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Minimax Lower Bounds on Dictionary Learning for
Tensor Data

Zahra Shakeri, Waheed U. Bajwa, and Anand D. Sarwate

Abstract—This paper provides fundamental limits on the
sample complexity of estimating dictionaries for tensor data. The
specific focus of this work is on Kth-order tensor data and the
case where the underlying dictionary can be expressed in terms
of K smaller dictionaries. It is assumed the data are generated
by linear combinations of these structured dictionary atoms and
observed through white Gaussian noise. This work first provides
a general lower bound on the minimax risk of dictionary learning
for such tensor data and then adapts the proof techniques for
specialized results in the case of sparse and sparse-Gaussian
linear combinations. The results suggest the sample complexity
of dictionary learning for tensor data can be significantly lower
than that for unstructured data: for unstructured data it scales
linearly with the product of the dictionary dimensions, whereas
for tensor-structured data the bound scales linearly with the sum
of the product of the dimensions of the (smaller) component
dictionaries. A partial converse is provided for the case of 2nd-
order tensor data to show that the bounds in this paper can be
tight. This involves developing an algorithm for learning highly-
structured dictionaries from noisy tensor data. Finally, numerical
experiments highlight the advantages associated with explicitly
accounting for tensor data structure during dictionary learning.

Index Terms—Dictionary learning, Kronecker-structured dicti-
onary, minimax bounds, sparse representations, tensor data.

I. INTRODUCTION

Dictionary learning is a technique for finding sparse repre-
sentations of signals or data and has applications in various
tasks such as image denoising and inpainting [3], audio
processing [4], and classification [5], [6]. Given input training
signals {yn ∈ Rm}Nn=1, the goal in dictionary learning is to
construct an overcomplete basis, D ∈ Rm×p, such that each
signal in Y =

[
y1, . . . ,yN

]
can be described by a small

number of atoms (columns) of D [7]. This problem can be
posed as the following optimization program:

min
D,X
‖Y −DX‖F subject to ∀n, ‖xn‖0 ≤ s, (1)

Manuscript received August 29, 2016; revised October 3, 2017 and January
12, 2018; accepted January 14, 2018. This work is supported in part by the
National Science Foundation under awards CCF-1525276 and CCF-1453073,
and by the Army Research Office under awards W911NF-14-1-0295 and
W911NF-17-1-0546. Some of the results reported here were presented at the
2016 IEEE International Symposium on Information Theory (ISIT) [1] and
at the 2017 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP) [2].

The authors are with the Department of Electrical and
Computer Engineering, Rutgers, The State University of New
Jersey, 94 Brett Road, Piscataway, NJ 08854, USA. (Emails:
zahra.shakeri@rutgers.edu, waheed.bajwa@rutgers.edu,
and anand.sarwate@rutgers.edu)

Copyright (c) 2018 IEEE. Personal use of this material is permitted. Howe-
ver, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

where xn is the coefficient vector associated with yn, ‖ · ‖0
counts the number of nonzero entries and s is the maxi-
mum number of nonzero elements of xn. Although existing
literature has mostly focused on dictionary learning for one-
dimensional data [3]–[7], many real-world signals are mul-
tidimensional and have a tensor structure: examples include
images, videos, and signals produced via magnetic resonance
or computed tomography systems. In traditional dictionary le-
arning literature, multidimensional data are converted into one-
dimensional data by vectorizing the signals. Such approaches
can result in poor sparse representations because they neglect
the multidimensional structure of the data [8]. This suggests
that it might be useful to keep the original tensor structure
of multidimensional data for efficient dictionary learning and
reliable subsequent processing.

There have been several algorithms proposed in the lite-
rature that can be used to learn structured dictionaries for
multidimensional data [8]–[16]. In [9], a Riemannian con-
jugate gradient method combined with a nonmonotone line
search is used to learn structured dictionaries. Other structured
dictionary learning works rely on various tensor decomposition
methods such as the Tucker decomposition [10], [12]–[14],
[17], the CANDECOMP/PARAFAC (CP) decomposition [16],
[18], the HOSVD decomposition [11], [19], the t-product
tensor factorization [15], and the tensor-SVD [8], [20]. Furt-
hermore learning sums of structured dictionaries can be used
to represent tensor data [12], [13].

In this paper, our focus is on theoretical understanding
of the fundamental limits of dictionary learning algorithms
that explicitly account for the tensor structure of data in
terms of Kronecker structured (KS) dictionaries. It has been
shown that many multidimensional signals can be decomposed
into a superposition of separable atoms [21]–[23]. In this
case, a sequence of independent transformations on different
data dimensions can be carried out using KS matrices. Such
matrices have successfully been used for data representation
in hyperspectral imaging, video acquisition, and distributed
sensing [23].

To the best of our knowledge, none of the prior works on
KS dictionary learning [9]–[12] provide an understanding of
the sample complexity of KS dictionary learning algorithms.
In contrast, we provide lower bounds on the minimax risk of
estimating KS dictionaries from tensor data using any estima-
tor. These bounds not only provide means of quantifying the
performance of existing KS dictionary learning algorithms, but
they also hint at the potential benefits of explicitly accounting
for tensor structure of data during dictionary learning.
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A. Our Contributions

Our first result is a general lower bound for the mean
squared error (MSE) of estimating KS-dictionaries consisting
of K ≥ 2 coordinate dictionaries that sparsely represent
Kth-order tensor data. Here, we define the minimax risk
to be the worst-case MSE that is attainable by the best
dictionary estimator. Our approach uses the standard proce-
dure for lower bounding the minimax risk in nonparametric
estimation by connecting it to the maximum probability of
error on a carefully constructed multiple hypothesis testing
problem [24], [25]: the technical challenge is in constructing
an appropriate set of hypotheses. In particular, consider a
dictionary D ∈ Rm×p consisting of the Kronecker product
of K coordinate dictionaries Dk ∈ Rmk×pk , k ∈ {1, . . . ,K},
where m =

∏K
k=1mk and p =

∏K
k=1 pk, that is generated

within the radius r neighborhood (taking the Frobenius norm
as the distance metric) of a fixed reference dictionary. Our
analysis shows that given a sufficiently large r and keeping
some other parameters constant, a sample complexity1 of
N = Ω(

∑K
k=1mkpk) is necessary for reconstruction of the

true dictionary up to a given estimation error. We also provide
minimax bounds on the KS dictionary learning problem that
hold for the following distributions for the coefficient vectors
{xn}:
• {xn} are independent and identically distributed (i.i.d.)

with zero mean and can have any distribution;
• {xn} are i.i.d. and sparse;
• {xn} are i.i.d., sparse, and their non-zero elements follow

a Gaussian distribution.
Our second contribution is development and analysis of an

algorithm to learn dictionaries formed by the Kronecker pro-
duct of 2 smaller dictionaries, which can be used to represent
2nd-order tensor data. To this end, we show that under certain
conditions on the local neighborhood, the proposed algorithm
can achieve one of the earlier obtained minimax lower bounds.
Based on this, we believe that our lower bound may be tight
more generally, but we leave this for future work.

B. Relationship to Previous Work

In terms of relation to prior work, theoretical insights
into the problem of dictionary learning have either focused
on specific algorithms for non-KS dictionaries [26]–[32] or
lower bounds on minimax risk of dictionary learning for
one-dimensional data [33], [34]. The former works provide
sample complexity results for reliable dictionary estimation
based on appropriate minimization criteria. Specifically, given
a probabilistic model for sparse coefficients and a finite
number of samples, these works find a local minimizer of a
nonconvex objective function and show that this minimizer is a
dictionary within a given distance of the true dictionary [30]–
[32]. In contrast, Jung et al. [33], [34] provide minimax
lower bounds for dictionary learning from one-dimensional
data under several coefficient vector distributions and discuss

1We use f(n) = O(g(n)) and f(n) = Ω(g(n)) if for sufficiently large
n ∈ N, f(n) < C1g(n) and f(n) > C2g(n), respectively, for some positive
constants C1 and C2.

a regime where the bounds are tight in the scaling sense for
some signal-to-noise (SNR) values. In particular, for a given
dictionary D and sufficiently large neighborhood radius r,
they show that N = Ω(mp) samples are required for reliable
recovery of the dictionary up to a prescribed MSE within its
local neighborhood. However, in the case of tensor data, their
approach does not exploit the structure in the data, whereas
our goal is to show how structure can potentially yield a lower
sample complexity in the dictionary learning problem.

To provide lower bounds on the minimax risk of KS
dictionary learning, we adopt the same general approach that
Jung et al. [33], [34] use for the vector case. They use the
standard approach of connecting the estimation problem to
a multiple-hypothesis testing problem and invoking Fano’s
inequality [25]. We construct a family of KS dictionaries
which induce similar observation distributions but have a
minimum separation from each other. By explicitly taking
into account the Kronecker structure of the dictionaries, we
show that the sample complexity satisfies a lower bound
of Ω(

∑K
k=1mkpk) compared to the Ω(mp) bound from

vectorizing the data [34]. Although our general approach is
similar to that in [34], there are fundamental differences in
the construction of the KS dictionary class and analysis of
the minimax risk. This generalizes our preliminary work [1]
from 2nd-order to Kth-order and provides a comprehensive
analysis of the KS dictionary class construction and minimax
lower bounds.

Our results essentially show that the sample complexity
depends linearly on the degrees of freedom of a Kronecker
structured dictionary, which is

∑K
k=1mkpk, and non-linearly

on the SNR and tensor order K. These lower bounds also
depend on the radius of the local neighborhood around a
fixed reference dictionary. Our results hold even when some
of the coordinate dictionaries are not overcomplete2. Like the
previous work [34], our analysis is local and our lower bounds
depend on the distribution of multidimensional data.

We next introduce a KS dictionary learning algorithm for
2nd-order tensor data and show that in this case, one of the
provided minimax lower bounds is achievable under certain
conditions. We also conduct numerical experiments that de-
monstrate the empirical performance of the algorithm relative
to the MSE upper bound and in comparison to the performance
of a non-KS dictionary learning algorithm [34].

C. Notational Convention and Preliminaries

Underlined bold upper-case, bold upper-case and lower-case
letters are used to denote real-valued tensors, matrices and
vectors, respectively. Lower-case letters denote scalars. The
k-th column of X is denoted by xk and its ij-th element
is denoted by xij . Sometimes we use matrices indexed by
multiple letters, such as X(a,b,c), in which case its j-th column
is denoted by x(a,b,c),j . The function supp(.) denotes the
locations of the nonzero entries of X. Let XI be the matrix
consisting of columns of X with indices I, XT be the
matrix consisting of rows of X with indices T and Id be

2Note that all coordinate dictionaries cannot be undercomplete, otherwise
D won’t be overcomplete.
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the d × d identity matrix. For a tensor X ∈ Rp1×···×pK , its
(i1, . . . , iK)-th element is denoted as xi1...iK . Norms are given
by subscripts, so ‖u‖0 and ‖u‖2 are the `0 and `2 norms
of u, respectively, and ‖X‖2 and ‖X‖F are the spectral and
Frobenius norms of X, respectively. We use vec(X) to denote
the vectorized version of matrix X, which is a column vector
obtained by stacking the columns of X on top of one another.
We write [K] for {1, . . . ,K}. For matrices X and Y, we
define their distance in terms of the Frobenius norm:

d(X,Y) = ‖X−Y‖F .

We define the outer product of two vectors of the same dimen-
sion, u and v, as u�v = uv> and the inner product between
matrices of the same size, X and Y, as 〈X,Y〉 = Tr(X>Y).
Furthermore, PB1

(u) denotes the projection of u on the closed
unit ball, i.e.,

PB1
(u) =

{
u, if ‖u‖2 ≤ 1,

u
‖u‖2 , otherwise.

(2)

We now define some important matrix products. We write
X⊗Y for the Kronecker product of two matrices X ∈ Rm×n
and Y ∈ Rp×q , defined as

X⊗Y =

x11Y x12Y . . . x1nY
...

...
. . .

...
xm1Y xm2Y . . . xmnY

 , (3)

where the result is an mp × nq matrix and we have ‖X ⊗
Y‖F = ‖X‖F ‖Y‖F [35]. Given matrices X1,X2,Y1, and
Y2, where products X1Y1 and X2Y2 can be formed, we
have [36]

(X1 ⊗X2)(Y1 ⊗Y2) = (X1Y1)⊗ (X2Y2). (4)

Given X ∈ Rm×n and Y ∈ Rp×n, we write X ∗Y for their
mp× n Khatri-Rao product [36], defined by

X ∗Y =
[
x1 ⊗ y1 x2 ⊗ y2 . . . xn ⊗ yn

]
. (5)

This is essentially the column-wise Kronecker product of
matrices X and Y. We also use

⊗
k∈K Xk = X1⊗· · ·⊗XK

and∗k∈K Xk = X1 ∗ · · · ∗XK .
Next, we review essential properties of Kth-order tensors

and the relation between tensors and the Kronecker product
of matrices using the Tucker decomposition of tensors.

1) A Brief Review of Tensors: A tensor is a multidimensio-
nal array where the order of the tensor is defined as the number
of components in the array. A tensor X ∈ Rp1×p2×···×pK
of order K can be expressed as a matrix by reordering its
elements to form a matrix. This reordering is called unfolding:
the mode-k unfolding matrix of a tensor is a pk ×

∏
i 6=k pi

matrix, which we denote by X(k). Each column of X(k)

consists of the vector formed by fixing all indices of X except
the one in the kth-order. For example, for a 2nd-order tensor
X, the mode-1 and mode-2 unfolding matrices are X and
X>, respectively. The k-rank of a tensor X is defined by
rank(X(k)); trivially, rank(X(k)) ≤ pk.

The mode-k matrix product of the tensor X and a matrix
A ∈ Rmk×pk , denoted by X ×k A, is a tensor of size p1 ×

. . . pk−1 ×mk × pk+1 · · · × pK whose elements are

(X×k A)i1...ik−1jik+1...iK =

pk∑
ik=1

xi1...ik−1ikik+1...iK
ajik .

(6)

The mode-k matrix product of X and A and the matrix
multiplication of X(k) and A are related [37]:

Y = X×k A⇔ Y(k) = AX(k). (7)

2) Tucker Decomposition for Tensors: The Tucker decom-
position is a powerful tool that decomposes a tensor into a
core tensor multiplied by a matrix along each mode [17], [37].
We take advantage of the Tucker model since we can relate
the Tucker decomposition to the Kronecker representation of
tensors [38]. For the tensor Y ∈ Rm1×m2×···×mK of order K,
if rank(Y(k)) ≤ pk holds for all k ∈ [K] then, according to
the Tucker model, Y can be decomposed into:

Y = X×1 D1 ×2 D2 ×3 · · · ×K DK , (8)

where X ∈ Rp1×p2×···×pK denotes the core tensor and Dk ∈
Rmk×pk are factor matrices. Here, (8) can be interpreted as a
form of higher order principal component analysis (PCA):

Y =
∑
i1∈[p1]

· · ·
∑

iK∈[pK ]

xi1...iKd1,i1 � · · · � dK,iK , (9)

where the Dk’s can be interpreted as the principal components
in mode-k. The following is implied by (8) [37]:

Y(k) = DkX(k)(DK ⊗ · · · ⊗Dk+1 ⊗Dk−1 ⊗ · · · ⊗D1)>.
(10)

Since the Kronecker product satisfies vec(BXA>) = (A ⊗
B) vec(X), (8) is equivalent to

vec(Y) =
(
DK ⊗DK−1 ⊗ · · · ⊗D1

)
vec(X), (11)

where vec(Y) , vec(Y(1)) and vec(X) , vec(X(1)) [37]–
[39].

The rest of the paper is organized as follows. We formulate
the KS dictionary learning problem and describe the procedure
for obtaining minimax risk lower bounds in Section II. Next,
we provide a lower bound for general coefficient distribution
in Section III and in Section IV, we present lower bounds for
sparse and sparse Gaussian coefficient vectors. We propose a
KS dictionary learning algorithm for 2nd-order tensor data and
analyze its corresponding MSE and empirical performance in
Section V. In Section VI, we discuss and interpret the results.
Finally, in Section VII, we conclude the paper. In order to keep
the main exposition simple, proofs of most of the lemmas and
theorems are relegated to the appendix.

II. PROBLEM FORMULATION

In the conventional dictionary learning model, it is assumed
that the observations yn ∈ Rm are generated via a fixed
dictionary as

yn = Dxn + ηn, (12)
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in which the dictionary D ∈ Rm×p is an overcomplete basis
(m < p) with unit-norm columns3 and rank m, xn ∈ Rp is the
coefficient vector, and ηn ∈ Rm denotes observation noise.

Our focus in this work is on multidimensional signals.
We assume the observations are Kth-order tensors Yn ∈
Rm1×m2×···×mK . According to the Tucker model, given
coordinate dictionaries Dk ∈ Rmk×pk , a coefficient tensor
Xn ∈ Rp1×p2×···×pK , and a noise tensor Nn, we can write
yn , vec(Yn) using (11) as4

yn =

( ⊗
k∈[K]

Dk

)
xn + ηn, (13)

where xn , vec(Xn) and ηn , vec(Nn). Let

m =
∏
k∈[K]

mk and p =
∏
k∈[K]

pk. (14)

Concatenating N i.i.d. noisy observations {yn}Nn=1, which are
realizations according to the model (13), into Y ∈ Rm×N , we
obtain

Y = DX + N, (15)

where D ,
⊗

k∈[K] Dk is the unknown KS dictionary,
X ∈ Rp×N is a coefficient matrix consisting of i.i.d. random
coefficient vectors with known distribution that has zero-mean
and covariance matrix Σx, and N ∈ Rm×N is assumed to be
additive white Gaussian noise (AWGN) with zero mean and
variance σ2.

Our main goal in this paper is to derive necessary conditions
under which the KS dictionary D can possibly be learned from
the noisy observations given in (15). We assume the true KS
dictionary D consists of unit-norm columns and we carry out
local analysis. That is, the true KS dictionary D is assumed
to belong to a neighborhood around a fixed (normalized)
reference KS dictionary

D0 =
⊗
k∈[K]

D(0,k), (16)

and D0 ∈ D, where

D ,

{
D′ ∈ Rm×p : D′ =

⊗
k∈[K]

D′k,D
′
k ∈ Rmk×pk ,

‖d′k,j‖2 = 1 ∀k ∈ [K], j ∈ [pk]

}
. (17)

We assume the true generating KS dictionary D belongs to a
neighborhood around D0:

D ∈ X (D0, r) , {D′ ∈ D : ‖D′ −D0‖F < r} (18)

for some fixed radius r.5 Note that D0 appears in the analysis

3The unit-norm condition on columns of D is required to avoid solutions
with arbitrary large norms for dictionary columns and small values for X.

4We have reindexed Dk’s in (11) for ease of notation.
5Note that our results hold with the unit-norm condition enforced only

on D itself, and not on the subdictionaries Dk . Nevertheless, we include
this condition in the dictionary class for the sake of completeness as it also
ensures uniqueness of the subdictionaries (factors of a K-fold Kronecker
product can exchange scalars γk freely without changing the product as long
as

∏
k∈[K] γk = 1).

as an artifact of our proof technique to construct the dictionary
class. In particular, if r is sufficiently large, then X (D0, r) ≈
D and effectively D ∈ D.

A. Minimax Risk

We are interested in lower bounding the minimax risk for
estimating D based on observations Y, which is defined as
the worst-case mean squared error (MSE) that can be obtained
by the best KS dictionary estimator D̂(Y). That is,

ε∗ = inf
D̂

sup
D∈X (D0,r)

EY

{∥∥D̂(Y)−D
∥∥2
F

}
, (19)

where D̂(Y) can be estimated using any KS dictionary
learning algorithm. In order to lower bound this minimax risk
ε∗, we employ a standard reduction to the multiple hypothesis
testing used in the literature on nonparametric estimation [24],
[25]. This approach is equivalent to generating a KS dictionary
Dl uniformly at random from a carefully constructed class
DL = {D1, . . . ,DL} ⊆ X (D0, r), L ≥ 2, for a given (D0,
r). To ensure a tight lower bound, we must construct DL such
that the distance between any two dictionaries in DL is large
but the hypothesis testing problem is hard; that is, two distinct
dictionaries Dl and Dl′ should produce similar observations.
Specifically, for l, l′ ∈ [L], and given error ε ≥ ε∗, we desire
a construction such that

∀l 6= l′, ‖Dl −Dl′‖F ≥ 2
√
γε and

DKL

(
fDl

(Y)||fDl′ (Y)
)
≤ αL, (20)

where DKL

(
fDl

(Y)||fDl′ (Y)
)

denotes the Kullback-Leibler
(KL) divergence between the distributions of observations
based on Dl ∈ DL and Dl′ ∈ DL, while γ, αL, and ε
are non-negative parameters. Observations Y = DlX + N
in this setting can be interpreted as channel outputs that are
used to estimate the input Dl using an arbitrary KS dictionary
algorithm that is assumed to achieve the error ε. Our goal is
to detect the correct generating KS dictionary index l. For this
purpose, a minimum distance detector is used:

l̂ = min
l′∈[L]

∥∥∥D̂(Y)−Dl′

∥∥∥
F
. (21)

Then, we have P(l̂(Y) 6= l) = 0 for the minimum-distance
detector l̂(Y) as long as ‖D̂(Y)−Dl‖F <

√
γε. The goal then

is to relate ε to P(‖D̂(Y)−Dl‖F ≥
√
γε) and P(l̂(Y) 6= l)

using Fano’s inequality [25]:

(1− P(l̂(Y) 6= l)) log2 L− 1 ≤ I(Y; l), (22)

where I(Y; l) denotes the mutual information (MI) between
the observations Y and the dictionary Dl. Notice that the
smaller αL is in (20), the smaller I(Y; l) will be in (22).
Unfortunately, explicitly evaluating I(Y; l) is a challenging
task in our setup because the underlying distributions are
mixture of distributions. Similar to [34], we will instead resort
to upper bounding I(Y; l) by conditioning it on some side
information T(X) that will make the observations Y conditi-
onally multivariate Gaussian (in particular, from [34, Lemma
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A.1], it follows that I(Y; l) ≤ I(Y; l|T(X))).6 We will in
particular focus on two types of side information: T(X) = X
and T(X) = supp(X). A lower bound on the minimax
risk in this setting depends not only on problem parameters
such as the number of observations N , noise variance σ2,
dimensions {mk}Kk=1 and {pk}Kk=1 of the true KS dictionary,
neighborhood radius r, and coefficient covariance Σx, but also
on the structure of the constructed class DL [24]. Note that
our approach is applicable to the global KS dictionary learning
problem, since the minimax lower bounds that are obtained for
any D ∈ X (D0, r) are also trivially lower bounds for D ∈ D.

After providing minimax lower bounds for the KS dictio-
nary learning problem, we develop and analyze a simple KS
dictionary learning algorithm for K = 2 order tensor data.
Our analysis shows that one of our provided lower bounds is
achievable, suggesting that they may be tight.

B. Coefficient Distribution

By making different assumptions on coefficient distributi-
ons, we can specialize our lower bounds to specific cases.
To facilitate comparisons with prior work, we adopt somew-
hat similar coefficient distributions as in the unstructured
case [34]. First, we consider any coefficient distribution and
only assume that the coefficient covariance matrix exists. We
then specialize our analysis to sparse coefficient vectors and,
by adding additional conditions on the reference dictionary
D0, we obtain a tighter lower bound for the minimax risk for
some SNR regimes.

1) General Coefficients: First, we consider the general
case, where x is a zero-mean random coefficient vector with
covariance matrix Σx = Ex

{
xx>

}
. We make no additional

assumption on the distribution of x. We condition on side
information T(X) = X to obtain a lower bound on the
minimax risk in the case of general coefficients.

2) Sparse Coefficients: In the case where the coefficient
vector is sparse, we show that additional assumptions on the
non-zero entries yield a lower bound on the minimax risk
conditioned on side information supp(x), which denotes the
support of x (the set containing indices of the locations of the
nonzero entries of x). We study two cases for the distribution
of supp(x):

• Random Sparsity. In this case, the random support of x
is distributed uniformly over E1 = {S ⊆ [p] : |S| = s}:

P(supp(x) = S) =
1(
p
s

) , for any S ∈ E1. (23)

• Separable Sparsity. In this case we sample sk elements
uniformly at random from [pk], for all k ∈ [K]. The
random support of x is E2 = {S ⊆ [p] : |S| = s},
where S is related to {S1× · · · ×SK : Sk ⊆ [pk], |Sk| =
sk, k ∈ [K]} via lexicographic indexing. The number of

6Instead of upper bounding I(Y; l|T(X)), similar results can be derived
by using Fano’s inequality for the conditional probability of error, P(l̂(Y) 6=
l|T(X)) [40, Theorem 2].

non-zero elements in x in this case is s =
∏
k∈[K] sk.

The probability of sampling K subsets {S1, . . . ,SK} is

P(supp(x) = S) =
1∏

k∈[K]

(
pk
sk

) , for any S ∈ E2.

(24)

In other words, separable sparsity requires non-zero coeffi-
cients to be grouped in blocks. This model arises in the case
of processing of images and video sequences [38].
Remark 1. If X follows the separable sparsity model with
sparsity (s1, . . . , sK), then the columns of the mode-k matrix
Y(k) of Y have sk-sparse representations with respect to Dk,
for k ∈ [K] [38].

For a signal x with sparsity pattern supp(x), we model the
non-zero entries of x, i.e., xS , as drawn independently and
identically from a probability distribution with known variance
σ2
a:

Ex{xSxTS |S} = σ2
aIs. (25)

Any x with sparsity model (23) or (24) and nonzero entries
satisfying (25) has covariance matrix

Σx =
s

p
σ2
aIp. (26)

III. LOWER BOUND FOR GENERAL DISTRIBUTION

We now provide our main result for the lower bound for
minimax risk of the KS dictionary learning problem for the
case of general coefficient distributions.

Theorem 1. Consider a KS dictionary learning problem with
N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and
fixed reference dictionary D0 satisfying (16). Then for any
coefficient distribution with mean zero and covariance Σx,
we have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ2

4NK‖Σx‖2

(
c1

( ∑
k∈[K]

(mk − 1)pk

)

− K

2
log2 2K − 2

)}
, (27)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

The implications of Theorem 1 are examined in Section VI.
Outline of Proof: The idea of the proof is that we construct

a set of L distinct KS dictionaries, DL = {D1, . . . ,DL} ⊂
X (D0, r), such that any two distinct dictionaries are separated
by a minimum distance. That is for any pair l, l′ ∈ [L] and

any positive ε <
tp

4
min

{
r2,

r4

2Kp

}
:

‖Dl −D′l‖F ≥ 2
√

2ε, for l 6= l′. (28)

In this case, if a dictionary Dl ∈ DL is selected uni-
formly at random from DL, then conditioned on side in-
formation T(X) = X, the observations under this dicti-
onary follow a multivariate Gaussian distribution. We can
therefore upper bound the conditional MI by approxima-
ting the upper bound for KL-divergence of multivariate
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Gaussian distributions. This bound depends on parameters
ε,N, {mk}Kk=1, {pk}Kk=1,Σx, s, r,K, and σ2.

Assuming (28) holds for DL, if there exists an estimator
achieving the minimax risk ε∗ ≤ ε and the recovered dictio-
nary D̂(Y) satisfies ‖D̂(Y) − Dl‖F <

√
2ε, the minimum

distance detector can recover Dl. Then, using the Markov
inequality and since ε∗ is bounded, the probability of error
P(D̂(Y) 6= Dl) ≤ P(‖D̂(Y) − Dl‖F ≥

√
2ε) can be

upper bounded by 1
2 . Further, according to (22), the lower

bound for the conditional MI can be obtained using Fano’s
inequality [34]. The lower bound is a function of L only.
Finally, using the obtained bounds for the conditional MI, we
derive a lower bound for the minimax risk ε∗.

Remark 2. We use the constraint in (28) in Theorem 1 for
simplicity: the number 2

√
2 can be replaced with any arbitrary

γ > 0.

The complete technical proof of Theorem 1 relies on the
following lemmas, which are formally proved in the appendix.
Although the similarity of our model to that of Jung et al. [34]
suggests that our proof should be a simple extension of their
proof of Theorem 1, the construction for KS dictionaries is
more complex and its analysis requires a different approach.
One exception is Lemma 3 [34, Lemma 8], which connects a
lower bound on the Frobenius norms of pairwise differences
in the construction to a lower bound on the conditional MI
used in Fano’s inequality [25].

Lemma 1. Let α > 0 and β > 0. Let {Al ∈ Rm×p : l ∈ [L]}
be a set of L matrices where each Al contains m × p inde-
pendent and identically distributed random variables taking
values ±α uniformly. Then we have the following inequality:

P (∃(l, l′) ∈ [L]× [L], l 6= l′ : |〈Al,Al′〉| ≥ β)

≤ 2L2 exp

(
− β2

4α4mp

)
. (29)

Lemma 2. Consider the generative model in (13). Fix
r > 0 and a reference dictionary D0 satisfying (16). Then
there exists a set DL ⊆ X (D0, r) of cardinality L =

2bc1(
∑

k∈[K](mk−1)pk)−K
2 log2(2K)c such that for any 0 < t <

1, any 0 < c1 <
t2

8 log 2 , any ε′ > 0 satisfying

ε′ < r2 min

{
1,

r2

2Kp

}
, (30)

and all pairs l, l′ ∈ [L], with l 6= l′, we have

2p

r2
(1− t)ε′ ≤ ‖Dl −Dl′‖2F ≤

4Kp

r2
ε′. (31)

Furthermore, if X is drawn from a distribution with mean 0
and covariance matrix Σx and conditioning on side informa-
tion T(X) = X, we have

I(Y; l|T(X)) ≤ 2NKp‖Σx‖2
r2σ2

ε′. (32)

Lemma 3 (Lemma 8 [34]). Consider the generative model in
(13) and suppose the minimax risk ε∗ satisfies ε∗ ≤ ε for some
ε > 0. If there exists a finite set DL ⊆ D with L dictionaries

satisfying

‖Dl −Dl′‖2F ≥ 8ε (33)

for l 6= l′, then for any side information T(X), we have

I(Y; l|T(X)) ≥ 1

2
log2(L)− 1. (34)

Proof of Lemma 3: The proof of Lemma 3 is identical
to the proof of Lemma 8 in Jung et al. [34].

Proof of Theorem 1: According to Lemma 2, for any ε′

satisfying (30), there exists a set DL ⊆ X (D0, r) of cardinality
L = 2bc1(

∑
k∈[K](mk−1)pk)−K

2 log2(2K)c that satisfies (32) for

any 0 < t′ < 1 and any c1 <
t′

8 log 2
. Let t = 1 − t′.

If there exists an estimator with worst-case MSE satisfying

ε∗ ≤ 2tp

8
min

{
1,

r2

2Kp

}
then, according to Lemma 3, if

we set 2tp
r2 ε
′ = 8ε∗, (33) is satisfied for DL and (34) holds.

Combining (32) and (34) we get

1

2
log2(L)− 1 ≤ I(Y; l|T(X)) ≤ 16NKp‖Σx‖2

c2r2σ2
ε∗, (35)

where c2 =
2tp

r2
. We can write (35) as

ε∗ ≥ tσ2

16NK‖Σx‖2

(
c1

( ∑
k∈[K]

(mk − 1)pk

)

−K
2

log2 2K − 2

)
. (36)

IV. LOWER BOUND FOR SPARSE DISTRIBUTIONS

We now turn our attention to the case of sparse coefficients
and obtain lower bounds for the corresponding minimax risk.
We first state a corollary of Theorem 1 for sparse coefficients,
corresponding to T(X) = X.

Corollary 1. Consider a KS dictionary learning problem
with N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and
fixed reference dictionary D0 satisfying (16). If the random
coefficient vector x is selected according to (23) or (24), we
have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ2p

4NKsσ2
a

(
c1

( ∑
k∈[K]

(mk − 1)pk

)

− K

2
log2 2K − 2

)}
,

(37)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

This result is a direct consequence of Theorem 1, obtained
by substituting the covariance matrix of sparse coefficients
given in (26) into (27).

A. Sparse Gaussian Coefficients
In this section, we make an additional assumption on the

coefficient vectors generated according to (23) and assume
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non-zero elements of the vectors follow a Gaussian distribu-
tion. By additionally assuming the non-zero entries of x are
i.i.d. Gaussian distributed, we can write xS as

xS ∼ N (0, σ2
aIs). (38)

As a result, conditioned on side information T(xn) =
supp(xn), observations yn follow a multivariate Gaussian
distribution. Part of our forthcoming analysis relies on the
notion of the restricted isometry property (RIP) for a matrix.

Restricted Isometry Property (RIP) [41]: A matrix D̃ with
unit `2-norm columns satisfies the RIP of order s with constant
δs if

(1− δs)‖x‖22 ≤ ‖D̃x‖22 ≤ (1 + δs)‖x‖22, (39)

for all x such that ‖x‖0 ≤ s.
We now provide a lower bound on the minimax risk in the

case of coefficients selected according to (23) and (38).

Theorem 2. Consider a KS dictionary learning problem with
N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and fixed
reference dictionary satisfying (16). If the reference coordinate
dictionaries {D0,k, k ∈ [K]} satisfy RIP(s, 12 ) and the random
coefficient vector x is selected according to (23) and (38), we
have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p

s
,
r2

2K
,

σ4p

36(34K)Ns2σ4
a(

c1

( ∑
k∈[K]

(mk − 1)pk

)
− 1

2
log2 2K − 2

)}
, (40)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

Note that in Theorem 2, D (or its coordinate dictionaries)
need not satisfy the RIP condition. Rather, the RIP is only
needed for the coordinate reference dictionaries, {D0,k, k ∈
[K]}, which is a significantly weaker (and possibly trivial to
satisfy) condition. We state a variation of Lemma 2 necessary
for the proof of Theorem 2 — the proof is provided in the
appendix.

Lemma 4. Consider the generative model in (13). Fix
r > 0 and reference dictionary D0 satisfying (16). Then,
there exists a set DL ⊆ X (D0, r) of cardinality L =

2bc1(
∑

k∈[K](mk−1)pk)− 1
2 log2(2K)c such that for any 0 < t < 1,

any 0 < c1 <
t2

8 log 2 , any ε′ > 0 satisfying

0 < ε′ ≤ r2 min

{
1

s
,
r2

2Kp

}
, (41)

and any l, l′ ∈ [L], with l 6= l′, we have

2p

r2
(1− t)ε′ ≤ ‖Dl −Dl′‖2F ≤

4Kp

r2
ε′. (42)

Furthermore, assuming the reference coordinate dictionaries
{D0,k, k ∈ [K]} satisfy RIP(s, 12 ), the coefficient matrix X
is selected according to (23) and (38), and considering side
information T(X) = supp(X), we have:

I(Y; l|T(X)) ≤ 36(34K)
(σa
σ

)4 Ns2
r2

ε′. (43)

Proof of Theorem 2: According to Lemma 4, for any ε′

satisfying (41), there exists a set DL ⊆ X (D0, r) of cardinality
L = 2bc1(

∑
k∈[K](mk−1)pk)−K

2 log2(2K)c that satisfies (43) for
any 0 < t′ < 1 and any c1 <

t′

8 log 2 . Denoting t = 1 − t′
and provided there exists an estimator with worst case MSE

satisfying ε∗ ≤ tp

4
min

{1

s
,
r2

2Kp

}
, if we set

2tp

r2
ε′ = 8ε∗,

(33) is satisfied for DL and (34) holds. Consequently,

1

2
log2(L)− 1 ≤ I(Y; l|T(X)) ≤ 36(34K)

c2

(σa
σ

)4 Ns2
r2

ε∗,

(44)

where c2 =
p(1− t)

4r2
. We can write (44) as

ε∗ ≥
( σ
σa

)4 tp(c1 (∑k∈[K](mk − 1)pk

)
− K

2 log2 2K − 2
)

144(34K)Ns2
.

(45)

Focusing on the case where the coefficients follow the
separable sparsity model, the next theorem provides a lower
bound on the minimax risk for coefficients selected according
to (24) and (38).

Theorem 3. Consider a KS dictionary learning problem with
N i.i.d. observations generated according to model (13).
Suppose the true dictionary satisfies (18) for some r and fixed
reference dictionary satisfying (16). If the reference coordinate
dictionaries {D0,k, k ∈ [K]} satisfy RIP(s, 12 ) and the random
coefficient vector x is selected according to (24) and (38), we
have the following lower bound on ε∗:

ε∗ ≥ t

4
min

{
p,

r2

2K
,

σ4p

36(34K)Ns2σ4
a(

c1

( ∑
k∈[K]

(mk − 1)pk

)
− 1

2
log2 2K − 2

)}
, (46)

for any 0 < t < 1 and any 0 < c1 <
1− t
8 log 2

.

We state a variation of Lemma 4 necessary for the proof
of Theorem 3. The proof of the lemma is provided in the
appendix.

Lemma 5. Consider the generative model in (13). Fix
r > 0 and reference dictionary D0 satisfying (16). Then,
there exists a set of dictionaries DL ⊆ D of cardinality
L = 2bc1(

∑
k∈[K](mk−1)pk)−K

2 log2(2K)c such that for any
0 < t < 1, any 0 < c1 <

t2

8 log 2 , any ε′ > 0 satisfying

0 < ε′ ≤ r2 min

{
1,

r2

2Kp

}
, (47)

and any l, l′ ∈ [L], with l 6= l′, we have

2p

r2
(1− t)ε′ ≤ ‖Dl −Dl′‖2F ≤

4Kp

r2
ε′. (48)

Furthermore, assuming the coefficient matrix X is selected
according to (24) and (38), the reference coordinate dictiona-
ries {D0,k, k ∈ [K]} satisfy RIP(sk,

1
2 ), and considering side
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information T(X) = supp(X), we have:

I(Y; l|T(X)) ≤ 36(34K)
(σa
σ

)4 Ns2
r2

ε′. (49)

Proof of Theorem 3: The proof of Theorem 3 follows
similar steps as the proof of Theorem 2. The dissimilarity
arises in the condition in (47) for Lemma 5, which is different
from the condition in (41) for Lemma 4. This changes the
range for the minimax risk ε∗ in which the lower bound in
(45) holds.

In the next section, we provide a simple KS dictionary
learning algorithm for 2nd-order tensors and study the cor-
responding dictionary learning MSE.

V. PARTIAL CONVERSE

In the previous sections, we provided lower bounds on the
minimax risk for various coefficient vector distributions and
corresponding side information. We now study a special case
of the problem and introduce an algorithm that achieves the
lower bound in Corollary 1 (order-wise) for 2nd-order tensors.
This demonstrates that our obtained lower bounds are tight in
some cases.

Theorem 4. Consider a dictionary learning problem with N
i.i.d observations according to model (13) for K = 2 and let
the true dictionary satisfy (18) for D0 = Ip and some r > 0.
Further, assume the random coefficient vector x is selected
according to (23), x ∈ {−1, 0, 1}p, where the probabilities
of the nonzero entries of x are arbitrary. Next, assume noise
standard deviation σ and express the KS dictionary as

D = (Ip1 + ∆1)⊗ (Ip2 + ∆2), (50)

where p = p1p2, ‖∆1‖F ≤ r1 and ‖∆2‖F ≤ r2. Then, if the
following inequalities are satisfied:

r1
√
p2 + r2

√
p1 + r1r2 ≤ r,

(r1 + r2 + r1r2)
√
s ≤ 0.1

max

{
r21
p2
,
r22
p1

}
≤ 1

3N
,

σ ≤ 0.4, (51)

there exists a dictionary learning scheme whose MSE satisfies

EY

{
‖D̂(Y)−D‖2F

}
≤ 8p

N

(
p1m1 + p2m2

m SNR
+ 3(p1 + p2)

)
+ 8p exp

(
−0.08pN

σ2

)
, (52)

for any D ∈ X (D0, r) that satisfies (50) .

To prove Theorem 4, we first introduce an algorithm to
learn a KS dictionary for 2nd-order tensor data. Then, we
analyze the performance of the proposed algorithm and obtain
an upper bound for the MSE in the proof of Theorem 4, which
is provided in the appendix.7 Finally, we provide numerical
experiments to validate our obtained results.

7Theorem 4 also implicitly uses the assumption that max {p1, p2} ≤ N .

A. KS Dictionary Learning Algorithm

We analyze a remarkably simple, two-step estimator that
begins with thresholding the observations and then ends with
estimating the dictionary. Note that unlike traditional dictio-
nary learning methods, our estimator does not perform iterative
alternating minimization.

a) Coefficient Estimate: We utilize a simple thresholding
technique for this purpose. For all n ∈ [N ]:

x̂n = (x̂n,1, . . . , x̂n,p)
>, x̂n,l =


1 if yn,l > 0.5,

−1 if yn,l < −0.5,

0 otherwise.
(53)

b) Dictionary Estimate: Denoting A , Ip1 + ∆1 and
B , Ip2 + ∆2, we can write D = A ⊗ B. We estimate the
columns of A and B separately. To learn A, we take advantage
of the Kronecker structure of the dictionary and divide each
observation yn ∈ Rp1p2 into p2 observations y′(n,j) ∈ Rp1 :

y′(n,j) = {yn,p2i+j}
p1−1
i=0 , j ∈ [p2], n ∈ [N ]. (54)

This increases the number of observations to Np2. We also
divide the original and estimated coefficient vectors:

x′(n,j) = {xn,p2i+j}
p1−1
i=0 ,

x̂′(n,j) = {x̂n,p2i+j}
p1−1
i=0 , j ∈ [p2], n ∈ [N ]. (55)

Similarly, we define new noise vectors:

η′(n,j) = {ηn,p2i+j}
p1−1
i=0 , j ∈ [p2], n ∈ [N ]. (56)

To motivate the estimation rule for the columns of A,
let us consider the original dictionary learning formulation,
yn = Dxn + ηn, which we can rewrite as yn = xn,ldl +∑
i 6=l xn,idi + ηn. Multiplying both sides of the equation

by xn,l and summing up over all training data, we get∑N
n=1 xn,lyn =

∑N
n=1(x2

n,ldl +
∑
i6=l xn,lxn,idi + xn,lηn).

Using the facts Ex

{
x2
n,l

}
= s

p , Ex {xn,lxn,i} = 0 for l 6= i,
and Ex,η {xn,lηn} = 0, we get the following approximation,
dl ≈ p

Ns

∑N
n=1 xn,lyn.8 This suggests that for estimating the

columns of A, we can utilize the following equation:

ãl =
p1
Ns

N∑
n=1

p2∑
j=1

x′(k,j),ly
′
(n,j), l ∈ [p1]. (57)

To estimate the columns of B, we follow a different proce-
dure to divide the observations. Specifically, we divide each
observation yn ∈ Rp1p2 into p1 observations y(n,j′′) ∈ Rp2 :

y′′(n,j) =
{
yn,i+p1(j−1)

}p2
i=1

, j ∈ [p1], n ∈ [N ]. (58)

This increases the number of observations to Np1. The coef-
ficient vectors are also divided similarly:

x′′(n,j) =
{
xk,i+p1(j−1)

}p1−1
i=0

,

x̂′′(n,j) =
{
x̂n,i+p1(j−1)

}p1−1
i=0

, j ∈ [p1], n ∈ [N ]. (59)

8Notice that the i.i.d. assumption on xn,l’s is critical to making this
approximation work.



9

Similarly, we define new noise vectors:

η′′(n,j) =
{
ηn,i+p1(j−1)

}p2
i=1

, j ∈ [p1], n ∈ [N ]. (60)

Finally, using similar heuristics as the estimation rule for
columns of A, the estimate for columns of B can be obtained
using the following equation:

b̃l =
p2
Ns

N∑
n=1

p1∑
j=1

x′′(n,j),ly
′′
(n,j), l ∈ [p2]. (61)

The final estimate for the recovered dictionary is

D̂ = Â⊗ B̂,

Â = (â1, . . . , âp1), âl = PB1
(ãl),

B̂ = (b̂1, . . . , b̂p2), b̂l = PB1(b̃l), (62)

where the projection on the closed unit ball ensures that
‖âl‖2 ≤ 1 and ‖b̂l‖2 ≤ 1. Note that although projection onto
the closed unit ball does not ensure the columns of D̂ to have
unit norms, our analysis only imposes this condition on the
generating dictionary and the reference dictionary, and not on
the recovered dictionary.
Remark 3. In addition to the heuristics following (56), the
exact update rules for Ã and B̃ in (57) and (61) require some
additional perturbation analysis. To see this for the case of Ã,
notice that (57) follows from writing A ⊗ B as A ⊗ (Ip2 +
∆2), rearranging each yn and (A⊗ Ip2)xn into y′(n,j)’s and
Ax′(n,j)’s, and using them to update Ã. In this case, we treat
(A⊗∆2)xn as a perturbation term in our analysis. A similar
perturbation term appears in the case of the update rule for
B̃. The analysis for dealing with these perturbation terms is
provided in the appendix.

B. Empirical Comparison to Upper Bound
We are interested in empirically seeing whether our achieva-

ble scheme matches the minimax lower bound when learning
KS dictionaries. To this end, we implement the preceding
estimation algorithm for 2nd-order tensor data.

Figure 1(a) shows the ratio of the empirical error of the
proposed KS dictionary learning algorithm in Section V-A to
the obtained upper bound in Theorem 4 for 50 Monte Carlo
experiments. This ratio is plotted as a function of the sample
size for three choices of the number of columns p: 128, 256,
and 512. The experiment shows that the ratio is approximately
constant as a function of sample size, verifying the theoretical
result that the estimator meets the minimax bound in terms of
error scaling as a function of sample size. Figure 1(b) shows
the performance of our KS dictionary learning algorithm
in relation to the unstructured dictionary learning algorithm
provided in [34]. It is evident that the error of our algorithm
is significantly less than that for the unstructured algorithm for
all three choices of p. This verifies that taking the structure of
the data into consideration can indeed lead to lower dictionary
identification error.

VI. DISCUSSION

We now discuss some of the implications of our results.
Table I summarizes the lower bounds on the minimax rates

(a)

(b)

Fig. 1: Performance summary of KS dictionary learning al-
gorithm for p = {128, 256, 512}, s = 5 and r = 0.1. (a)
plots the ratio of the empirical error of our KS dictionary
learning algorithm to the obtained error upper bound along
with error bars for generated square KS dictionaries, and
(b) shows the performance of our KS dictionary learning
algorithm (solid lines) compared to the unstructured learning
algorithm proposed in [34] (dashed lines).

from previous papers and this work. The bounds are given
in terms of the number of component dictionaries K, the
dictionary size parameters (mk’s and pk’s), the coefficient
distribution parameters, the number of samples N , and SNR,
which is defined as

SNR =
Ex

{
‖x‖22

}
Eη {‖η‖22}

=
Tr(Σx)

mσ2
. (63)

These scalings result hold for sufficiently large p and neig-
hborhood radius r.

Comparison of minimax lower bounds for unstructured
and KS dictionary learning: Compared to the results for the
unstructured dictionary learning problem [34], we are able to
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TABLE I: Order-wise lower bounds on the minimax risk for various coefficient distributions

Distribution

Dictionary Side
Information

T(X)

Unstructured [34] Kronecker (this paper)

1. General X
σ2mp

N‖Σx‖2
σ2(
∑
k∈[K]mkpk)

NK‖Σx‖2

2. Sparse X
p2

N SNR

p(
∑
k∈[K]mkpk)

NKmSNR

3. Gaussian Sparse supp(X)
p2

Nm SNR2

p(
∑
k∈[K]mkpk)

34KNm2 SNR2

decrease the lower bound for various coefficient distributions
by reducing the scaling Ω(mp) to Ω(

∑
k∈[K]mkpk) for KS

dictionaries. This is intuitively pleasing since the minimax lo-
wer bound has a linear relationship with the number of degrees
of freedom of the KS dictionary, which is

∑
k∈[K]mkpk.

The results also show that the minimax risk decreases with a
larger number of samples, N , and increased number of tensor
order, K. By increasing K, we are shrinking the size of the
class of dictionaries in which the parameter dictionary lies,
thereby simplifying the problem.

Looking at the results for the general coefficient model in
the first row of Table I, the lower bound for any arbitrary zero-
mean random coefficient vector distribution with covariance
Σx implies an inverse relationship between the minimax risk
and SNR due to the fact that ‖Σx‖2 ≤ Tr(Σx).

Comparison of general sparse and Gaussian sparse
coefficient distributions: Proceeding to the sparse coefficient
vector model in the second row of Table I, by replacing
Σx with the expression in (26) in the minimax lower bound
for the general coefficient distribution, we obtain the second
lower bound given in (37). Recall that for s-sparse coefficient
vectors,

SNR =
sσ2
a

mσ2
. (64)

Using this definition of SNR in (37), we observe a seemingly
counter-intuitive increase in the MSE of order Ω (p/s) in the
lower bound in comparison to the general coefficient model.
However, this increase is due to the fact that we do not require
coefficient vectors to have constant energy; because of this,
SNR decreases for s-sparse coefficient vectors.

Next, looking at the third row of Table I, by restricting
the class of sparse coefficient vector distributions to the case
where non-zero elements of the coefficient vector follow a
Gaussian distribution according to (38), we obtain a minimax
lower bound that involves less side information than the prior
two cases. However, we do make the assumption in this case
that reference coordinate dictionaries satisfy RIP(s, 12 ). This
additional assumption has two implications: (1) it introduces
the factor of 1/34K in the minimax lower bound, and (2)
it imposes the following condition on the sparsity for the
“random sparsity” model: s ≤ mink∈[K]{pk}. Nonetheless,
considering sparse-Gaussian coefficient vectors, we obtain a

minimax lower bound that is tighter than the previous bound
for some SNR values. Specifically, in order to compare bounds
obtained in (37) and (40) for sparse and sparse-Gaussian
coefficient vector distributions, we fix K. Then in high SNR
regimes, i.e., SNR = Ω(1/m), the lower bound in (37) is
tighter, while (40) results in a tighter lower bound in low
SNR regimes, i.e., SNR = O(1/m), which correspond to
low sparsity settings.

Comparison of random and separable sparse coefficient
models: We now focus on our results for the two spar-
sity pattern models, namely, random sparsity and separable
sparsity, for the case of sparse-Gaussian coefficient vector
distribution. These results, which are reported in (40) and (46),
are almost identical to each other, except for the first term in
the minimization. In order to understand the settings in which
the separable sparsity model in (24)—which is clearly more
restrictive than the random sparsity model in (23)—turns out to
be more advantageous, we select the neighborhood radius r to
be of order O(

√
p); since we are dealing with dictionaries that

lie on the surface of a sphere with radius
√
p, this effectively

ensures X (D0, r) ≈ D. In this case, it can be seen from (40)
and (46) that if s = Ω(K) then the separable sparsity model
gives a better minimax lower bound. On the other hand, the
random sparsity model should be considered for the case of
s = O(K) because of the less restrictive nature of this model.

Achievability of our minimax lower bounds for learning
KS dictionaries: To this end, we provided a simple KS
dictionary learning algorithm in Section V for the special sce-
nario of 2-dimensional tensors and analyzed the corresponding
MSE, EY

{
‖D̂(Y) − D‖2F

}
. In terms of scaling, the upper

bound obtained for the MSE in Theorem 4 matches the lower
bound in Corollary 1 provided p1 + p2 <

m1p1+m2p2
m SNR holds.

This result suggests that more general KS dictionary learning
algorithms may be developed to achieve the lower bounds
reported in this paper.

VII. CONCLUSION

In this paper we followed an information-theoretic approach
to provide lower bounds for the worst-case mean-squared error
(MSE) of Kronecker-structured dictionaries that generate Kth-
order tensor data. To this end, we constructed a class of
Kronecker-structured dictionaries in a local neighborhood of a
fixed reference Kronecker-structured dictionary. Our analysis
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required studying the mutual information between the obser-
vation matrix and the dictionaries in the constructed class.
To evaluate bounds on the mutual information, we considered
various coefficient distributions and interrelated side informa-
tion on the coefficient vectors and obtained corresponding
minimax lower bounds using these models. In particular, we
established that estimating Kronecker-structured dictionaries
requires a number of samples that needs to grow only linearly
with the sum of the sizes of the component dictionaries
(
∑
k∈[K]mkpk), which represents the true degrees of freedom

of the problem. We also demonstrated that for a special case of
K = 2, there exists an estimator whose MSE meets the derived
lower bounds. While our analysis is local in the sense that we
assume the true dictionary belongs in a local neighborhood
with known radius around a fixed reference dictionary, the
derived minimax risk effectively becomes independent of this
radius for sufficiently large neighborhood radius.

Future directions of this work include designing gene-
ral algorithms to learn Kronecker-structured dictionaries that
achieve the presented lower bounds. In particular, the analysis
in [42] suggests that restricting the class of dictionaries to
Kronecker-structured dictionaries may indeed yield a reduction
in the sample complexity required for dictionary identification
by replacing a factor mp in the general dictionary learning
problem with the box counting dimension of the dictionary
class [32].
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APPENDIX

Proof of Lemma 1: Fix L > 0 and α > 0. For a pair of
matrices Al and Al′ , with l 6= l′, consider the vectorized set
of entries al = vec(Al) and al′ = vec(Al′) and define the
function

f(a>l ,a
>
l′ ) , |〈Al,Al′〉| = |〈al,al′〉| . (65)

For ã , (a>l ,a
>
l′ ) ∈ R2mp, write ã ∼ ã′ if ã′ is equal to ã

in all entries but one. Then f satisfies the following bounded
difference condition:

sup
ã∼ã′
|f(ã)− f(ã′)| = (α− (−α))α = 2α2. (66)

Hence, according to McDiarmid’s inequality [43], for all β >
0, we have

P (|〈Al,Al′〉| ≥ β) ≤ 2 exp

(
−2β2∑2mp
i=1 (2α2)2

)

= 2 exp

(
− β2

4α4mp

)
. (67)

Taking a union bound over all pairs l, l′ ∈ [L], l 6= l′, we have

P (∃(l, l′) ∈ [L]× [L], l 6= l′ : |〈Al,Al′〉| ≥ β)

≤ 2L2 exp

(
− β2

4α4mp

)
. (68)

Proof of Lemma 2: Fix r > 0 and t ∈ (0, 1). Let D0 be
a reference dictionary satisfying (16), and let {U(k,j)}pkj=1 ∈
Rmk×mk , k ∈ [K], be arbitrary unitary matrices satisfying

d(k,0),j = U(k,j)e1, (69)

where d(k,0),j denotes the j-th column of D(k,0).

To construct the dictionary class DL ⊆ X (D0, r), we follow
several steps. We consider sets of

Lk = 2bc1(mk−1)pk− 1
2 log2 2Kc (70)

generating matrices G(k,lk):

G(k,lk) ∈

{
− 1

r1/K
√

(mk − 1)
,

1

r1/K
√

(mk − 1)

}(mk−1)×pk

(71)

for k ∈ [K] and lk ∈ [Lk]. According to Lemma 1, for all
k ∈ [K] and any β > 0, the following relation is satisfied:

P
(
∃(lk, l′k) ∈ [Lk]× [Lk], l 6= l′ :

∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ ≥ β)
≤ 2L2

k exp

(
−r

4/K(mk − 1)β2

4pk

)
.

(72)

To guarantee a simultaneous existence of K sets of generating
matrices satisfying∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ ≤ β, k ∈ [K], (73)

we take a union bound of (72) over all k ∈ [K] and choose
parameters such that the following upper bound is less than 1:

2KL2
k exp

(
−r

4/K(mk − 1)β2

4pk

)
= exp

(
−r

4/K(mk − 1)β2

4pk
+ 2 ln

√
2KLk

)
, (74)

which is satisfied as long as the following inequality holds:

log2 Lk <
r4/K(mk − 1)β2

8pk log 2
− 1

2
− 1

2
log2K. (75)

Now, setting β =
pkt

r2/K
, the condition in (75) holds and there

exists a collection of generating matrices that satisfy:∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ ≤ pkt

r2/K
, k ∈ [K], (76)

for any distinct lk, l′k ∈ [Lk], any t ∈ (0, 1), and any c1 > 0
such that

c1 <
t2

8 log 2
. (77)

We next construct matrices that will be later used for the
construction of unit-norm column dictionaries. We construct
D(k,1,lk) ∈ Rmk×pk column-wise using G(k,lk) and unitary
matrices {U(k,j)}pkj=1. Let the j-th column of D(k,1,lk) be
given by

d(k,1,lk),j = U(k,j)

(
0

g(k,lk),j

)
, k ∈ [K], (78)
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for any lk ∈ [Lk]. Moreover, defining

D1 ,

{ ⊗
k∈[K]

D(k,1,lk) : lk ∈ [Lk]

}
, (79)

and denoting

L , {(l1, . . . , lK) : lk ∈ [Lk]} , (80)

any element of D1 can be expressed as

D(1,l) =
⊗
k∈[K]

D(k,1,lk),∀ l ∈ [L], (81)

where |L| = L ,
∏
k∈[K] Lk and we associate an l ∈ [L] with

a tuple in L via lexicographic indexing. Notice also that∥∥d(1,l),j

∥∥2
2

(a)
=

∏
k∈[K]

∥∥d(k,1,lk),j

∥∥2
2

=
∏
k∈[K]

1

r2/K
=

1

r2
, and

∥∥D(1,l)

∥∥2
F

=
p

r2
, (82)

where (a) follows from properties of the Kronecker product.
From (78), it is evident that for all k ∈ [K], d(k,0),j is
orthogonal to d(k,1,lk),j and consequently, we have〈

D(k,0),D(k,1,lk)

〉
= 0, k ∈ [K] (83)

Also,〈
D(k,1,lk),D(k,1,l′k)

〉
=

pk∑
j=1

〈
d(k,1,lk),j ,d(k,1,l′k),j

〉
=

pk∑
j=1

〈
U(k,j)

(
0

g(k,lk),j

)
,U(k,j)

(
0

g(k,l′k),j

)〉
(b)
=

pk∑
j=1

〈
g(k,lk),j ,g(k,l′k),j

〉
=
〈
G(k,lk),G(k,l′k)

〉
, (84)

where (b) follows from the fact that {U(k,j)} are unitary.

Based on the construction, for all k ∈ [K], lk, l′k ∈ [Lk],
lk 6= l′k, we have∥∥D(1,l) −D(1,l′)

∥∥2
F

=
∥∥D(1,l)

∥∥2
F

+
∥∥D(1,l′)

∥∥2
F
− 2

〈
D(1,l),D(1,l′)

〉
=

p

r2
+

p

r2
− 2

∏
k∈[K]

〈
D(k,1,lk),D(k,1,l′k)

〉
≥ 2

(
p

r2
−
∏
k∈[K]

∣∣∣〈D(k,1,lk),D(k,1,l′k)

〉∣∣∣ )
(c)
= 2

(
p

r2
−
∏
k∈[K]

∣∣∣〈G(k,lk),G(k,l′k)

〉∣∣∣ )
(d)

≥ 2

(
p

r2
−
∏
k∈[K]

pk
r2/K

t

)
=

2p

r2
(
1− tK

)
, (85)

where (c) and (d) follow from (84) and (76), respectively.

We are now ready to define DL. The final dictionary class

is defined as

DL ,

{ ⊗
k∈[K]

D(k,lk) : lk ∈ [Lk]

}
(86)

and any Dl ∈ DL can be written as

Dl =
⊗
k∈[K]

D(k,lk), (87)

where D(k,lk) is defined as

D(k,lk) , ηD(k,0) + νD(k,1,lk), k ∈ [K], (88)

and

η ,

√
1− ε′

r2
, ν ,

√
r2/Kε′

r2
(89)

for any

0 < ε′ < min

{
r2,

r4

2Kp

}
, (90)

which ensures that 1− ε′

r2 > 0 and Dl ∈ X (D0, r). Note that
the following relation holds between η and ν:

η2 +
ν2

r2/K
= 1. (91)

We can expand (87) to facilitate the forthcoming analysis:

Dl =
∑

i∈{0,1}K
ηK−‖i‖1ν‖i‖1

( ⊗
k∈[K]

D(k,ik,lk)

)
, (92)

where i , (i1, i2, . . . , iK) and D(k,0,lk) , D(k,0). To show
DL ⊆ X (D0, r), we first show that any Dl ∈ DL has unit-
norm columns. For any j ∈ [p] and jk ∈ [pk], k ∈ [K]
(associating j with (j1, . . . , jK) via lexicographic indexing),
we have

‖dl,j‖22 =
∏
k∈[K]

∥∥d(k,lk),jk

∥∥2
2

=
∏
k∈[K]

(
η2‖d(k,0),jk‖

2
2 + ν2

∥∥d(k,1,lk),jk

∥∥2
2

)

=
∏
k∈[K]

(
η2 + ν2

( 1

r2/K
))

(e)
= 1, (93)

where (e) follows from (91). Then, we show that
‖Dl −D0‖F ≤ r:

‖Dl −D0‖2F

=

∥∥∥∥ D0 −
∑

i∈{0,1}K
ηK−‖i‖1ν‖i‖1

⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥2
F

=

∥∥∥∥(1− ηK)D0 −
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1
⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥2
F

=
(
1− ηK

)2 ‖D0‖2F
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+
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∏
k∈[K]

∥∥D(k,ik,lk)

∥∥2
F
. (94)

We will bound the two terms in (94) separately. We know

(1− xn) = (1− x)(1 + x+ x2 + · · ·+ xn−1). (95)

Hence, we have(
1− ηK

)2 ‖D0‖2F =
(
1− ηK

)2
p

(f)

≤
(
1− ηK

)
p

≤
(
1− η2K

)
p

(g)
=
(
1− η2

) (
1 + η2 + · · ·+ η2(K−1)

)
p

=
ε′

r2

(
1 + η2 + · · ·+ η2(K−1)

)
p

(h)

≤ Kpε′

r2
, (96)

where (f) and (h) follow from the fact that η < 1 and (g)
follows from (95).

Similarly for the second term in (94),∏
k∈[K]

∥∥D(k,ik,lk)

∥∥2
F

=

( ∏
k∈[K]
ik=0

‖D(k,0)‖2F
)( ∏

k∈[K]
ik=1

‖D(k,1,lk)‖
2
F

)

=

( ∏
k∈[K]
ik=0

pk

)( ∏
k∈[K]
ik=1

pk
r2/K

)

=

( ∏
k∈[K]

pk

)(
1

r2/K

)‖i‖1
. (97)

Replacing values for η and ν from (89) and using (97) and
the fact that

∏
k∈[K] pk = p, we can further reduce the second

term in (94) to get∑
i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∏
k∈[K]

‖D(k,ik,lk)‖
2
F

= p

K−1∑
k=0

(
K

k

)(
1− ε′

r2

)k (
ε′

r2

)K−k
= p

(
1−

(
1− ε′

r2

)K)
(i)
= p

(
ε′

r2

)(
1 +

(
1− ε′

r2

)
+ · · ·+

(
1− ε′

r2

)K−1)

≤ Kpε′

r2
, (98)

where (i) follows from (95). Adding (96) and (98), we get

‖Dl −D0‖2F ≤ ε
′
(

2Kp

r2

)
(j)

≤ r2, (99)

where (j) follows from the condition in (90). Therefore, (93)

and (98) imply that DL ⊆ X (D0, r).

We now find lower and upper bounds for the distance
between any two distinct elements Dl,Dl′ ∈ DL.

1) Lower bounding ‖Dl −Dl′‖2F : We define the set Ii ⊆
[K] where |Ii| = i, i ∈ [K]. Then, given distinct lk, l′k, k ∈ Ii,
we have∥∥∥∥⊗

k∈Ii

D(k,1,lk) −
⊗
k∈Ii

D(k,1,l′k)

∥∥∥∥2
F

(k)

≥
2
(
1− ti

)
r2i/K

∏
k∈Ii

pk

≥ 2 (1− t)
r2i/K

∏
k∈Ii

pk,

(100)

where (k) follows using arguments similar to those made for
(85).

To obtain a lower bound on ‖Dl −Dl′‖2F , we emphasize
that for distinct l, l′ ∈ [L], it does not necessarily hold that
lk 6= l′k for all k ∈ [K]. In fact, it is sufficient for Dl 6=
Dl′ that only one k ∈ [K] satisfies lk 6= l′k. Now, assume
only K1 out of K coordinate dictionaries are distinct (for the
case where all smaller dictionaries are distinct, K1 = K).
Without loss of generality, we assume l1, . . . , lK1

are distinct
and lK1+1, . . . , lK are identical across Dl and Dl′ . This is
because of the invariance of the Frobenius norm of Kronecker
products under permutation, i.e.,∥∥∥∥ ⊗

k∈[K]

Ak

∥∥∥∥
F

=
∏
k∈[K]

‖Ak‖F =

∥∥∥∥ ⊗
k∈[K]

Aπ(k)

∥∥∥∥
F

, (101)

where π(.) denotes a permutation of [K]. We then have

‖Dl −Dl′‖2F

=

∥∥∥∥(D(1,l1) ⊗ · · · ⊗D(K1,lK1
)⊗

D(K1+1,lK1+1) ⊗ · · · ⊗D(K,lK))

− (D(1,l′1)
⊗ · · · ⊗D(K1,l′K1

)⊗

D(K1+1,lK1+1) ⊗ · · · ⊗D(K,lK))

∥∥∥∥2
F

(l)
=

∥∥∥∥( ⊗
k∈[K1]

D(k,lk) −
⊗
k∈[K1]

D(k,l′k)
)

)
⊗

D(K1+1,lK1+1) ⊗ · · · ⊗D(K,lK ))

∥∥∥∥2
F

=

∥∥∥∥ ⊗
k∈[K1]

D(k,lk) −
⊗
k∈[K1]

D(k,l′k)

∥∥∥∥2
F

K∏
k=K1+1

∥∥D(k,lk)

∥∥2
F

=

( K∏
k=K1+1

pk

)∥∥∥∥ ∑
i∈{0,1}K1

‖i‖1 6=0

ηK1−‖i‖1ν‖i‖1

( ⊗
k∈[K1]

D(k,ik,lk) −
⊗
k∈[K1]

D(k,ik,l′k)

)∥∥∥∥2
F

(m)
=

( ∑
i∈{0,1}K1

‖i‖1 6=0

η2(K1−‖i‖1)ν2‖i‖1
∏

k∈[K1]
ik=0

∥∥D(k,0)

∥∥2
F
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∥∥∥∥ ⊗
k∈[K1]
ik=1

D(k,1,lk) −
⊗
k∈[K1]
ik=1

D(k,1,l′k)

∥∥∥∥2
F

)

(n)

≥
( K∏
k=K1+1

pk

)( ∑
i∈{0,1}K1

‖i‖1 6=0

η2(K1−‖i‖1)ν2‖i‖1

( ∏
k∈[K1]
ik=0

pk

)(
2

r2‖i‖1/K

∏
k∈[K1]
ik=1

pk

)
(1− t)

)

(o)
= 2p (1− t)

K1−1∑
k=0

(
K1

k

)(
1− ε′

r2

)k (
ε′

r2

)K1−k

(p)
= 2p (1− t)

(
1−

(
1− ε′

r2

)K1
)

≥ 2p (1− t)
(

1−
(

1− ε′

r2

))
=

2p

r2
(1− t) ε′, (102)

where (l) follows from the distributive property of Kronecker
products, (m) follows the fact that terms in the sum have
orthogonal columns (from (4) and (83)), (n) follows from
(100), (o) follows from substituting values for η and ν, and
(p) follows from the binomial formula.

2) Upper bounding ‖Dl−Dl′‖2F : In order to upper bound
‖Dl −Dl′‖2F , notice that

‖Dl −Dl′‖2F
=

∑
i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1

∥∥∥∥ ⊗
k∈[K]

D(k,ik,lk) −
⊗
k∈[K]

D(k,ik,l′k)

∥∥∥∥2
F

(q)

≤
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1

(∥∥∥∥ ⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥
F

+

∥∥∥∥ ⊗
k∈[K]

D(k,ik,l′k)

∥∥∥∥
F

)2

= 4
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
∥∥∥∥ ⊗
k∈[K]

D(k,ik,lk)

∥∥∥∥2
F

= 4
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1

∏
k∈[K]
ik=0

‖D(k,0)‖2F
∏
k∈[K]
ik=1

‖D(k,1,lk)‖
2
F

= 4
∑

i∈{0,1}K
‖i‖1 6=0

η2(K−‖i‖1)ν2‖i‖1
( ∏
k∈[K]
ik=0

pk

)( ∏
k∈[K]
ik=1

pk
r2/K

)

(r)
= 4p

K−1∑
k=0

(
K

k

)(
1− ε′

r2

)k (
ε′

r2

)K−k

(s)

≤ 4Kp

r2
ε′, (103)

where (q) follows from the triangle inequality, (r) follows from
substituting values for η and ν, and (s) follows from similar
arguments as in (98).

3) Upper bounding I(Y; l|T(X)): We next obtain an upper
bound for I(Y; l|T(X)) for the dictionary set DL according to
the general coefficient model and side information T(X) = X.

Assuming side information T(X) = X, conditioned on
the coefficients xn, the observations yn follow a multivariate
Gaussian distribution with covariance matrix σ2I and mean
vector Dxn. From the convexity of the KL divergence [44],
following similar arguments as in [34], [40], we have

I(Y; l|T(X)) = I(Y; l|X)

=
1

L

∑
l∈[L]

EX

{
DKL

(
fDl

(Y|X)
∥∥ 1

L

∑
l′∈[L]

fDl′ (Y|X)

)}

≤ 1

L2

∑
l,l′∈[L]

EX

{
DKL

(
fDl

(Y|X)
∥∥fDl′ (Y|X)

)}
,

(104)

where fDl
(Y|X) is the probability distribution of the obser-

vations Y, given the coefficient matrix X and the dictionary
Dl. From Durrieu et al. [45], we have

DKL

(
fDl

(Y|X)
∥∥fDl′ (Y|X)

)
=
∑
n∈[N ]

1

2σ2
‖(Dl −Dl′)xn‖22

=
∑
n∈[N ]

1

2σ2
Tr
{

(Dl −Dl′)
>(Dl −Dl′)xnx>n

}
.

(105)

Substituting (105) in (104) results in

I(Y; l|T(X))

≤ EX

{ ∑
n∈[N ]

1

2σ2
Tr
{

(Dl −Dl′)
>(Dl −Dl′)xnx>n

}}
=
∑
n∈[N ]

1

2σ2
Tr
{

(Dl −Dl′)
>(Dl −Dl′)Σx

}
(t)

≤
∑
n∈[N ]

1

2σ2
‖Σx‖2‖Dl −Dl′‖2F

(u)

≤ N

2σ2
‖Σx‖2

(
4Kpε′

r2

)
=

2NKp‖Σx‖2
r2σ2

ε′, (106)

where (u) follows from (103). To show (t), we use the fact
that for any A ∈ Rp×p and Σx with ordered singular values
σi(A) and σi(Σx), i ∈ [p], we have

Tr {AΣx} ≤ |Tr {AΣx}|
(v)

≤
p∑
i=1

σi(A)σi(Σx)
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(w)

≤ σ1(Σx)

p∑
i=1

σi(A)

= ‖Σx‖2 Tr{A}, (107)

where (v) follows from Von Neumann’s trace inequality [46]
and (w) follows from the positivity of the singular values of
Σx. The inequality in (t) follows from replacing A with (Dl−
Dl′)

>(Dl−Dl′) and using the fact that Tr{(Dl−Dl′)
>(Dl−

Dl′)} = ‖Dl −Dl′‖2F .
Proof of Lemma 4: The dictionary class DL constructed

in Lemma 2 is again considered here. Note that (41) implies
ε′ < r2, since s ≥ 1. The first part of Lemma 4, up to
(42), thus trivially follows from Lemma 2. In order to prove
the second part, notice that in this case the coefficient vector
is assumed to be sparse according to (23). Denoting xSn as
the elements of xn with indices Sn , supp(xn), we have
observations yn as

yn = Dl,SnxSn + ηn. (108)

Hence conditioned on Sn = supp(xn), observations yn’s are
zero-mean independent multivariate Gaussian random vectors
with covariances

Σ(n,l) = σ2
aDl,SnD>l,Sn + σ2Is. (109)

The conditional MI I(Y; l|T(X) = supp(X)) has the follo-
wing upper bound [34], [47]:

I(Y; l|T(X)) ≤ ET(X)

{ ∑
n∈[N ]
l,l′∈[L]

1

L2

Tr
{[

Σ−1(n,l) −Σ−1(n,l′)

][
Σ(n,l) −Σ(n,l′)

]}}
≤ rank

{
Σ(n,l) −Σ(n,l′)

}
ET(X)

{ ∑
n∈[N ]

1

L2

∑
l,l′∈[L]

∥∥∥Σ−1(n,l) −Σ−1(n,l′)

∥∥∥
2

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

}
.

(110)

Since rank(Σ(n,l)) ≤ s, rank{Σ(n,l) −Σ(n,l′)} ≤ 2s [34].
Next, note that since non-zero elements of the coefficient

vector are selected according to (23) and (38), we can write
the subdictionary Dl,Sn in terms of the Khatri-Rao product of
matrices:

Dl,Sn = ∗
k∈[K]

D(k,lk),Snk
, (111)

where Snk
= {jnk

}snk=1, jnk
∈ [pk], for any k ∈ [K], denotes

the support of xn according to the coordinate dictionary
D(k,lk) and Sn corresponds to the indexing of the elements of
(S1 × . . .SK). Note that Dl,Sn ∈ R(

∏
k∈[K]mk)×s and in this

case, the Snk
’s can be multisets.9 We can now write

Σ(n,l) =

9Due to the fact that Snk ’s can be multisets, D(k,lk),Snk
’s can have

duplicated columns.

σ2
a

( ∗
k1∈[K]

D(k1,lk1
),Snk1

)( ∗
k2∈[K]

D(k2,lk2
),Snk2

)>
+ σ2Is.

(112)

We next write
1

σ2
a

(Σ(n,l) −Σ(n,l′))

=

( ∗
k1∈[K]

D(k1,lk1
),Snk1

)( ∗
k2∈[K]

D(k2,lk2
),Snk2

)>
−
( ∗
k1∈[K]

D(k1,l′k1
),Snk1

)( ∗
k2∈[K]

D(k2,l′k2
),Snk2

)>
=

( ∑
i∈{0,1}K

ηK−‖i‖1ν‖i‖1 ∗
k1∈[K]

D(k1,ik1
,lk1

),Snk1

)
( ∑

i′∈{0,1}K
ηK−‖i

′‖1ν‖i
′‖1 ∗

k2∈[K]

D(k2,i′k2
,lk2

),Snk2

)>
−
( ∑

i∈{0,1}K
ηK−‖i‖1ν‖i‖1 ∗

k1∈[K]

D(k1,ik1
,l′k1

),Snk1

)
( ∑

i′∈{0,1}K
ηK−‖i

′‖1ν‖i
′‖1 ∗

k2∈[K]

D(k2,i′k2
,l′k2

),Snk2

)>
=

∑
i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1

( ∗
k1∈[K]

D(k1,ik1
,lk1

),Snk1

)( ∗
k2∈[K]

D(k2,i′k2
,lk2

),Snk2

)>
−

∑
i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1

( ∗
k1∈[K]

D(k1,ik1
,l′k1

),Snk1

)( ∗
k2∈[K]

D(k2,i′k2
,l′k2

),Snk2

)>
.

(113)

We now note that

‖A1 ∗A2‖2 = ‖(A1 ⊗A2)P‖2
≤ ‖(A1 ⊗A2)‖2‖P‖2
(a)
= ‖A1‖2‖A2‖2, (114)

where P ∈ Rp×s is a selection matrix that selects s columns
of A1⊗A2 and pj = ei for j ∈ [s], i ∈ [p]. Here, (a) follows
from the fact that ‖P‖2 = 1 (P>P = Is). From (41), it is

apparent that

√
sε′

r2
≤ 1. Furthermore,

∥∥∥D(k,0),Snk

∥∥∥
2
≤
√

3

2
,
∥∥∥D(k,1,lk),Snk

∥∥∥
2
≤
√

s

r2/K
, k ∈ [K],

(115)

where the fist inequality in (115) follows from the RIP
condition for

{
D(0,k), k ∈ [K]

}
and the second inequality

follows from the fact that ‖A‖2 ≤ ‖A‖F . We therefore have

1

σ2
a

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2
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(b)

≤ 2
∑

i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1

∥∥∥∥ ∗
k1∈[K]

D(k1,ik1
,lk1

),Snk1

∥∥∥∥
2

∥∥∥∥ ∗
k2∈[K]

D(k2,i′k2
,lk2

),Snk2

∥∥∥∥
2

(c)

≤ 2
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1

∏
k1∈[K]
ik1

=0

∥∥D(k1,0),Snk1

∥∥
2

∏
k1∈[K]
ik1

=1

∥∥D(k1,1,lk1
),Snk1

∥∥
2

( ∑
i′∈{0,1}K

ηK−‖i
′‖1ν‖i

′‖1

∏
k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2
),Snk2

∥∥
2

)

+ 2
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1

∏
k1∈[K]
ik1

=0

∥∥D(k1,0),Snk1

∥∥
2

∏
k1∈[K]
ik1

=1

∥∥D(k1,1,lk1
),Snk1

∥∥
2

( ∑
i′∈{0,1}K
‖i′‖1 6=0

ηK−‖i
′‖1ν‖i

′‖1

∏
k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2
),Snk2

∥∥
2

)

(d)
= 2

( K−1∑
k1=0

(
K

k1

)
ηk1νK−k1

(√
3

2

)k1(√ s

r2/K

)K−k1)
( K∑
k2=0

(
K

k2

)
ηk2νK−k2

(√
3

2

)k2 (√
s

r2/K

)K−k2 )

+ 2

(
η

√
3

2

)K( K−1∑
k2=0

(
K

k2

)
ηk2νK−k2

(√
3

2

)k2
(√

s

r2/K

)K−k2)
(e)

≤ 2

( K−1∑
k1=0

(
K

k1

)(√
3

2

)k1(√sε′

r2

)K−k1)
( K∑
k2=0

(
K

k2

)(√
3

2

)k2(√sε′

r2

)K−k2)

+ 2

(√
3

2

)K( K−1∑
k2=0

(
K

k2

)(√
3

2

)k2(√sε′

r2

)K−k2)

= 2

√
sε′

r2

( K−1∑
k1=0

(
K

k1

)(√
3

2

)k1(√sε′

r2

)K−1−k1)
( K∑
k2=0

(
K

k2

)(√
3

2

)k2(√sε′

r2

)K−k2
+

(√
3

2

)K)

(f)

≤ 2

√
sε′

r2

((√
3

2

)K−1 K∑
k1=0

(
K

k1

))
((√

3

2
+ 1

)K
+

(√
3

2

)K)
≤ 2

√
sε′

r2

((√
3

2

)K−1
2K
)((

3

2

)K
2K +

(
3

2

)K)
≤ 32K+1

√
sε′

r2
, (116)

where (b) follows from triangle inequality, (c) follows from
(114), (d) follows from (115), (e) and (f) follow from replacing
the value for ν and the fact that η < 1 and sε′/r2 < 1
(by assumption). Denoting the smallest eigenvalue of Σ(n,l)

as λmin(Σ(n,l)), λmin(Σ(n,l)) ≥ σ2 holds; thus, we have
‖Σ−1(n,l)‖2 ≤

1
σ2 and from [48], we get∥∥∥Σ−1(n,l) −Σ−1(n,l′)

∥∥∥
2
≤ 2

∥∥∥Σ−1(n,l)

∥∥∥2
2

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

≤ 2

σ4

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2
. (117)

Now (110) can be stated as

I(Y; l|T(X)) ≤ 4Ns

σ4L2

∑
l,l′

∥∥Σ(n,l) −Σ(n,l′)

∥∥2
2

≤ 4Ns

σ4

∥∥Σ(n,l) −Σ(n,l′)

∥∥2
2

(g)

≤ 4Ns

σ4
(34K+2)

(
σ2
a

√
sε′

r2

)2

= 36(34K)
(σa
σ

)4 Ns2
r2

ε′, (118)

where (g) follow from (116). Thus, the proof is complete.
Proof of Lemma 5: Similar to Lemma 4, the first part

of this Lemma trivially follows from Lemma 2. Also, in this
case the coefficient vector is assumed to be sparse according
to (24). Hence, conditioned on Sn = supp(xn), observations
yn’s are zero-mean independent multivariate Gaussian random
vectors with covariances given by (109). Similar to Lemma 4,
therefore, the conditional MI has the upper bound given in
(110). We now simplify this upper bound further.

When non-zero elements of the coefficient vector are se-
lected according to (24) and (38), we can write the dictionary
Dl,Sn in terms of the Kronecker product of matrices:

Dl,Sn =
⊗
k∈[K]

D(k,lk),Snk
, (119)

where Snk
= {jnk

}sknk=1, jnk
∈ [pk], for all k ∈ [K], denotes

the support of xn on coordinate dictionary D(k,lk) and Sn
corresponds to indexing of the elements of (S1 × · · · × SK).
Note that Dl,Sn ∈ R(

∏
k∈[K]mk)×s. In contrast to coefficient

model (23), in this model the Snk
’s are not multisets anymore

since for each D(k,lk), k ∈ [K], we select sk columns at
random and D(k,lk),Snk

are submatrices of D(k,lk). Therefore,
(109) can be written as

Σ(n,l) = σ2
a

( ⊗
k1∈[K]

D(k1,lk1
),Snk1

)
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( ⊗
k2∈[K]

D(k2,lk2
),Snk2

)>
+ σ2Is.

(120)

In order to find an upper bound for ‖Σ(n,l)−Σ(n,l′)‖2, notice
that the expression for Σ(n,l) − Σ(n,l′) is similar to that of
(113), where ∗ is replaced by

⊗
. Using the property of

Kronecker product that ‖A1 ⊗A2‖2 = ‖A1‖2‖A2‖2 and the
fact that∥∥∥D(k,0),Snk

∥∥∥
2
≤
√

3

2
,
∥∥∥D(k,1,lk),Snk

∥∥∥
2
≤
√

sk
r2/K

,∀k ∈ [K],

(121)

we have
1

σ2
a

∥∥Σ(n,l) −Σ(n,l′)

∥∥
2

≤ 2
∑

i,i′∈{0,1}K
‖i‖1+‖i′‖1 6=0

η2K−‖i‖1−‖i
′‖1ν‖i‖1+‖i

′‖1

∥∥∥∥ ⊗
k1∈[K]

D(k1,ik1
,lk1

),Snk1

∥∥∥∥
2

∥∥∥∥ ⊗
k2∈[K]

D(k2,i′k2
,lk2

),Snk2

∥∥∥∥
2

= 2
∑

i∈{0,1}K
‖i‖1 6=0

ηK−‖i‖1ν‖i‖1

∏
k1∈[K]
ik1

=0

∥∥D(k1,0),Snk1

∥∥
2

∏
k1∈[K]
ik1

=1

∥∥D(k1,1,lk1
),Snk1

∥∥
2

( ∑
i′∈{0,1}K

ηK−‖i
′‖1ν‖i

′‖1

∏
k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2
),Snk2

∥∥
2

)

+ 2

(
ηK

∏
k1∈[K]

∥∥D(k1,0),Snk1

∥∥
2

)( ∑
i′∈{0,1}K
‖i′‖1 6=0

ηK−‖i
′‖1ν‖i

′‖1

∏
k2∈[K]
i′k2

=0

∥∥D(k2,0),Snk2

∥∥
2

∏
k2∈[K]
i′k2

=1

∥∥D(k2,1,lk2
),Snk2

∥∥
2

)

(a)

≤ 2
√
s

[( K−1∑
k1=0

(
K

k1

)
ηk1νK−k1

(√
3

2

)k1(√ 1

r2/K

)K−k1)
( K∑
k2=0

(
K

k2

)(
η

√
3

2

)k2)
+

(
η

√
3

2

)K
( K−1∑
k2=0

(
K

k2

)
ηk2ν(K−k2)

(√
3

2

)k2(√ 1

r2/K

)K−k2)]
(b)

≤ 2

√
sε′

r2

( K−1∑
k1=0

(
K

k1

)(√
3

2

)k1)
(( K∑

k2=0

(
K

k2

)(√
3

2

)k2)
+

(√
3

2

)K)

(c)

≤ 32K+1

√
sε′

r2
, (122)

where (a) follows from (121), (b) follows from replacing the
value for ν and the fact that η < 1, ε′/r2 < 1 (by assumption),
and (c) follows from similar arguments in (116). The rest of
the proof follows the same arguments as in Lemma 4 and
(118) holds in this case as well.

Proof of Theorem 4: Any dictionary D ∈ X (Ip, r) can
be written as

D = A⊗B

= (Ip1 + ∆1)⊗ (Ip2 + ∆2), (123)

We have to ensure that ‖D− Ip‖F ≤ r. We have

‖D− Ip‖F
= ‖Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2‖F
≤ ‖Ip1 ⊗∆2‖F + ‖∆1 ⊗ Ip2‖F + ‖∆1 ⊗∆2‖F
= ‖Ip1‖F ‖∆2‖F + ‖∆1‖F ‖Ip2‖F + ‖∆1‖F ‖∆2‖F
≤ r2
√
p1 + r1

√
p2 + r1r2

(a)

≤ r, (124)

where (a) follows from (51). Therefore, we have

D ∈
{

A⊗B = (Ip1 + ∆1)⊗ (Ip2 + ∆2)
∣∣ ‖∆1‖F ≤ r1,

‖∆2‖F ≤ r2, r2
√
p1 + r1

√
p2 + r1r2 ≤ r,

‖al1‖2 = 1, l1 ∈ [p1], ‖bl2‖2 = 1, l2 ∈ [p2]

}
.

(125)

In this case, the new observation vectors y′(n,j) can be
written as

y′(n,j) = Ax′(n,j) + Apxn, j ∈ [p2], n ∈ [N ], (126)

where Ap , (A ⊗∆2)Tn denotes the matrix consisting of
the rows of (A ⊗ ∆2) with indices Tn , ip2 + j, where
i = {0} ∪ [p1 − 1] and j =

(
(n− 1) mod p2

)
+ 1.

Similarly, for y′′(n,j) we have

y′′(n,j) = Bx′′(n,j) + Bpxn, j ∈ [p1], n ∈ [N ], (127)

where Bp , (∆1 ⊗ B)In denotes the matrix consisting of
the rows of (∆1 ⊗ B) with indices In , jp2 + i, where
i = {0} ∪ [p2 − 1] and j = (n − 1) mod p1. Given the fact
that xn ∈ {−1, 0, 1}p, σ2

a = 1 and ‖xn‖22 = s, after division
of the coefficient vector according to (55) and (59), we have

Exn

{
x2n,l

}
= Ex′

(n,j1)

{
x′

2
(n,j1),l1

}
= Ex′′

(n,j2)

{
x′′

2
(n,j2),l2

}
=
s

p
, (128)

for any n ∈ [N ], j1 ∈ [p2], j2 ∈ [p1], l ∈ [p], l1 ∈ [p1], and
l2 ∈ [p2]. The SNR is

SNR =
Ex

{
‖x‖22

}
Eη {‖η‖22}

=
s

mσ2
. (129)

We are interested in upper bounding EY

{∥∥∥D̂(Y)−D
∥∥∥2
F

}
.
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For this purpose we first upper bound EY

{∥∥∥Â(Y)−A
∥∥∥2
F

}
and EY

{∥∥∥B̂(Y)−B
∥∥∥2
F

}
. We can split these MSEs into the

sum of column-wise MSEs:

EY

{∥∥∥Â(Y)−A
∥∥∥2
F

}
=

p1∑
l=1

EY

{
‖âl(Y)− al‖22

}
. (130)

By construction:

‖âl(Y)− al‖22 ≤ 2
(
‖âl(Y)‖22 + ‖al‖22

)
(b)

≤ 4, (131)

where (b) follows from the projection step in (62). We define
the event C to be

C ,
⋂

n∈[N ]
l∈[p]

{|ηn,l| ≤ 0.4} . (132)

In order to find the setting under which P
{

X̂ = X|C
}

= 1,
i.e., when recovery of the coefficient vectors is successful,
we observe the original observations and coefficient vectors
satisfy:

yn,l − xn,l = (Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2)
l
xn + ηn,l

(133)

and∣∣∣(Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2)
l
xn + ηn,l

∣∣∣
≤
∥∥∥(Ip1 ⊗∆2 + ∆1 ⊗ Ip2 + ∆1 ⊗∆2)

l
∥∥∥
2
‖xn‖2 + |ηn,l|

≤ (‖∆1‖F + ‖∆2‖F + ‖∆1‖F ‖∆2‖F ) ‖xn‖2 + |ηn,l|
≤ (r1 + r2 + r1r2)

√
s+ |ηn,l|. (134)

By using the assumption (r1 + r2 + r1r2)
√
s ≤ 0.1 and

conditioned on the event C, |ηn,l| ≤ 0.4, we have that for
every n ∈ [N ] and l ∈ [p]:

yn,l > 0.5 if xn,l = 1,

−0.5 < yn,l < 0.5 if xn,l = 0,

yn,l < −0.5 if xn,l = −1,

(135)

thus, ensuring correct recovery of coefficients (X̂ = X)
using the thresholding technique (53) when conditioned on C.
Using standard tail bounds for Gaussian random variables [34,
(92)], [49, Proposition 7.5] and taking a union bound over all
pN i.i.d. variables {ηn,l}, n ∈ [N ], l ∈ [p], we have

P {Cc} ≤ exp

(
−0.08pN

σ2

)
. (136)

To find an upper bound for EY

{
‖âl(Y)− al‖22

}
, we can

write it as

EY

{
‖âl(Y)− al‖22

}
= EY,N

{
‖âl(Y)− al‖22 |C

}
P(C)

+ EY,N

{
‖âl(Y)− al‖22 |C

c
}
P(Cc)

(c)

≤ EY,N

{
‖âl(Y)− al‖22 |C

}
+ 4 exp

(
−0.08pN

σ2

)
,

(137)

where (c) follows from (131) and (136). To bound
EY,N

{
‖âl(Y)− al‖22 |C

}
, we have

EY,N

{
‖âl(Y)− al‖22 |C

}
= EY,N

{
‖PB1

(ãl(Y))− al‖22 |C
}

(d)

≤ EY,N

{
‖ãl(Y)− al‖22 |C

}
(e)
= EY,N

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x̂′(n,j),ly
′
(n,j) − al

∥∥∥∥2
2

∣∣∣∣C}
(f)
= EY,X,N

{∥∥∥∥ p1Ns
N∑
n=1

p2∑
j=1

x′(n,j),ly
′
(n,j) − al

∥∥∥∥2
2

∣∣∣∣C}
(g)
= EX,N

{∥∥∥∥ p1Ns
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− al
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n=1

p2∑
j=1

x′(n,j),l
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atx
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2
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+ 4EX,N

{∥∥∥∥ p1Ns
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x′(n,j),l
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2

∣∣∣∣C},
(138)

where (d) follows from the fact that ‖al‖2 = 1, (e) follows
from (57), (f) follows from the fact that conditioned on the
event C, X̂ = X, (g) follows from (126) and (h) follows from
the fact that ‖x1 + x2‖22 ≤ 2(‖x1‖22 + ‖x2‖22). We bound the
three terms in (138) separately. Defining ν , Q(−0.4/σ) −
Q(0.4/σ), where Q(x) ,

∫∞
z=x

1√
2π

exp(− z
2

2 )dz, we can
bound the noise variance conditioned on C, σ2

ηn,t
, by [34]

σ2
ηn,t
≤ σ2

ν
. (139)

The first expectation in (138) can be bounded by

EX,N


∥∥∥∥ p1Ns

N∑
n=1

p2∑
j=1

x′(n,j),lη
′
(n,j)
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( p1
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p2∑
j,j′=1

EX,N

{
x′(n,j),lx

′
(n′,j′),l

η′
>
(n′,j′)η

′
(n,j)|C

}
=
( p1
Ns

)2 N∑
n=1

p2∑
j=1

m1∑
t=1

EX,N

{
x′

2
(n,j),l|C

}
EX,N

{
η′

2
(n,j),t|C

}
(i)
=
( p1
Ns

)2
Np2EX

{
x′

2
(n,j),l

}
EN

{
η′

2
(n,j),t|C

}
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(j)

≤
( p1
Ns

)2
Np2

(
s

p

)(
m1σ

2

ν

)
(k)

≤ 2m1p1σ
2

Ns
, (140)

where (i) follows from the fact that x′(n,j) is independent of the
event C, (j) follows from (128) and (139), and (k) follows from
the fact that ν ≥ 0.5 under the assumption that σ ≤ 0.4 [34].

To bound the second expectation in (138), we use similar
arguments as in Jung et al. [34]. We can write

EX

{
x′(n,j),lx

′
(n,j),tx

′
(n′,j′),lx

′
(n′,j′),t′

}
=

( sp )2 if (n, j) = (n′, j′) and t = t′ 6= l,

( sp )2 if (n, j) 6= (n′, j′) and t = t′ = l,
s
p if (n, j) = (n′, j′) and t = t′ = l,

0 otherwise,

(141)

and we have
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N

(
1

s
+

1

p2
− 2

p

)
≤ 2p1

N
. (142)

To upper bound the third expectation in (138), we need to
bound the `2 norm of columns of Ap. We have

∀t ∈ [p] : ‖ap,t‖22
(l)

≤ ‖(A⊗∆2)t‖22
≤ ‖al‖22‖∆2‖2F
= r22, (143)

where (A⊗∆2)t denotes the t-th column of (A⊗∆2) and
(l) follows from the fact that Ap is a submatrix of (A⊗∆2).
Moreover, similar to the expectation in (141), we have

EX

{
x′(n,j),lx

′
(n′,j′),lxn,txn′,t′

}
=

( sp )2 if (n, j) = (n′, j′) and t = t′ 6= l′,

( sp )2 if (n, j) 6= (n′, j′) and t = t′ = l′,
s
p if (n, j) = (n′, j′) and t = t′ = l′,

0 Otherwise,

(144)

where l′ denotes the index of the element of xn corresponding

to x′(n,j),l. Then, the expectation can be bounded by

EX,N

{∥∥∥∥ p1Ns
N∑
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N

+ 1
)

(n)

≤ p1
N
, (145)

where (m) follows from (143) and (n) follows from the
assumption in (51). Summing up (140), (142), and (145), we
have

EY

{
‖âl(Y)− al‖22

}
≤ 4p1

N

(
m1σ

2

s
+ 3

)
+ 4 exp

(
−0.08pN

σ2

)
. (146)

Summing up the MSE for all columns, we obtain:

EY

{∥∥∥Â(Y)−A
∥∥∥2
F

}
≤ 4p21

N

(
m1σ

2

s
+ 3

)
+ 4p1 exp
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−0.08pN
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)
. (147)

We can follow similar steps to get

EY

{∥∥∥B̂(Y)−B
∥∥∥2
F

}
≤ 4p22

N

(
m2σ

2

s
+ 3

)
+ 4p2 exp
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−0.08pN
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)
. (148)

From (147) and (148), we get
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+ p1EY

{∥∥∥(B̂(Y)−B)
∥∥∥2
F

})
≤ 8p

N

(
σ2

s

2∑
k=1

mkpk + 3

2∑
k=1

pk

)
+ 8p exp
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−0.08pN
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)
(o)
=

8p

N

(∑2
k=1mkpk
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(149)

where (o) follows from (129).

REFERENCES

[1] Z. Shakeri, W. U. Bajwa, and A. D. Sarwate, “Minimax lower bounds
for Kronecker-structured dictionary learning,” in Proc. 2016 IEEE Int.
Symp. Inf. Theory, July 2016, pp. 1148–1152. [Online]. Available:
https://dx.doi.org/10.1109/ISIT.2016.7541479

[2] ——, “Sample complexity bounds for dictionary learning of tensor
data,” in IEEE Int. Conf. Acoustics, Speech and Signal Process.
(ICASSP), March 2017, pp. 4501–4505. [Online]. Available: https:
//dx.doi.org/10.1109/ICASSP.2017.7953008

[3] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, November
2006. [Online]. Available: https://dx.doi.org/10.1109/TSP.2006.881199

[4] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-invariance
sparse coding for audio classification,” in Proc. 23rd Conf. Uncertainty
in Artificial Intelligence, July 2007, pp. 149–158. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3020488.3020507

[5] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proc. 24th
Int. Conf. Machine learning. ACM, 2007, pp. 759–766. [Online].
Available: https://dx.doi.org/10.1145/1273496.1273592

[6] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,”
IEEE Trans. Pattern Analys. and Machine Intelligence, vol. 34, no. 4,
pp. 791–804, April 2012. [Online]. Available: https://dx.doi.org/10.
1109/TPAMI.2011.156

[7] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. Lee, and T. J.
Sejnowski, “Dictionary learning algorithms for sparse representation,”
Neural Computation, vol. 15, no. 2, pp. 349–396, February 2003.
[Online]. Available: https://dx.doi.org/10.1162/089976603762552951

[8] Z. Zhang and S. Aeron, “Denoising and completion of 3D data via
multidimensional dictionary learning,” in Proc. 25th Int. Joint Conf.
Artificial Intelligence (IJCAI), July 2016, pp. 2371–2377. [Online].
Available: https://www.ijcai.org/Proceedings/16/Papers/338.pdf

[9] S. Hawe, M. Seibert, and M. Kleinsteuber, “Separable dictionary
learning,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognition
(CVPR), June 2013, pp. 438–445. [Online]. Available: https://dx.doi.
org/10.1109/CVPR.2013.63

[10] S. Zubair and W. Wang, “Tensor dictionary learning with sparse
Tucker decomposition,” in Proc. IEEE 18th Int. Conf. Digital
Signal Process. (DSP), July 2013, pp. 1–6. [Online]. Available:
https://dx.doi.org/10.1109/ICDSP.2013.6622725

[11] F. Roemer, G. Del Galdo, and M. Haardt, “Tensor-based algorithms
for learning multidimensional separable dictionaries,” in Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Process. (ICASSP), May 2014,
pp. 3963–3967. [Online]. Available: https://dx.doi.org/10.1109/ICASSP.
2014.6854345

[12] C. F. Dantas, M. N. da Costa, and R. da Rocha Lopes, “Learning
dictionaries as a sum of Kronecker products,” IEEE Signal Processing
Letters, vol. 24, no. 5, pp. 559–563, March 2017. [Online]. Available:
https://dx.doi.org/10.1109/LSP.2017.2681159

[13] M. Ghassemi, Z. Shakeri, A. D. Sarwate, and W. U. Bajwa, “STARK:
Structured dictionary learning through rank-one tensor recovery,” in
Proc. IEEE 7th International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP), December 2017.

[14] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang,
“Decomposable nonlocal tensor dictionary learning for multispectral
image denoising,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recognition (CVPR), June 2014, pp. 2949–2956. [Online]. Available:
https://dx.doi.org/10.1109/CVPR.2014.377

[15] S. Soltani, M. E. Kilmer, and P. C. Hansen, “A tensor-based
dictionary learning approach to tomographic image reconstruction,”
BIT Numerical Mathematics, pp. 1–30, 2015. [Online]. Available:
https://dx.doi.org/10.1007/s10543-016-0607-z

[16] G. Duan, H. Wang, Z. Liu, J. Deng, and Y.-W. Chen, “K-CPD:
Learning of overcomplete dictionaries for tensor sparse coding,” in
Proc. IEEE 21st Int. Conf. Pattern Recognition (ICPR), November
2012, pp. 493–496. [Online]. Available: https://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=6460179

[17] L. R. Tucker, “Implications of factor analysis of three-way matrices for
measurement of change,” Problems in Measuring Change, pp. 122–137,
1963.

[18] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an explanatory multi-modal factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1–84, December 1970.
[Online]. Available: https://www.psychology.uwo.ca/faculty/harshman/
wpppfac0.pdf

[19] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM J. Matrix Analy. and Applicat.,
vol. 21, no. 4, pp. 1253–1278, 2000. [Online]. Available: https:
//dx.doi.org/10.1137/S0895479896305696

[20] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM J. Matrix Anal. and
Applicat., vol. 34, no. 1, pp. 148–172, 2013. [Online]. Available:
https://dx.doi.org/10.1137/110837711

[21] Y. Rivenson and A. Stern, “Compressed imaging with a separable
sensing operator,” IEEE Signal Processing Letters, vol. 16, no. 6, pp.
449–452, June 2009. [Online]. Available: https://dx.doi.org/10.1109/
LSP.2009.2017817

[22] ——, “An efficient method for multi-dimensional compressive imaging,”
in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics
& Photonics Technical Diges. Optical Society of America, 2009,
p. CTuA4. [Online]. Available: http://www.osapublishing.org/abstract.
cfm?URI=COSI-2009-CTuA4

[23] M. F. Duarte and R. G. Baraniuk, “Kronecker compressive sensing,”
IEEE Trans. Image Process., vol. 21, no. 2, pp. 494–504, Febuary
2012. [Online]. Available: https://dx.doi.org/10.1109/TIP.2011.2165289

[24] A. B. Tsybakov, Introduction to nonparametric estimation. New York,
NJ USA: Springer Series in Statistics, Springer, 2009.

[25] B. Yu, “Assouad, Fano, and Le Cam,” in Festschrift for Lucien Le Cam.
Springer, 1997, pp. 423–435.

[26] M. Aharon, M. Elad, and A. M. Bruckstein, “On the uniqueness of
overcomplete dictionaries, and a practical way to retrieve them,” Linear
Algebra and its Applicat., vol. 416, no. 1, pp. 48–67, July 2006.
[Online]. Available: https://dx.doi.org/10.1016/j.laa.2005.06.035

[27] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon,
“Learning sparsely used overcomplete dictionaries,” in Proc. 27th Annu.
Conf. Learning Theory, ser. JMLR: Workshop and Conf. Proc., vol. 35,
no. 1, 2014, pp. 1–15.

[28] A. Agarwal, A. Anandkumar, and P. Netrapalli, “A clustering approach
to learn sparsely-used overcomplete dictionaries,” IEEE Trans. Inf.
Theory, vol. 63, no. 1, pp. 575–592, January 2017. [Online]. Available:
https://dx.doi.org/10.1109/TIT.2016.2614684

[29] S. Arora, R. Ge, and A. Moitra, “New algorithms for learning
incoherent and overcomplete dictionaries,” in Proc. 25th Annu. Conf.
Learning Theory, ser. JMLR: Workshop and Conf. Proc., vol. 35, 2014,
pp. 1–28. [Online]. Available: https://www.jmlr.org/proceedings/papers/
v35/arora14.pdf

[30] K. Schnass, “On the identifiability of overcomplete dictionaries via the
minimisation principle underlying K-SVD,” Appl. and Computational
Harmonic Anal., vol. 37, no. 3, pp. 464–491, November 2014. [Online].
Available: https://dx.doi.org/10.1016/j.acha.2014.01.005

[31] ——, “Local identification of overcomplete dictionaries,” J. Machine
Learning Research, vol. 16, pp. 1211–1242, June 2015. [Online].
Available: https://jmlr.org/papers/v16/schnass15a.html

[32] R. Gribonval, R. Jenatton, and F. Bach, “Sparse and spurious:
dictionary learning with noise and outliers,” IEEE Trans. Inf. Theory,
vol. 61, no. 11, pp. 6298–6319, November 2015. [Online]. Available:
https://dx.doi.org/10.1109/TIT.2015.2472522

[33] A. Jung, Y. C. Eldar, and N. Görtz, “Performance limits of
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