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ABSTRACT

This paper investigates detection theory for signals belonging
to a union of subspaces (UoS) in the presence of an interfe-
rence subspace and white noise of unknown variance. Gene-
ralized likelihood ratio tests are provided for both signal de-
tection and “active” subspace detection under the UoS model.
The paper also derives performance bounds on the associated
detection problems and relates them to the geometry of sub-
spaces in the union and the interfering subspace. These relati-
ons are then corroborated through numerical experiments on
synthetic data.

Index Terms— interference, signal detection, subspace
detection, subspace geometry, union of subspaces

1. INTRODUCTION

One of the classic problems in signal processing is signal de-
tection, which has been extensively explored under the sub-
space model [1]. Recently however, the focus has shifted
towards a nonlinear generalization of the subspace model.
This nonlinear model, called the union-of-subspaces (UoS)
model [2], has proven to be a better model for real-world
data [3-5]. The focus of this paper is on detecting signals
that conform to the UoS model in the presence of a signal
from an interfering subspace and white noise of unknown va-
riance. To this end, we provide statistical tests and derive per-
formance measures for detecting the signal and the associated
subspace from which the signal is coming. Furthermore, we
also examine the effect that the geometry of the signal and the
interference subspaces has on these performance measures.

Prior work and our contributions: In terms of prior work,
the problem of signal detection under the subspace model has
been analyzed in the literature in great detail and under vari-
ous settings [6-9]. The earliest and most well-known method
is the matched subspace detector [6], which is an energy de-
tector, i.e., it thresholds the energy in the observed signal after
projecting it onto the subspace in question.

As for the UoS model, there have been several works
recently that either directly investigate detection under the
UoS model or examine a related problem [10-15]. For in-
stance, [10] examines signal detection under the compressive

This research is supported in part by the NSF under award CCF-1453073
and by the ARO under award W911NF-17-1-0546.

sensing framework [16] and analyzes the resulting generali-
zed likelihood ratio test (GLRT). Similarly, [11] evaluates the
same problem but in the context of multi-target radar based
detection. The work in [12] extends [10] to more general set-
tings but is still restricted to the sparsity framework. All of
these works can be considered special instances of detection
under the UoS model, but they lack the interpretation of their
results in terms of the geometry between the subspaces. The
works most closely related to our paper are [17] and [18].
In [17], signal and active subspace detection under the UoS
are studied specifically under the framework of radar target
detection with a focus on target spectral signatures. This hin-
ders a general analysis in terms of the geometry of subspaces.
On the other hand, [18] investigates the recovery of a signal
and detection of the corresponding subspace within the UoS
through a linear sampling operator, but this work is essenti-
ally concerned with the properties of the sampling operator.
Finally, none of the aforementioned works consider detection
under UoS model in the presence of an interference subspace
with noisy observations.

In this paper we derive GLRTs for signal and active sub-
space detection problems and bounds on the associated pro-
babilities of signal detection, subspace classification and false
alarm. Moreover, we also analyze these probability bounds in
light of the geometry of the subspaces and characterize the
effect of geometry on the overall performance. Our analysis
highlights the following key observations. As the subspaces
in the union move away from the interference subspace, the
detection performance improves. Furthermore, as the angles
between the interference-free subspaces (defined in Sec. 3) in-
crease, the probability of correct classification increases. We
also point out here that this paper is closely related to another
paper by the authors [19], where detection problems under
UoS are considered under varying colored noise conditions
but without interference.

Notation and organization: Bold lowercase and bold up-
percase letters are used to denote vectors and matrices, re-
spectively. For a matrix A, the k-th column and the (j, k)-th
entry are, respectively, denoted by a; and a,. Furthermore,
A~1 and |A| are used to denote the inverse (if it exists) and
the determinant of A, respectively. For a vector a, ||a|, and
|a| denote its £,-norm and its elementwise absolute values,
respectively. Finally, Q(-), I'(:), and K, (-) denote the Gaus-
sian () function, the Gamma function, and the modified Bes-



sel function of the second kind with parameter n, respectively.

The rest of the paper is organized as follows. In Sec. 2, we
formulate the two detection problems under the UoS model
in the presence of an interference signal. Sec. 3 presents the
GLRTs for these two problems and derives bounds on various
performance measures. Sec. 4 provides a discussion and in-
terpretation of the results obtained in Sec. 3. In Sec. 5, results
of numerical experiments are presented, while we conclude
the paper in Sec. 6.

2. PROBLEM FORMULATION

In this section we mathematically pose the two detection pro-
blems under the UoS model in the presence of an interference
signal coming from a subspace, namely, signal detection and
active subspace detection.

Signal detection in this regard refers to the problem of de-
ciding whether the observed signal y € R™ is an unknown
noisy interference signal or an unknown noisy signal of inte-
rest in the presence of an unknown interference signal. Mat-
hematically, this problem can be expressed as the following
binary hypothesis test:

Ho: y=t+n;
Hi: y=x+t+n; (1)

where t € R™ is the unknown interference coming from an
n-dimensional interference subspace 7', n € R™ is the obser-
vation noise assumed to be white Gaussian with unknown va-

riance o2, and x is the signal of interest belonging to a union
Ko
of subspaces, i.e., x € |J Sk, where all subspaces S}, are

k=1
n-dimensional in R™, and S, N S; = 0 for k # j.

The active subspace detection problem aims at identifying
the subspace Sj from the union that generates the signal of
interest, in addition to identifying if the signal is present. This
multiple hypothesis testing problem can mathematically be
posed as:

Ho: y=t+m

Hi: y=x+t+nxeS;, k=12,..., Ky, (2
where t, n, and x are as defined before. For both of these
problems, we derive tests for detection and relate the per-
formance of these tests with the geometry of the subspaces
in the union and the interference subspace. This is achie-
ved through the use of principal angles between the subspa-
ces, where the i-th principal angle between two subspaces

S; and S}, denoted by @Ej’k) fori = 1,2,...,n, is defined

u,v

as [20] @Ej’k) — arccos max{h‘t"l/gl? u € Sj,V S

Sg,ulup,vlivey,l =1,...,i— 1}>,where (ug,vy) €

S; x S, denote the principal vectors associated with the ¢-th
principal angle.

The performance of our tests for the aforementioned
problems is described in terms of the probabilities of de-
tection (Pp), classification (Pg), and false alarm (Ppy).
For this purpose, let us define Py, (-) = Pr(-|H;) and
the event H; = {Hypothesis H; is accepted}. Then, we
have the following performance measures for the signal de-
tection problem: Pp = Py, (H1) and Pra = Py, (H1),
and the following Afor active subspace detection probAlem:
Pe = 3332y Pr, (Hi) Pr(Hy) and Pra = Py (U, Fx).

For the rest of the paper we use Ps, () = Pr(-|{x €
Sk}) and W (no, ) = W%(an)(”flmf((n—l)/z (152,
where @ € R and 19 € (0,1/2). Using this notation, we
can express Pp as Pp = Zi{:"l Ps, (H1) Pr(x € S).

3. STATISTICAL TESTS FOR DETECTION

Let us begin with a basis for the k-th subspace S}, denoted
by Hy, € R™*"; then a signal x belonging to Sy, can be ex-
pressed as x = H0),. Similarly, an interference signal t be-
longing to the interference subspace 7" can be denoted by t =
Vu, where V- € R™*" represents a basis for the interference
subspace. One can now trivially see that y|Ho ~ N (t,0%I)
for both detection problems, y|H; ~ N(x + t, o2I) for sig-
nal detection, and y|H ~ N (Hy60) + Vu,o?I) for active
subspace detection. Since the quantities t, x, p, and 0y, are
unknown, we resort to the use of GLRTs instead of simple li-
kelihood ratio tests. Our test for signal detection is presented
in the theorem below and uses the following definitions: let
the projection matrix for the interference subspace be P, the
projection matrix for the subspace orthogonal to 7" be P, the
projection matrix for the k-th subspace Sy be Pg,, the pro-
jection matrix for the subspace orthogonal to both 7" and Sy,
be Pg:kT, and the part of the k-th subspace S}, that is orthogo-
nal to the interference subspace 7" be Sy (we will call this k-th
interference-free subspace from here on) with its projection
matrix being Pg, = P+H,(H  P+H,) 'H] P7.

Theorem 1. Fix a test threshold 4y > 0, and define k=

; Tpl Tpl \_ y'Pry
argming (y* Pg ry) and R (PSET) = %. Then the
GLRT for the signal detection and the active subspace de-
tection problems under the UoS model with interference is,

respectively, given by

Ry(P5r) 27 and  Ry(Pgr)27. O

EVAVES
EAVAS

Proof. The proof of this theorem follows the steps from our
earlier work [19, Theorem 1]. Specifically, one can work out
the following estimates under the detection problem: f|7—[0 =
Pry. 52[Ho = |y — Pry|3/m. [%; t|H1 = Ps.ry. and



o%H1 = |ly — Ps_ryll3/m, for k as defined in the the-
orem. With these estimates, one can use the GLRT to ar-
rive at the test statistic for signal detection. A similar proce-
dure can be followed for active subspace detection after de-
riving the following estimates for the alternate hypotheses:
[%; t][Hi = Ps,ry and 3%|Hy = [ly — Ps,ryl3/m. W

Various aspects of the two tests stated in Theorem 1 are
discussed in Sec 4. The performance of the test statistics
in Theorem 1 can be described by the following theorem in
terms of bounds on the performance measures. We resort to
bounds on these measures because of the complicated joint
distributions of dependent variables that would appear in the
exact expressions (see [19] for more details).

Theorem 2. The GLRTs in Theorem I result in probability of
false alarm that is upper bounded using:

PFAgmin{ ZPr(

Further, for signal detection, the probability of detection
Pp = 22{21 Ps, (H1) Pr(x € Sk) can be bounded using:

(PEr)>7)} @

i=1 jz:lPSA (R (Ps T) > 7, Rg(PéjT) - ,7)

and Ps, (7—[1 ) <min { ZPSk ( PS ) > 'y) } 5)

Finally, by defining Ry(Pg, ,Pg, ) = %

lity of classification Pc for active subspace detection can be
lower bounded as:

the probabi-

Pro (i) = max {0, Py, (RY (P4, 1) > 9)+

Ko

> Ps.(Ry(Pg,,Pgs,) >
i=La#k

D- -1} ©

The proof of Theorem 2 follows the steps from our
earlier work [19, Theorem 2]. Another lower bogd on
(6) can be achieved using [18, Lemma 1] as Py, (Hy) >

max {O, Ps, (R;(P§LT) > 7)— ék Q(%(I—QUO)1 /)\j\k)—
3ij
> \I!(no,)\j\k)}, where \j\ = yTngy/cr2 when x €
Jii#k
Sk. This bound depends on 79 and, as shown in Sec. 35, is
relatively loose for the advertised value of ng = 0.251in [18].

4. DISCUSSION

This section provides interpretations of Theorems 1 and 2 in
terms of invariance properties of the tests and the influence of

)

interference and the geometry between subspaces on perfor-
mance measures.

Invariance properties: Examining the test statistics for
both signal and active subspace detection in Theorem 1, one
can see that the test statistics are invariant to the rotations
and translations in 7. Moreover, any rotations of SE do not
change the energy in the observed signal and thus the statis-
tics are invariant to such rotations. Finally, the detector is also
invariant to any scaling of the observed signal.

Effect of geometry between interference-free subspaces:
The performance for signal detection slightly decreases as the
angles between the interference-free subspaces increase. The
intuition for this lies in the fact that, for signal detection, con-
fusing a signal coming from one subspace as a signal from
another subspace is not important as long as a signal of in-
terest is present. When the interference-free subspaces are
far apart, the chance of this confusion is lower and thus the
detection performance decreases slightly.

For active subspace detection, however, the confusion be-
tween interference-free subspaces is crucial and the geometry
does have a strong impact, as given by the following theorem.

Theorem 3. For the active subspace detection test in Theo-
rem 1, the lower bound on the probability of correct classifi-
cation given in Theorem 2 increases with increasing principal
angles between the interference-free subspaces.

One can prove this theorem by following along the lines of
the proof of our earlier paper [19, Theorem 7]. Specifically,
one just needs to examine the princiapl angles between the
interference-free subspaces to complete the proof. Intuitively
speaking, the probability of correct classification depends on
identifyng the true subspace generating the signal of interet.
As the angles between the unaccouted subspaces inrease, the
chance of confusing subspaces with each other decreases and
the correct classification performance improves.

Effect of geometry of the interference subspace: The
effect of interference on performance measures can be seen
through yTPL 7y in the denominator of the proposed test
statistics. Both detection tests in Theorem 1 are directly pro-
portional to arg min,, yTP§kTy, and thus directly proportio-
nal to arg max;, [|[Pg Pry|* since y" Py, 7y =1~ Pr —
y'P7Pg Pry). This means that as the subspaces in the
union move away from the interference subspace, and closer
to the subspace orthogonal to the interference (71), the de-
tection performance of both tests improves.

5. NUMERICAL EXPERIMENTS

In this section we provide numerical experiments conducted
on synthetic data to characterize the performance of the pro-
posed tests and validate the observations made in Sec. 4. To
this end, we run Monte-Carlo experiments as follows: we ge-
nerate 2.5 x 102 instances of three 2-dimensional subspaces
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Fig. 1. ROC curves for signal (top) and active subspace
(bottom) detection along with their respective bounds.
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Fig. 2. Signal detection probability as a function of sum of
principal angles between interference-free subspaces.

in a 6-dimensional space. For each instance, we consider one
subspace to be the interference subspace and the other two
subspaces comprise the union. Then we run 10° trials for
each instance and use the proposed tests to detect signals and
the active subspace, with the threshold computed numerically
for each false alarm rate. The receiver operating characte-
ristic (ROC) curves for signal and active subspace detection
with their respective bounds can be seen in Fig. 1 for a signal
to interference and noise ratio (SINR) of 20dB. It can be seen
from the figure that the bounds derived in this paper are very
close to the actual probabilities of detection for high SINR.
Next, the effect of angles between interference-free sub-
spaces on the probabilities of signal and active subspace de-
tection is highlighted in Fig. 2 and Fig. 3, respectively. Plots
are shown for SINR of 10dB for only one subspace and with
respect to the sum of angles between interference-free subspa-
ces. Similar behavior is observed for the other subspace and
for the individual angles as well. As noted in Sec 4, the pro-
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Fig. 3. Active subspace detection probability as a function of
sum of principal angles between interference-free subspaces.
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Fig. 4. Signal (top) and active subspace (bottom) detection
probabilities as a function of sum of principal angles between
a subspace in the union and the interference subspace.

bability of signal detection slightly decreases while the pro-
bability of correct classification increases with the increasing
principal angles ¢; between interference-free subspaces. Fi-
nally, one can see from Fig. 4 (SINR 10dB) (plots shown for
one subspace and for sum of angles) that as the subspaces in
the union move away from the interference subspace, both the
probabilities of signal and active subspace detection improve
significantly.

6. CONCLUSION

We derived statistical tests for the signal and active subspace
detection problems under the UoS model with interference.
We also obtained performance bounds for the derived tests
and analyzed these bounds in light of the geometry between
different subspaces. Finally, we verified the various observa-
tions made in the paper through Monte-Carlo simulations.
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