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ABSTRACT

Multispectral imaging can be used as a multimodal source to increase prediction accuracy of many machine
learning algorithms by introducing additional spectral bands in data samples. This paper introduces a newly
curated Multispectral Liquid 12-band (MeL12) dataset, consisting of 12 classes: eleven liquids and an “empty
container” class. Multispectral images in this dataset have been captured using the PCO Ultraviolet, Grasshop-
per3 12.3 MP Color USB3 Vision, Mil-Rugged-High Resolution Snapshot Short Wave Infrared 1280JS, FLIR
Medium Wave Infrared A6750sc and FLIR Long Wave Infrared T650sc cameras. Each of the classes initially
results in a 640 × 480 × 12 data cube, where the 12 × 1 vector for each spectral pixel spans the spectral bands
observed using the above-mentioned cameras and seven add-on bandpass optical filters. The usefulness of mul-
tispectral imaging in classification of liquids is demonstrated through the use of a support vector machine on
MeL12 for classification of the 12 classes. The reported results are both encouraging and point to the need for
additional work to improve liquid classification of harmless and dangerous liquids in high-risk environments, such
as airports, concert halls, and political arenas, using multispectral imaging.

Keywords: Liquid classification; machine learning; multispectral imaging; support vector machine

1. INTRODUCTION

In recent years, multimodal data have made a huge impact on the field of machine learning, and they continue
to do so because multimodal data better represent the way humans learn to perform tasks.1,2 Despite the
prominence of multimodality in our lives (e.g., understanding language through audio-visual information), there
are challenges involved in using multimodal data in machine learning due to the difficulties of fusing various
modes of different dimensions and data types.3 One example of multimodal data, which have been successfully
used in different types of classification tasks, is that of multispectral imaging (MSI). In MSI, multimodality
corresponds to different spectral ranges; instead of using image data corresponding to the visual (typically,
RGB) spectral range, a third dimension to the data is added in MSI, resulting in the same image observed over
multiple spectral bands. In particular, whereas one RGB image may capture visible light in the 0.4 − 0.7 µm
wavelength range, a multispectral image spans a broader range of wavelengths from ultraviolet (UV) to infrared
(IR) light, likely adding significantly more information to the data. The additional spectral bands in MSI can
potentially help distinguish objects better, resulting in improved image classification performance compared to
classification using only RGB or gray-scale images. Since MSI provides additional information outside of the
traditional RGB spectral bands, it can be used to improve image classification within medical,4,5 agriculture,6,7

mineralogy, and military applications.8 Specific applications where MSI and hyperspectral imaging (HSI) have
provided advantages for image classification include vegetation and crop detection from remote-sensing devices,9

and tumor detection in fMRI data.10

The application of interest in this paper is classification of liquids using MSI data, with potential usage in
security sensor systems. Specifically, we provide initial evidence in this paper that MSI data can be used for
improved classification of liquids. The results reported in the paper are based on training of a support vector
machine (SVM) on a self-curated Multispectral Liquid 12-band (MeL12) dataset. Our results motivate the use
of MSI in situations where liquids pose security concerns, allowing for improved screening at political events,
concerts, and airports. The Transportation Security Administration (TSA) imposes strict limitations on what



Class # Class Name Total Number of “Spectral” Pixels
1 Coca Cola 53,998
2 Minute Maid Cranberry Apple Raspberry Juice 52,800
3 Empty Container 51,084
4 Seagram’s Ginger Ale 52,800
5 Hydrogen Peroxide 53,067
6 Lemonade Vitamin Water 53,200
7 Milk 50,625
8 Minute Maid Orange Juice 53,198
9 Rubbing Alcohol 52,400
10 Seagram’s Seltzer Water 52,400
11 Soy Milk 52,668
12 Water (tap) 52,668

Table 1. Summary of MeL12 dataset in terms of the 12 liquid classes

liquids are allowed in carry-on luggage, as well as 3.4 oz size restrictions on the allowed liquids. With the accuracy
achieved in this work, the TSA may no longer have to maintain the severity of these restrictions. Liquids could
be automatically classified in clear bottles, or at the very least categorized into benign versus hazardous groups
for improved travel security and flyer experience. Additional data curation of dangerous liquids would strengthen
these results also.

We conclude this introduction by noting that sparse representations and deep learning models are now rou-
tinely used in machine learning for state-of-the-art object recognition.11 However, these approaches typically
require large volumes of training data to avoid overfitting.12 In contrast, SVMs typically exhibit good perfor-
mance in the presence of limited training data.13 Because of this reason, and since the purpose of this paper is
mainly to provide a proof-of-concept for the use of MSI in image classification, we limit ourselves to SVM-based
classification of liquids using MeL12 throughout the rest of this paper.

2. RESEARCH METHODOLOGY

2.1 Acquisition of Dataset

The Multispectral Liquid 12-band (MeL12) dataset comprises 12 classes of liquids, which are listed in Table 1.
In addition to differences in liquid properties such as density and viscosity, some of the classes also vary from
each other in terms of color, opaqueness, and carbonation. Note, however, that there are several clear liquids and
cream/white liquids included in MeL12, which are meant to demonstrate the usefulness of MSI in differentiating
liquids of same or similar color. All images in MeL12 dataset were taken with an identical set up: a background
poster was placed with alignment boxes in each corner (similar in spirit to a QR code) to ensure uniform viewing
frames and straightforward post-acquisition alignment procedures. The same Poland Spring 16 oz water bottle
was used for holding each liquid class, which was placed on top of a small stand to create a better imaging
environment. Markers on the cap of the bottle were used to help align the bottle between the use of cameras
and the switching of liquids. Of the 12 spectral bands comprising each length-12 pixel in MeL12, five bands
were observed directly using five different cameras, while the remaining seven bands were observed through
the use of seven bandpass filters added to the cameras to further discretize the spectral ranges of individual
cameras. Detailed specifications of these five cameras and seven bandpass filters are provided in Table 2. Note
that the filter model listed in Table 2 also provides the median wavelength and the bandwidth of the filter (in
nanometers); e.g., the filter FL730-10 has a median wavelength of 730 nm and a bandwidth of 10 nm, therefore
approximately spanning the spectral wavelength of 0.725 − 0.735 µm. It is also worth mentioning here that
the 12 spectral bands being captured in MeL12 are not strictly disjoint; in particular, the spectral bands being
directly observed by the short wave infrared (SWIR) and medium wave infrared (MWIR) cameras overlap with
the spectral bands captured by some of the filters. The effects of these overlaps and discretization of the spectral
bands on classification accuracy are explored later in the paper. We refer the reader to Fig. 1 for a graphical
representation of how different cameras and filters capture the 12 bands within MeL12 dataset.



Camera/Filter Model and Lens Spectral Range (Wavelength)

UV Sensitive Camera
PCO pco.ultraviolet

Edmund Optics Lens 57-542 f/2.8 - f/16, 25mm
0.2 − 0.7 µm

Visible Light (VIS) Reference Camera
Point Grey Research Grasshopper3

GS3-U3-123S6C-C
Schneider Optics Xenon Topaz f/2.0, 38mm

0.4 − 0.7 µm

High-Resolution Short Wave Infrared
(SWIR) Camera

UTC Aerospace GA1280JS
UTC Aerospace Solo 50mm

0.9 − 1.7 µm

Bandpass Filter Thorlabs FL730-10 0.725 − 0.735 µm
Bandpass Filter Thorlabs FBH800-10 0.795 − 0.805 µm
Bandpass Filter Thorlabs FBH850-10 0.845 − 0.855 µm
Bandpass Filter Thorlabs FL900-10 0.895 − 0.905 µm
Bandpass Filter Thorlabs FLH1030-10 1.025 − 1.035 µm
Bandpass Filter Thorlabs FBH1200-10 1.195 − 1.205 µm
Bandpass Filter Thorlabs FBH1550-12 1.544 − 1.556 µm

Medium Wave Infrared
(MWIR) Sensitive Camera

FLIR A6750sc f/2.5 Lens, 50mm 1 − 5 µm

Long Wave Infrared
(LWIR) Sensitive Camera

FLIR T650sc, f/1.0 Integrated Lens, 18mm 7.5 − 13 µm

Table 2. Technical specification of the equipment used to acquire MeL12 dataset
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Figure 1. The MeL12 dataset is captured using five cameras (UV, VIS, SWIR, MWIR, and LWIR) and seven bandpass
filters added to some of these cameras. The relationship between the cameras, filters, and the spectral bands captured in
MeL12 is being summarized in this figure.

2.2 Post Processing of Dataset

Due to differences in various specifications of the five cameras, there were several variations among the starting
set of captured images. Therefore, a number of post-processing steps were carried out to bring uniformity across
different images so that they could be combined into a single multispectral data cube for each liquid class. First,
any RGB images were converted to grayscale images; in addition, bit depth of all images was adjusted to 8-bit
so that all images had pixel values in the 0−255 range. Next, while different cameras took images with varying
pixel resolutions, all images were downsampled to the lowest resolution (corresponding to the LWIR camera) of
640 × 480 pixels. Further, since the five cameras resulted in different fields of view due to factors such as focal
lengths of the lenses, this severely affected the viewing frame for each image. This issue was partly addressed by
physically adjusting the imaging environment between uses of different cameras. Despite this, however, focusing
on the bottle during acquisition caused the cameras to occasionally alter their fields of view, which disrupted the



alignment between images. We addressed this issue by registering the images of each class in different spectral
bands in reference to the VIS image of that class (after correcting for bit depth and pixel resolution).

The aforementioned post-processing steps gave rise to a three-dimensional data “cube” of dimension 640 ×
480 × 12 for each liquid class, resulting in a total of 12 data cubes. Afterward, we cropped these data cubes to
retain only spectral pixels corresponding to the bottle, thereby excluding the background from MeL12. We then
labeled these pixels from 1−12 according to their corresponding class and finally “vectorized” the 12-dimensional
pixels into a 630, 908×12 data cube for the entire dataset. In other words, a single sample in the (post-processed)
MeL12 dataset is a 12-dimensional pixel, spanning the 12 spectral bands, and its corresponding label.

2.3 Classifier Training

In order to evaluate the usefulness of multispectral data in classifying liquids within containers, we trained
one-againt-one linear SVM classifiers on MeL12 dataset. The data was split into training and test sets using
randomized cross validation, with the reported results averaged over five trials and corresponding to 90% and
10% split among training set and test set, respectively. Before training, data in MeL12 was shifted and scaled
to have zero mean and unit variance, respectively. The final decision for liquid classification was made with a
majority vote among the classifiers.

3. NUMERICAL RESULTS

(a) (b)

Figure 2. Classification accuracy of linear binary SVMs on all 12 bands of MeL12 with a final decision rule of majority
voting. (a) Classification accuracy averaged over the 12 classes as a function of different trials. (b) Classification accuracy
of individual liquid classes for the five trials.

We first focus on the case of liquid classification using all 12 bands of MeL12. The classification accuracy
of the trained SVMs in this case is shown in Fig. 2, with Fig. 2(a) showing the classification accuracy averaged
over all 12 classes as a function of different trials and Fig. 2(b) displaying the classification accuracy for each
individual class for each of the randomized trials. It can be seen from Fig. 2(a) that even classifiers as simple as
linear SVMs lead to average classification accuracy of around 80.8%. We consider this classification accuracy to
be encouraging for a collection of 12 liquids that have significant overlaps in physical properties such as color.
We also see from Fig. 2(b) that the classification accuracy of most classes varied from 70% to 90%. However,
cranberry juice achieved accuracy in excess of 90%, while soy milk achieved accuracy closer to 60%. In order to
better understand the low classification accuracy of soy milk, we also provide a confusion matrix representation
of per-class classification accuracy in graphical and numerical forms in Fig. 3 and Table 3, respectively; here, the
rows correspond to the true class labels and the columns represent the predicted labels. It can be seen from the
confusion matrix that soy milk is most frequently misclassified as orange juice, milk, Coca Cola, and cranberry
juice. Three other significant cases of misclassification occurred between hydrogen peroxide and rubbing alcohol,
ginger ale and seltzer, and vitamin water and orange juice. These errors suggest the need for further investigation
of more refined machine learning algorithms for liquid classification using MeL12.



Figure 3. A graphical representation of the normalized confusion matrix for the 12 classes in MeL12 dataset, averaged
over five randomized trials. The abbreviations representing different classes are: CC = Coca Cola, CJ = Cranberry Juice,
E = Empty Container, GA = Ginger Ale, HP = Hydrogen Peroxide, VW = Vitamin Water, M = Milk, OJ = Orange
Juice, RA = Rubbing Alcohol, S = Seltzer, SM = Soymilk, and H20 = Water.

CC CJ E GA HP VM M OJ RA S SM H20

CC 86.19 0 .06 2.23 .24 2.11 1.5 4.38 .12 1.06 2.12 0
CJ 0 95.86 .07 0 0 0 .64 .7 0 .1 .25 2.38
E 0 0 96.49 0 0 0 .52 0 0 0 .06 2.93

GA .41 0 0 75.61 1.2 3.47 .1 4.12 4.63 9.43 .3 .72
HP .02 0 0 .43 74.39 5.97 3.92 .32 13.56 1.09 .28 .01
VM .03 0 0 2.99 1.5 82.03 .02 8.91 .71 2.48 .63 .7
M .18 1.3 .37 .05 3.68 .06 75.53 .05 6.74 .22 10.41 1.42
OJ 3.32 6.79 .17 .7 3.92 7.47 .04 72.4 .7 1.05 .78 2.66
RA 0 .01 0 1.62 6.26 .92 1.58 .09 87.85 .35 1.06 .25
S 0 .08 .07 15.58 .45 6.23 .13 .34 .62 76.01 .25 .24

SM 6.93 4.64 .27 .42 2.3 3.33 7.11 8.85 2.09 .76 61.09 2.21
H20 0 .6 1.67 .49 0 .42 2.88 2.57 .14 .4 3.3 87.5

Table 3. A numerical representation (in %) of the confusion matrix for the 12 classes in MeL12 dataset, averaged over
five randomized trials.

In addition to performing classification using all 12 bands of MeL12 dataset, we also investigated the role
of the number and spectral ranges of bands in accuracy of liquid classification. We noticed in our experiments
that, in general, the classification accuracy decreased with a decrease in the number of spectral bands; however,
the drop in accuracy greatly depended on the bands that were removed from the original MeL12 dataset. We
report these results in Table 4, which lists the average accuracy as a function of the number of bands as well as
the best and worst classification accuracy as different spectral ranges are removed from the dataset. It can be
seen from these results that there is a significant variation in classification accuracy as a function of the spectral
ranges of different bands. In particular, when using 11, 10, 9, or 8 bands out of the total 12 for classification,
not only is the average classification accuracy lower, but also there is a variation of 3 − 20% approximately in
accuracy as different bands are removed. In addition, while not listed in Table 4, accuracy of a third of the
classes (vitamin water, milk, orange juice, and seltzer water) reduced to between 40% and 50% with the removal
of as few as three bands (i.e., using 9 bands for classification). When using 11 bands for classification, we noted
that removal of the UV band impacted the classification accuracy the most, resulting in final accuracy figure
of 75.3%. When using five bands for classification, we limited ourselves to the spectral ranges natively covered
by the five cameras used in our study (i.e., without the add-on bandpass filters). In this case, we observed



Number of Bands Accuracy Results (averaged over the 12 classes)
12 bands Average over 5 runs: 80.87%
11 bands Average over all possible uses of 11 bands: 78.43%

Best: 80.62% (without FBH850-10 filter)
Worst: 75.3% (without UV spectral band)

10 bands Average across different spectral ranges: 73.5%
Best: 79.49% (without FL730-10 and FBH800-10 filters)

Worst: 65.24% (without Visible Light and MWIR spectral bands)
9 bands Average across different spectral ranges: 65.6%

Best: 78.70% (without FL730-10, FBH800-10, and FBH850-10 filter)
Worst: 55.5% (without UV, Visible Light, and MWIR spectral bands)

8 bands Average across different spectral ranges: 64.77%
Best: 77.13% (without FL730-10, FBH800-10, FBH850-10, & FL900-10 filters)

Worst: 55.73% (without UV, SWIR, MWIR & LWIR spectral bands)
7 bands Average using only filter bands: 41.42%
6 bands Average across different spectral ranges: 58.87%

Best: 60.26% (using the 2nd half of spectral bands)
Worst: 57.48% (using the 1st half of spectral bands)

5 bands Average using bands without filters: 67.15%
1 band Average over 5 runs using only visible light: 24.11%

Table 4. Average, best, and worst classification accuracy for the 12 liquid classes as a function of the number and spectral
ranges of different bands retained within the MeL12 dataset.

average classification accuracy of 67.15%, which is a drop of more than 10% from 12 bands. This points to the
usefulness of discretization of the spectral ranges spanned by the five cameras using bandpass filters. Finally, we
also performed classification using only the visible spectral band; the average classification accuracy in this case
dropped to 24.11%, with a majority of the classes achieving an accuracy of 10% or lower. This again points to
the usefulness of multispectral imaging in classification of liquids.

We conclude this section with a final set of observations. First, we noticed that the “water” class needs the
MWIR band to maintain classification accuracy over 80%; in the absence of this band, the accuracy of this class
dropped to around 30%. This is not surprising since the MWIR spectral range of 1 − 5 µm includes the water
absorption bands. In addition, classification accuracy of the “ginger ale” class dropped to the 50% range without
the UV and LWIR bands, while it dropped to the high 40% range in the absence of the UV and MWIR bands.
We also noticed that the “seltzer” and “soymilk” classes are the most affected by removal of any band from the
dataset. Further, we noticed that classification accuracy of the “vitamin water” class dropped down to the 50%
range or less with 10 bands or lower, with most misclassification errors due to it being confused with orange
juice. In contrast, however, the “orange juice” class maintained its classification accuracy in the 80% range with
10 bands. Finally, when using six bands, accuracy of the “rubbing alcohol” class reduced significantly in the
absence of the second half of the spectral bands, with the first six bands resulting in 24% accuracy and the
second six bands giving rise to 82% accuracy.

4. CONCLUSION

In this paper, we focused on the problem of liquid classification using multispectral imaging (MSI). This involved
curating a 12-band dataset, termed MeL12, comprising 12 classes of liquids using a collection of five cameras
and seven add-on bandpass filters. In order to evaluate the usefulness of MSI in liquid classification, we trained
binary linear SVMs on the MeL12 dataset and demonstrated an average classification accuracy of around 80.5%,
which is significantly higher than that achievable using RGB images alone. We also investigated the role of the
number and spectral ranges of different bands on the final classification accuracy, and highlighted the usefulness
of discretization of spectral bands in high-bandwidth cameras using bandpass filters. The outcomes of this study
suggest that as few as 12 spectral bands can be used to significantly enhance the accuracy of classification tasks
involving multispectral data. It stands to reason that one should be able to improve further on these results
using additional spectral bands and/or larger training datasets.
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