the diffe-
rence between any pair of classifiers is less than 1% of the `2-norm
of both classifiers, we say that the algorithm has achieved consensus.

The results are shown in Table 1 and Fig. 1. As a baseline,
centralized SVM achieves the highest accuracy of 92.30%. Classic
DGD has an accuracy of 50% since it gives all test data the same
label. In addition, consensus is not achieved by DGD due to the
false information from Byzantine nodes, which indicates that the
non-resilient distributed method fails when there are Byzantine fai-
lures in the network. On the other hand, when a node chooses not
to cooperate with others and performs training only on local data, it
achieves an accuracy of 88.08%. In contrast, ByRDiE achieves con-
sensus on a classifier that has 91.83% accuracy, which shows that
ByRDiE can indeed maintain a competitive performance by coope-
ration among all nodes while staying resilient to Byzantine failures.

5. CONCLUSION

In this paper, we introduced a Byzantine-resilient distributed coor-
dinate descent algorithm (ByRDiE). The algorithm minimizes the
statistical risk in a fully distributed fashion. Numerical results show
that when there are Byzantine failures in the network, ByRDiE can
deliver a competitive performance while existing algorithms fail. In
terms of future work, the technique that helps ByRDiE reject By-
zantine failures can potentially be combined with other optimization
methods to increase convergence rate, reduce communication cost or
lower data complexity requirements.

6. REFERENCES

[1] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed le-
arning in wireless sensor networks,” IEEE Sig. Process. Mag.,
vol. 22, no. 4, pp. 56–69, 2006.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[3] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, “Byzan-
tine fault tolerance, from theory to reality,” in Proc. Int. Conf.
Computer Safety Reliability and Security,, 2003, pp. 235–248.

[4] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Siven-
crona, “The real Byzantine generals,” in Proc. 23rd Digital Avi-
onics Systems Conf., vol. 2. IEEE, 2004, pp. 6–D.

[5] L. Lamport, R. Shostak, and M. Pease, “The Byzantine gene-
rals problem,” ACM Trans. Programming Languages and Sys-
tems, vol. 4, no. 3, pp. 382–401, 1982.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibi-
lity of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[7] P. Dutta, R. Guerraoui, and M. Vukolic, “Best-case com-
plexity of asynchronous Byzantine consensus,” Tech. Rep.
EPFL/IC/200499, 2005.

[8] J. Sousa and A. Bessani, “From Byzantine consensus to BFT
state machine replication: A latency-optimal transformation,”
in Proc. Dependable Computing Conf. IEEE, 2012, pp. 37–48.

[9] L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimiza-
tion: Optimal iterative distributed algorithms,” in Proc. ACM
Symposium on Principles of Distributed Computing, pp.424–
434, 2016.

[10] A. Nedić and A. Ozdaglar, “Distributed subgradient methods
for multi-agent optimization,” IEEE Trans. Autom. Control,
vol. 54, no. 1, pp. 48–61, 2009.

[11] S.S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochas-
tic subgradient projection algorithms for convex optimization,”
J. Optimiz. Theory Applicat., vol. 147, no. 3, pp. 516–545,
2010.

[12] A. Nedić and A. Olshevsky, “Distributed optimization over
time-varying directed graphs,” IEEE Trans. Autom. Control,
vol. 60, no. 3, pp. 601–615, 2015.

[13] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “D-ADMM:
A communication-efficient distributed algorithm for separable
optimization,” IEEE Trans. Sig. Process., vol. 61, no. 10, pp.
2718–2723, 2013.

[14] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus optimi-
zation,” IEEE Trans. Sig. Process., vol. 62, no. 7, pp. 1750–
1761, 2014.

[15] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vector machines,” J. Mach. Learn. Res.,
vol. 11, pp. 1663–1707, 2010.

[16] P. A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton
distributed optimization methods,” IEEE Trans. Sig. Process.,
vol. 65, no. 1, pp. 146–161, 2017.

[17] P. A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentra-
lized second-Order method with exact linear convergence rate
for consensus optimization,” IEEE Trans. Signal Inf. Process.
Netw., vol. 2, no. 4, pp. 507–522, 2016.

[18] Y. M. Minsky and F. B. Schneider, “Tolerating malicious gos-
sip,” Distributed Computing, vol. 16, no. 1, pp. 49–68, 2003.

[19] H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram,
“Resilient asymptotic consensus in robust networks,” IEEE J.
Sel. Areas Commun., vol. 31, no. 4, pp. 766–781, 2013.

[20] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine lear-
ning in adversarial settings: Byzantine gradient descent,” arXiv
preprint arXiv:1705.05491, 2017.

[21] N. H. Vaidya, L. Tseng, and G. Liang, “Iterative approxi-
mate Byzantine consensus in arbitrary directed graphs,” in
Proc. ACM Symposium on Principles of Distributed Compu-
ting, 2012, pp. 365–374.

[22] L. Su and N. Vaidya, “Fault-tolerant distributed optimization
(Part IV): Constrained optimization with arbitrary directed net-
works,” arXiv preprint arXiv:1511.01821, 2015.

[23] N. H. Vaidya, “Iterative Byzantine vector consensus in incom-
plete graphs,” in Proc. Int. Conf. Distributed Computing and
Networking, pp. 14–28, 2014.

[24] Z. Yang and W. U. Bajwa, “RD-SVM: A resilient distributed
support vector machine,” in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP), 2016, pp. 2444–
2448.

[25] N. H. Vaidya and V. K. Garg, “Byzantine vector consensus in
complete graphs,” in Proc. ACM Symposium on Principles of
Distributed Computing, 2013, pp. 65–73.

[26] T. Do and F. Poulet, “Classifying one billion data with a new
distributed SVM algorithm,” in Proc. Int. Conf. Research Inno-
vation and Vision for the Future, 2006, pp. 59–66.

[27] A. Navia-Vázquez and E. Parrado-Hernandez, “Distributed
support vector machines,” IEEE Trans. Neural Netw., vol. 17,
no. 4, pp. 1091–1097, 2006.

[28] L. Su and N. Vaidya, “Byzantine multi-agent optimization:
Part I,” arXiv preprint arXiv:1506.04681, 2015.

[29] Z. Yang and W.U.Bajwa, “ByRDiE: Byzantine-resilient dis-
tributed coordinate descent for decentralized learning,” arXiv
preprint arXiv:1708.08155, 2017.

[30] H. H.Sohrab, Basic real analysis. Birkhauser Boston, 2003.

[31] G. Loosli, S. Canu, and L. Bottou, “Training invariant support
vector machines using selective sampling,” Large scale kernel
machines, pp. 031–320, 2007.

