Through-The-Wall Radar Imaging Using a
Distributed Quasi-Newton Method

Haroon Raja*, Waheed U. Bajwa*, and Fauzia Ahmad®
*Department of Electrical and Computer Engineering, Rutgers University—New Brunswick, Piscataway, NJ
TDepartment of Electrical and Computer Engineering, Temple University, Philadelphia, PA
E-mail:*{haroon.raja,waheed.bajwa}@rutgers.edu, tfauzia. ahmad@temple.edu

Abstract—This paper considers a distributed network of
through-the-wall imaging radars and provides a solution for
accurate indoor scene reconstruction in the presence of multipath
propagation. A sparsity-based method is proposed for eliminating
ghost targets under imperfect knowledge of interior wall loca-
tions. Instead of aggregating and processing the observations at
a central fusion station, joint scene reconstruction and estima-
tion of interior wall locations is carried out in a distributed
manner across the network. Using alternating minimization
approach, the sparse scene is reconstructed using the recently
proposed MDOMP algorithm, while the wall location estimates
are obtained with a distributed quasi-Newton method (D-QN)
proposed in this paper. The efficacy of the proposed approach is
demonstrated using numerical simulation.

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) technology has im-
proved significantly over the last decade. However, effectively
dealing with the uncertainty caused by high amount of mul-
tipath propagation remains a challenge [1], [2]. A number of
approaches, both under conventional and sparse reconstruction
frameworks, have been recently proposed in the literature to
deal with this challenge [3]-[10]. However, these methods
require prior knowledge of the exact interior layout of the
building being imaged to eliminate ghost targets (accumulation
of unwanted energy at incorrect target locations) and provide
enhanced image quality. In practice, such information may not
be perfectly available in advance, resulting in ghost targets and
poor image quality.

The problem of TWRI with uncertainties in the room layout
information has been addressed by Leigsnering et al. [11]. In
[11], this problem is posed as a parametric dictionary learning
problem, where the dictionary to be learned is parametrized
by unknown wall locations w. Similar to standard dictionary
learning [12], [13], the authors in [11] pose parametric dic-
tionary learning as a nonconvex optimization problem, which
is solved using alternating minimization approach involving a
dictionary update step and a sparse recovery step (coefficient
update). Although the overall objective function considered in
traditional dictionary learning is nonconvex, it is convex for
each individual step, i.e., when one considers dictionary and
coefficient variables separately. Because of this, one can use
tools from convex optimization to solve these individual steps.
In contrast, parametric dictionary learning in TWRI results in
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Fig. 1. Distributed TWRI setup where data communication only happens
between radar units, shown by dotted red lines. In contrast, [11] requires
accumulation of data at a fusion center using links shown by solid blue lines.

a dictionary update step that is nonconvex and hence needs
special attention. One main contribution of [11] is to show that
using particle swarm optimization (PSO) and a quasi-Newton
method one can recover the dictionary parameter w.

The parametric dictionary learning method proposed in [11]
requires data measurements from each individual radar unit
to be collected at a centralized location for processing (see
Fig. 1). In practical settings, where we have a large-scale
network of radar units interrogating a scene, such as a large
building, it is not feasible to accumulate data at one centralized
location. Furthermore, distributed solutions are more robust to
a variety of issues, such as bad communication links, node
failures, etc., which can occur in adverse settings where we
need to deploy radar units, e.g., military or rescue missions.
As such a distributed approach may be preferred over a
centralized solution [11] in practical settings. Note that both
PSO and quasi-Newton method have been shown to have good
performance for solving the parametric dictionary learning
problem in TWRI [11]. We proposed a distributed variant
of PSO method in our previous work [14]. In this paper,
we propose a quasi-Newton based distributed solution for
parametric dictionary learning for TWRI. Our motivation for
using quasi-Newton method is that heuristic algorithms like
PSO lack convergence guarantees in comparison to gradient-
based methods, such as gradient descent, quasi-Newton, etc.

In terms of prior work, Eisen et al. [15] have proposed a
distributed version of quasi-Newton method for convex opti-
mization problems. That solution is not directly applicable to
the parametric dictionary problem here because our objective
function is nonconvex and can have gradient with very large
value of the Lipschitz continuity constant. Because of these



reasons, we need to design a distributed variant of quasi-
Newton method that takes into account the specific properties
of TWRI objective function. Specifically, since the function
gradient can have large Lipschitz continuity constant, we
cannot use a gradient-based stopping rule. Instead we propose
a reconstruction error-based stopping rule that is provided
in Section IV-C. Secondly, we cannot use a constant or
decreasing step size, which are common choices in distributed
optimization literature [16], [17]; rather, we need to perform
exact line search in order for our method to converge.

In the following, we first formally state the problem in
Section II. We provide an overview of methods that will be
used for solving distributed TWRI problem in Section III.
In Section IV, we describe in detail the proposed approach,
while supporting numerical results are provided in Section V.
Finally, conclusions are drawn in Section VI.

II. PROBLEM FORMULATION
A. System Model

Consider S radar units, distributed at known positions
either along the front wall or surrounding the building being
imaged. Each radar unit is equipped with M transmitters
and N receivers, where both M and N are assumed to be
small. An ‘across-units’ mode of operation is considered,
wherein transmission-reception occurs across multiple radar
units. While operating in this mode, each transmitted pulse
is received simultaneously by all receivers from all units. It
is assumed that the individual radar units can transmit and
receive without interference from others and each radar can
associate the received signal with a specific transmitter.

Let s1 and s2 be the indices of the transmitting and receiving
radar units, respectively, where s; = 0,1,...,5 — 1, and
sg = 0,1,...,5 — 1. The scene of interest is divided into
P grid points, which defines the target space. Let 0" be
the complex reflectivity associated with grid point p corre-
sponding to the transmitting unit s; and receiving unit So,
with ;%2 = ( representing the absence of a target. Neglect-
ing multipath contributions, the baseband signal recorded at
receiver n = 0,1,..., N — 1 of the ss-th radar unit, with
transmitter m = 0,1, ..., M —1 of the s;-th radar unit active,
can be expressed as,
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Here, s(t) is the transmitted wideband pulse in complex
baseband, f. is the carrier frequency, 7, is the pulse repetition
interval, and 7,172 is the propagation delay from transmitter
m of unit s; to the grid point p and back to the receiver
n of unit so. We sample z51°2(¢) at or above the Nyquist
rate to obtain a signal vector z;'°2 of length Np. Stacking
signal vectors corresponding to the M transmitters and N
receivers, we obtain an M N N X 1 measurement vector Zs, s, ,
which, using (1), can be expressed as, zs,s, = \Ifg?lzag?iz,
where o:g??gz = [o5+°2, 072, ..., 07%2]T with the superscript
‘(0)’ indicating direct path propagatlon, ‘.]T denotes matrix

transpose, and, for i = 0,...,Np — 1, the elements of the
dictionary matrix \115152 € CMNNTXP are given by

[lIl(lsQ]lJrnNTerNTN,P - S( mT - SlMT ;:rfﬁ)x
exp (=j2m fe(ti — (mT5 + s1 MT, + 7517%))).
(2)

Next, we assume that multipath for each target is generated
due to secondary reflections at one or more interior walls.
Parameterizing the interior wall locations as w € R? and
employing geometric optics to model R — 1 additive multipath
contributions in the received signal, we obtain the signal model
under multipath propagation for the s;-th transmitting unit and
so-th receiving unit as

Z5182 = W(Q?QQUE?)QQ + Z \Ilsl ED) el)eza (3)

where \1/21)52 is defined according to (2) with 7,
by the propagation delay T;},fﬁ’(r) between transmitter m, grid
point p, and receiver n along the r-th multipath [7]. Note that
the multipath time delays Tﬁ%ﬁf,’( Moy = 1,...,R—1, depend
on the wall locations and, therefore, the dictionary matrices
(w1 E1 are all functions of w. Defining ¥, ,, (W) =
[\I;g(l))sg o \I,gﬁ;l)(w)] 08 (R—1)" T
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and assuming additive noise n , we can rewrite
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B. Centralized Problem Formulation

In the case of centralized processing, the S? measurement
vectors, {Zs;s,,51 = 0,...,5 — 1,50 = L8 =1},
corresponding to the ‘across-units’ operation of the S radar
units, are communicated to a fusion center where the scene
reconstruction is performed [11]. Specifically, the S? mea-
surements can be collectively represented as

7z =A(w)& + 1, (5)
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A(w) = blkdiag{®o(W),..., ¥g_15_1(w)}, (6)

and blkdiag{.} denotes a block-diagonal matrix.

Given the measurements z in (5), the aim is to determine the
wall locations w as well as reconstruct the scene reflectivity
vector &. Since the same physical scene is observed via
all paths by the various radar units, the scene reflectivity
vector exhibits a group sparse structure [11]. As such, for
a regularization parameter A, the scene recovery and wall
location estimation can be posed as the following optimization
problem:
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ag?)SQ. The optimization problem in (7) is nonconvex as

the matrix A(w) has a nonlinear dependence on the wall
locations. An iterative approach proposed in [11] solves (7)
by alternating between optimization over & and w.

C. Distributed Problem Formulation

The focus of this work is on wall location estimation and
scene reconstruction, i.e., solving (7), in a distributed manner
across the S radar units, with each radar unit having access
to only a subset of the measurements z. Substituting A(w),
z, and & from (6) in (7), we can write the problem as
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Using alternating minimization framework, we need to solve
this optimization problem in a distributed manner. For dis-
tributed optimization over &, we use the Modified Distributed
OMP (MDOMP) method proposed in [18]. Then for a fixed
&, the objective function is just the first term in (8). That is,

S—1
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where,

S—1
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is the objective function at radar unit so. In this paper,
we develop a distributed quasi-Newton method to solve this
optimization problem.

III. TECHNICAL BACKGROUND
A. Quasi-Newton Method for Optimization

Gradient-based descent direction methods are a popular
choice for solving optimization problems [19]. First-order
methods like gradient descent are computationally efficient
but can result in slow convergence for some problems. To
overcome this issue we can use second-order methods such as
Newton’s method, which for step size v;, is given as follows:

Wip1 =w, — 7 V2 f(wy) TV f(wy).

However, computing the Hessian matrix and its inverse for
Newton’s method can be computationally prohibitive in prac-
tice for high-dimensional problems. Quasi-Newton method
resolves this issue by using only gradient information to
approximate the Hessian matrix. For an approximation V; of
inverse of the Hessian matrix, i.e., V; ~ V2f(w;)~!, we can
rewrite (10) as:

(10)

Y

A number of methods exist in the literature to compute matrix
Vi, with BFGS [19, Chap. 8] being one of the most widely
used. Using vectors

Wit1 = W — ’YtVtvf(Wt)-

Pt i= W1 — Wy and q: = Vf(wt+1) — Vf(wt),

BFGS method computes V as follows:

Vi = Vit <1 N q?;ftqt) ptTptT - ptthVtT+thtptT'
P:d: /Pyt Pi At
For the distributed TWRI problem, the objective function is
distributed across radar units; hence, we cannot use centralized
quasi-Newton method. Instead, we will employ consensus av-
eraging [20], [21] to develop a distributed variant of the quasi-
Newton method. In the following, we overview consensus
averaging before presenting the proposed distributed quasi-

Newton method.

B. Consensus Averaging

For some scalar values {x; f;ol that are distributed across S
radar units, consensus averaging provides an iterative method
for computing the average (1/5) Zfz_ol x;. Let us first rep-
resent the connectivity among the distributed radar units by
a graph G = (N, &), where N = {0,1,...,5 — 1} denotes
the set of nodes (radar units in the underlying application) in
a network and & are the edges defining the interconnection
among the nodes, i.e., (i,4) € £ and (¢,j) € £ when node 4
can communicate with node j. From graph G, we generate a
doubly stochastic matrix A such that its (¢, j)-th entry, A; ;,
satisfies the condition A; ; = 0, V(¢,j) ¢ &£. Then, starting
from x(®©) = [xg,...,25 1], the update at iteration t. of
consensus averaging is given by

x(t) = Ax(te=b), (12)

Previous work on consensus averaging [20], [21] shows that
if A is doubly stochastic then as t. — oo, each element of
x(t) approaches the mean of the values in x(©).

C. MDOMP for Distributed Sparse Scene Recovery

MDOMP has been proposed in [18] for sparse scene re-
covery in the case of a distributed network of TWRI units.
MDOMP is a distributed version of the OMP algorithm [22].
At each radar unit, a communication step is performed in
each iteration of MDOMP, wherein each radar unit computes
a correlation vector using the local measurements only and
shares it with all other radar units. Each unit then adds all
correlation vectors, selects the index corresponding to the
largest element in the correlation vector sum, and updates its
set of active indices. The remaining part of the algorithm is
similar to OMP and is omitted here for the sake of brevity.

IV. PROPOSED APPROACH

A. Distributed Quasi-Newton Method for TWRI

Lack of access to the complete objective function in dis-
tributed settings does not permit quasi-Newton update as given
in (11). Instead, we prospose that starting from same initial
value of the minimizer wi,; and Hessian approximate Vi at
each radar unit, we compute the update in (11) locally at each
radar unit as follows:

Wiso,t+1 = Wyt — TSQ,tV527tvf52 (Wsz,t)- (13)



Algorithm 1: Distributed Quasi-Newton Method (D-QN).

Input: Local data {zog,...,25-15-1}, &; computed
using MDOMP, constraint set WV, and a doubly
stochastic matrix A.

Initialize: Randomly pick a starting wall position
Ws,.0 < Winie and a positive-definite matrix
V,,.0 < Vini at each radar unit sz, and ¢ < 0.
1. while stopping rule do

2: dSZ,t — —VS2’tVf({K\752’t) R
3. Vet < argmin, ZSQ fsz (vAst + ’deQ,t)
4 Wey 41 ¢ Weyt + Vs tdsy
S: if W527t+1 € W then
6: Wy b1 < Wy t41
7. else
8: (Projection onto constraint set)
9: E’(WQQ,HO = argmingew |[Wo,t41 — ¥2
10: de, 1 < P(Wo, 141) — Weyt -
11: ’752,t — arg 1’nin’7<1 ZSZAfSQ (V/‘\/sz,t + ’ydsQ,t)
12 Wopthl & Wyt + Yoy tdsy t
13:  end if
14:  (Consensus Averaging)
15:  Initialize ¢, < 0 and W, ¢ < W, 141
16:  while stopping rule do
17: Wy, tetl S ZjEst AS27jW52,tc
18: te<—t.+1
19:  end while R
20:  (Update D, 1, Qs and Vg, 4):
21: ﬁsz,t — V/\Vs/g,tJrl - V/‘\’sz,t N
22: a52,t — vaQ (‘/A\[Sg,t"rl) - stz (wsz,t)
~ ~ ~T 7 P~ = =T
23 Vg1 Ve + 1+ qﬁ%g:%:::w gi:gzi
_ﬁszﬂta?g,tvszvt"’vszvta-ﬁzﬂtf’zﬂz,t,
BT 1Qsp,t
24: t+t+1

25: end while
Return: w, ;

Note that since we started from same initial values at each
radar unit, we can express the global update as:

S—1
Wil = g Wy t+1

82=0
S—1 1

= Z (EWSQ,t - 7—82,{:V5'27tvf52 (Wsz,t))' (14)
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Now we can use consensus averaging to compute this summa-
tion. Note that we will have numerical errors in the summation
due to finite number of consensus iterations. This leads to
biased estimates of q; and p;, as shown in Steps 21-22 of
Algorithm 1. These biases in q; and p; will result in an error
in the estimate of V; (Step 23 of Algorithm 1). Defining €.,
as the error in the estimate of V; then we can re-write (14)
as follows:
S-1 4
Wil = Z (gwsz,t - TsQ,tV‘sQ,tstQ (WSQ,t)>

S2 =0

1
= (EWSQ,t - TSQ,t(Vt + EC,SZ)VfSQ (WSQ,t))

s2=0

S-1 4

— Z (EWSQ,t - TSQ,tVtVfSQ(WSQ’tD +e. (15)
s2=0

Thus, if we perform enough consensus iterations such that €,
stays sufficiently small then we can acheive similar results as
the centralized quasi-Newton method.

B. Projection onto Constraint Set

After consensus averaging, we have estimate of wall lo-
cations W,, ;11 at each radar unit sp. Assuming we know
initially the wall locations with an accuracy of +0.5m, if w* is
the initial given wall location then we constrain our estimates
to be in an interval [w* — 0.5, w* + 0.5]. We formally define
constraint set as follows:

Wi={weR’:w"—05<w<w'+05}. (16)

In order to project our estimates onto these box constraints,
we use the method proposed in [23]. In Algorithm 1, each
radar unit has new estimate of wall locations after Step 4.
Next, we test whether the new estimate is within the costraint
set defined in (16). If wall location estimates are outside the
constraint set VY then we use the method in [23]. The first step
involves projection of W, ; onto set V¥ as shown in Step 9 of
Algorithm 1, while the second step finds a descent direction
within the constraint set that is the difference between the
projection we obtained and the previous iterate as shown in
Step 10 of Algorithm 1. Finally, we compute the step size in
the descent direction given as Step 11 of Algorithm 1.

C. Stopping Criterion

Empirical evidence suggests that the function gradient in our
problem changes very rapidly, especially in the neighborhood
of stationary points. Due to this, using gradient information
as a stopping criterion is not possible. On the other hand,
from Fig. 2, we can see that the TWRI objective function
has very small value within a small neighborhood of the
global minimum as compared to anywhere else within the
constraint set. Using this insight, we use reconstruction error
as a stopping criterion.

V. SIMULATION RESULTS

We consider a square room with four walls, each of length
2 m. We deploy S = 5 radar units, uniformly distributed over
an extent of 2 m in crossrange, at a standoff distance of 1.5 m
from the front wall. Each radar unit is equipped with M =1
transmitter and N = 3 receivers. We assume that at any given
time instant, only one radar unit transmits and all units receive
the reflections. For each transmission, we use a Gaussian pulse
with 50% relative bandwidth, modulating a sinusoid of carrier
frequency f. = 2 GHz. The received signal at each radar unit
is sampled at the Nyquist rate and Ny = 150 samples are
collected over the interval of interest. In addition to the direct
signal, we assume two multipath contributions arising from
the side walls, i.e., R = 3. Multipath returns are assumed to
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Fig. 2. Normalized objective function (9) when varying wall locations over
an interval of +0.4 in each dimension around true wall locations.

TABLE 1
PERFORMANCE COMPARISON OF DISTRIBUTED GRADIENT DESCENT
(D-GD) AND DISTRIBUTED QUASI-NEWTON METHOD (D-QN).

Optimization Estimates within | Estimates within | Average itera-
Method +0.1 accuracy +0.01 accuracy | tion count
D-GD 94.8% 86.8% 136

D-QN 96.8% 92.6% 110.3

be attenuated by 6 dB as compared to the direct path signal.
Further, the received signals are assumed to be corrupted by
complex circular Gaussian noise, resulting in a signal-to-noise
ratio (SNR) of 20 dB.

The region of interest covers the room interior and is divided
into 32 x 32 pixels in crossrange and downrange. Four point
targets are assumed to be located within the room at distinct
locations. In the simulation, starting from a random point in
interval w* £ 0.5, our goal is to estimate the correct wall
positions and reconstruct the scene. For comparison with other
gradient methods, we also implemented a distributed variant
of gradient descent method (D-GD) tailored for the TWRI
problem. Instead of using the descent direction given in Step 2
of Algorithm 1, we employ gradient as a descent direction for
D-GD. Rest of the algorithm works same as Algorithm 1.
The results comparing both these methods are provided in
Table I. In the simulation, we are only assuming unkonwn
side wall locations and we assume that the true wall location
is [-1 1]T. First and second columns of Table I provide
the percentage of times a method estimates the wall location
within £0.1 and £0.01 of the true value, respectively. We can
see that D-QN method estimates wall locations with higher
accuracy as compared to the D-GD. Our results also show that
on average D-QN method requires less number of iterations
as compared to the D-GD as well.

VI. CONCLUSION

In this paper, we have proposed a distributed variant of the
quasi-Newton method for wall position estimation in TWRI
problem. Due to the properties of the objective function, we
propose using exact line search for step-size computation and
we provide a stopping criterion specifically for the TWRI
problem. Finally, simulation results are provided to show the
effectiveness of the proposed solution.
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