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Abstract—There has been a considerable interest in quantify-
ing the influence that one node exerts on another in a social
network. Using directed information, we study the problem
for a simple, two-node network that models two users in a
Twitter network in which one user (Alice) influences the other
user (Bob) through her tweets. Under this setup, we relate the
problem of direction of influence to the calculation of directed
information from the input to the output in a bufferless single-
server timing queue. Based on this relationship, we compute
the directed information rate from Alice to Bob and, under
simplifying assumptions, relate that rate to the distributions of
Alice’s tweet timings and Bob’s action timings.

I. INTRODUCTION

In recent years, there has been a growing interest in charac-
terizing influence graphs in which a directed edge represents
the influence that a node (actor) exerts on another [1]–[4].
Influence graphs are inferred from network interactions data,
and are different from friendship graphs in which people are
explicitly tied together as followers or friends [5]. Influence
graphs have been used in the context of social networks
such as Facebook and Twitter which are characterized by
interactions among its actors (individuals, organizations, etc.),
to determine the influential users [3], [4]. They also have ap-
plications outside the context of social networks. For example,
[1] has used this approach to identify the underlying causal
relationship graph in neural spike train recordings. Moreover,
in mobile social network applications, influence graphs have
been applied to routing packets among mobile users in ad hoc
networks [6].

The diffusion of news items, tweets, and other types of
information can be modeled as a cascading process over edges
of an influence graph, analogous to a contagion that spreads
an infection [7]. The time instances when nodes become
infected by the contagion (e.g., tweet generation times, blog
updating times, etc.) is a type of interaction data often used
for inferring influence graphs [3], [4], [8]. The infection times
create causality constraints such that one infected node can be
under the influence of another only if the influential node was
infected earlier in time. Furthermore, the influence is modeled
as stronger when the difference in their infection times is
smaller [3].

A model for causal influence was introduced in [9] as
Granger causality where node A is under the influence of node
B if past observation of B will reduce the mean square error
of linear estimation of future behavior of A given past history
of A [1]. Information-theoretic measures such as directed

information [10], [11] and transfer entropy [12], although not
addressing influence directly, generalize the Granger concept
to causality for nonlinear models.

In this paper, we are interested in a mathematical under-
standing of the problem of inference of influence graphs in
social networks. In contrast to earlier works, however, we take
a bottom-up approach to the problem. Specifically, we focus
on a simple, two-node social network that can be interpreted
as a model for interactions on a Twitter network. We assume
that the influence graph in this network corresponds to a single
directed edge from one node, say, Alice, to the other node, say,
Bob. In the context of Twitter, this setup corresponds to Alice
tweeting at certain points in time and Bob reacting to some of
these tweets and tweeting in return. In order to further simplify
the analysis, we assume that all tweets from Alice and Bob
are on the same topic. It follows in this simplified setting that
Alice’s influence on Bob is completely described through the
timing information of Alice’s and Bob’s tweets. Our goal then
is to interpret the timings of Alice’s and Bob’s tweets in terms
of the influence that Alice exerts on Bob.

We approach this problem by relating the Twitter interac-
tions of Alice and Bob to the dependence between the input
and output of a timing channel that conveys information by
the timing of consecutive packets rather than by their contents.
In this paper, the influence is computed by characterizing the
directed information between the input and output of bufferless
single-server timing queue (SSTQ).

A bufferless SSTQ is a packet service facility in which
incoming packets are discarded while a packet is already in
service. The bufferless model is motivated by the observation
that Twitter streams are inherently lossy. Since people have
limited ability to process information, many tweets are ignored
and only some tweets generate responses [13]. The bufferless
queue is a simple model for a recipient Bob that ignores
subsequent tweets while processing a previously received
tweet. While this model is admittedly too simple to truly
capture social interactions, it embeds a technical challenge in
characterizing the directed information in timing data when
there is no one-to-one correspondence between the tweet
arrival and departure streams. In this paper, we address this
challenge by characterizing directed information in a two-user
Twitter interaction modeled by discrete-time timing channels
described by bufferless SSTQs with iid service times.

The timing channel capacity of bufferless SSTQs was
investigated in [14] in a continuous-time setting and in [15]
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Fig. 1. One realization of the input and output sequence of the system is
illustrated. The arrows with hollow arrowheads show the tweets arriving at the
server that are dropped, the arrows with solid arrowheads show the tweets that
enter the server, and the lines with circles on top show the tweets departing
the server. The corresponding sequence of X9

0 is {1, 1, 0, 1, 1, 1, 0, 1, 1, 0},
and the corresponding sequence of Y 9

0 is {0, 0, 1, 0, 0, 0, 0, 1, 0, 1}.

in discrete time. Since Twitter interactions between two nodes
are unlikely to take place on infinitesimally small units of
time, and more importantly since available timing data is
quantized, we work with a discrete-time version of bufferless
SSTQs in this paper. In contrast to continuous-time model
in which directed information is accumulated by a receiver
(an observer at the queue output stream) with each departure
from the queue, a discrete-time model enables a finer-grained
characterization of directed information. Specifically, with
each discrete step in time, the departure or non-departure of
a customer in service contributes to the directed information
accumulated by the receiver.

The rest of the paper is organized as follows. In Section II,
we provide an overview of our system, and a formal defi-
nition of directed information and directed information rate.
Section III derives the directed information rate for M/G/1
queue. Concluding remarks are in Section IV.
Notation: We use PX(·) to denote the probability mass
function (PMF) of random variable X . Similarly PX|Y (·|·)
is the conditional PMF of X given Y . For random variables,
P̃X (x) = P [X > x|X > x−1]. In addition, h (·) denotes the
binary entropy function.

II. SYSTEM MODEL

The key idea in the timing channels of [16] and [17] (the
former in continuous-time and the latter in discrete-time) is
to use packet inter-arrival times to the server to encode a
message. The receiver, based on the departure times of packets
from the server, decides which message has been transmitted.
In this paper, we examine how models of this type can be
used to evaluate the directed information associated with tweet
streams where the server can model the thinking process of
a person who tweets. Specifically, we consider the model in
[15] consisting of a single server bufferless queue with a zero
packet waiting room. Upon arrival at an idle server, a packet
immediately enters service; otherwise, if the server is busy
with a previous packet, the incoming packet is blocked and
discarded. To be consistent with the definition of discrete-time
queues in [17], we assume that in each time slot, at most one
arrival and one departure can occur.

Returning to the Alice-Bob example of Twitter network,
the sequence of tweets by Alice correspond to the packets
that arrive at the server and the service time represents the
thinking time for Bob in producing a tweet response. Note that
tweets that arrive while Bob is thinking will be neglected and

discarded. In this model, we assume that when a node tweets,
the receiver node will see the incoming message immediately.

We use Si to denote the service time of the ith tweet
admitted to service. As is customary in discrete-time queues,
we assume that service times are iid strictly positive integer-
valued random variables, independent of tweet arrival times.
We refer to the timing channel induced by the (bufferless)
queue with service time S as the (bufferless) timing channel
S. In Fig. 1, one realization of the input and output sequences,
including arriving, dropped and departing tweets, is illustrated.
In particular, a tweet that remains in service at the end of
slot i − 1 will receive one unit of service in slot i, and if its
service is completed, depart the instant before the end of slot
i. Furthermore, an arrival in slot i occurs at the end of the
slot i, the instant after a possible departure. Thus, a tweet that
arrives in slot i begins service in slot i + 1 and departs no
earlier than slot i+ 1.

To model the tweeting activity at the transmitter, the obser-
vation interval is divided into equal timeslots and the binary
sequence X = (X0 = 1, X1, X2, · · · ) will be associated with
that process. In this system, Xi = 1 if a tweet is generated by
Alice at the end of slot i. We refer to the tweet submitted at
time 0 as tweet zero. This tweet carries no timing information
and serves only to initialize the system.

At the receiver node, the sequence Y = Y0, Y1, · · ·
corresponds to the discretized tweet process of Bob where
Yi ∈ {0, 1}. Observing a departure (a tweet by Bob) at the
end of slot i is represented by Yi = 1.

The sequence of tweet inter-arrival times are represented by
A = (A0 = 0, A1, A2, · · · ) where Aj ∈ N is the inter-arrival
time between tweets j − 1 and j (in slots). The number of
timeslots between departure i−1 and departure i correspond to
Di where D0 is the departure time of tweet 0. In the bufferless
queue, the subset of arrivals that are admitted into service is
denoted by the subsequence k0 = 0, k1, · · · such that

ki = min
{
m|

m∑
j=1

Aj −
i−1∑
j=0

Dj ≥ 0
}

(1)

denotes the index of the tweet i > 0 admitted to service. The
time that the server is idle between departure i and the next
arrival is represented by the idling time Wi. Since the queue
in our system is blocking and has no buffer, the idling time
Wi can be represented as a deterministic function of the entire
transmitted sequence and prior departures Di

0 as

Wi(A
∞
0 , D

i
0) =

ki+1∑
j=1

Aj −
i∑

j=0

Dj . (2)

Note that if the next arrival occurs in the same slot as
the departure i, then Wi = 0. For ease of notation, we
use Wi(A

∞
0 , D

i
0) and the shorthand Wi interchangeably. The

relationship between departure time Di and the corresponding
idling time and service time is

Di = Wi−1(A∞0 , D
i−1
0 ) + Si. (3)



Since we assumed that in each time slot, at most one arrival
and departure can happen, Ai ≥ 1 and Di ≥ 1 for i ≥ 1.
Based on the assumption that in each timeslot, at most one
arrival and one departure can happen such that if the next
arrival occurs in the same timeslot the instant after a departure,
the packet would enter the server with zero idling time so
Wi ≥ 0.

A. Directed Information

For discrete time stochastic processes Xn
1 and Y n

1 , the
directed information from X to Y is defined as [11]

I(Xn
1 → Y n

1 ) =

n∑
i=1

I(Xi
1;Yi|Y i−1

1 )

= H(Y n
1 )−H(Y n

1 ||Xn
1 ), (4)

where H(Y n
1 ||Xn

1 ) is the causally conditioned entropy defined
by Kramer [10] as

H(Y n
1 ||Xn

1 ) =

n∑
i=1

H(Yi|Y i−1
1 , Xi

1).

The relationship between the directed information and mutual
information is

I(Xn
1 → Y n

1 ) + I(DY n
1 → Xn

1 ) = I(Xn
1 ;Y n

1 ) (5)

where DXn
1 = (0, X1, · · · , Xn−1) is the delay operator.

Directed information is a nonnegative asymmetric quantity.
When there is influence in both directions, the mutual infor-
mation is an outerbound on the information that flows in each
direction.

To analyze stochastic processes defined on an infinite time
interval, we examine information rates. The directed informa-
tion rate between two jointly stationary processes with finite
alphabet is

I∞ (X → Y ) = lim
n→∞

1

n
I (Xn

1 → Y n
1 ) .

The proof for existence of this limit is in [10].

III. ANALYSIS

With iid inter-arrival times, each time a tweet enters service,
the queue undergoes a renewal. In particular, the ith renewal
point marks the beginning of a service time Si and a set
of subsequent iid tweet inter-arrival times Aki+1, Aki+2, . . .
such that the distributions of Si and {Aki+j} are sufficient to
evaluate the distribution of the number of tweet arrivals that are
dropped during the service as well as the idling time Wi that
follows the service completion. We note that Wi depends on
Si; however the renewal that occurs when costumer i+1 goes
into service implies that (S0,W0) , (S1,W1) , · · · , (Sn,Wn)
constitute independent tuples.

The directed information rate from node A with tweet
timing sequence X∞0 to node B with tweet timing sequence
Y∞0 is

I∞ (DX → Y ) = lim
n→∞

1

n
[H(Y n

0 )−H(Y n
0 ||DXn

0 )] .

Before computing each term, we need the following Lemma.

Lemma 1. For any nonnegative integer-valued random vari-
able V , the following relationship holds

H(V ) =

∞∑
l=0

h(P̃V (l))P [V > l − 1] . (6)

Proof: Denoting the right side of (6) as Ĥ , the definition
P̃V (l) = P [V > l|V > l − 1] implies

Ĥ = −
∞∑
l=0

[
P [V = l] log

(
P [V = l]

P [V > l − 1]

)
+P [V > l] log

(
P [V > l]

P [V > l − 1]

)]
(7)

= H(V )−
∞∑
l=0

[P [V > l] log (P [V > l])

−P [V > l − 1] log (P [V > l − 1])] , (8)

which equals H(V ) since the sum in (8) is telescoping.
To characterize the bufferless G/G/1 queue, we observe

that the tuple (Ai, Bi), where Ai is the age of the arrival
process (i.e., the number of time units that have passed since
the last arrival) and Bi is the units of service received by
a customer in service (if any) at time i, is a discrete-time
Markov chain. Note that (0, 0) denotes the state in which
an arrival has just occurred but not yet received any service.
In addition, we use (Ai, Bi) = (a,−1) to denote a state in
which the last arrival was in timeslot i − a and the server is
currently idle. We observe that state (0, 0) is reachable from
any state (a, b) with a simultaneous departure and new arrival
in the same slot. Because the system is bufferless, the limiting
state probabilities πa,b = limi→∞ PAi,Bi

(a, b) always exist.
In addition, we can define the marginal limiting probabilities
πb =

∑
a πa,b that enable us to describe the bufferless G/G/1

queue.

Theorem 1. For a bufferless stable G/G/1 SSTQ system,

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 , Xi−1

0 ) =

∞∑
b=0

h(P̃S (b+ 1))πb.

Proof: Since Bi−1 is determined by (Y i−1
0 , Xi−1

0 ),

H(Yi|Y i−1
0 , Xi−1

0 ) = H(Yi|Y i−1
0 , Xi−1

0 , Bi−1). (9)

Furthermore Bi−1 = −1 indicates that the server is idle and
thus Yi = 0 since there is no packet that can depart. Thus,

H(Yi|Y i−1
0 = yi−10 , Xi−1

0 = xi−10 , Bi−1 = −1) = 0. (10)

Otherwise, when a packet is in service and Bi−1 = b ≥ 0, the
residual service time depends solely on the service b already
received, and is independent of the prior arrival process and
prior service times. Thus, since Yi is a binary indicator for
whether the current service finishes at time i,

H(Yi|Y i−1
0 , Xi−1

0 , Bi−1) = H(Yi|Bi−1)

= h(P̃S (b+ 1)). (11)



It follows from (9), (10), and (11) that

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 , Xi−1

0 )

= lim
n→∞

1

n

n∑
i=1

n∑
b=0

h(P̃S (b+ 1))PBi−1
(b)

=

∞∑
b=0

h(P̃S (b+ 1)) lim
n→∞

1

n

n∑
i=1

PBi−1
(b).

The claim follows since limn→∞
1
n

∑n
i=1 PBi−1

(b) = πb.

A. Memoryless Inter-arrivals

For memoryless arrivals, the Markov chain (Ai, Bi) de-
scribed above will reduce to a Markov chain Bi with stationary
distribution πb. In order to apply Theorem 1 for general service
distribution, we need the following lemma.

Lemma 2. The M/G/1 bufferless SSTQ where λ is the rate of
incoming tweets has limiting state probabilities

πb =

(
λ

1− λ

)
P (S > b)π−1, b ≥ 0

where π−1 = (1− λ)[1 + λ (E(S)− 1)]−1.

Proof: Defining qi = P [S = i + 1|S > i] as the service
completion rate in state i, pi = 1− qi = P [S > i+ 1|S > i],
the stationary probabilities for this Markov chain are given by
ΠT = ΠTP where ΠT =

[
π−1 π0 π1 · · ·

]
, and

P =



1− λ λ 0 0 · · ·
(1− λ) q0 λq0 p0 0 · · ·
(1− λ) q1 λq1 0 p1 · · ·

...
...

...
...

. . .
(1− λ) qi λqi 0 · · · pi · · ·

...
...

...
...

. . .



Theorem 2. For a general service time distribution with iid
elements and independent from the memoryless inter-arrival
time sequence,

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 , Xi−1

0 ) =
H(S)λ

1 + λ (E(S)− 1)
. (12)

Proof: Using the results of Theorem 1 and Lemma 2,

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 , Xi−1

0 )

=

∞∑
b=0

h(P̃S (b+ 1))

(
λ

1− λ

)
P (S > b)π−1.

Based on Lemma 1,

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 , Xi−1

0 ) =

(
λ

1− λ

)
H(S)π−1, (13)

which, combined with Lemma 2, completes the proof.

In order to find the output entropy of the M/G/1 buffer-
less SSTQ, we need to define a Markov chain with states
Mi ∈ {0, 1, · · · , n} that specifies the number of units of time
since the last departure. The limiting state distribution for this
Markov chain can be shown to be

γm = P (D > m)/E(D). (14)

Theorem 3. The entropy rate of the sink node tweet sequence
under memoryless tweet arrivals from the sender node is

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
1 ) =

H(D)

E(D)
.

Proof: Since Mi−1 is a deterministic function of Y i−1
0 ,

H(Yi|Y i−1
0 ) = H(Yi|Y i−1

0 ,Mi−1), (15)

such that H(Yi|Y i−1
0 = yi−10 ,Mi−1 = m) = h(P̃D (m+ 1))

for m ≥ 0. As a result,

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 )

= lim
n→∞

1

n

n∑
i=1

n−1∑
m=0

h(P̃D (m+ 1))PMi−1
(m)

=

∞∑
m=0

h(P̃D (m+ 1)) lim
n→∞

1

n

n∑
i=1

PMi−1(m). (16)

It follows from (14) and the definition of limiting state
probability that

lim
n→∞

1

n

n∑
i=1

H(Yi|Y i−1
0 ) =

∞∑
m=0

h(P̃D (m+ 1))γm

=

∞∑
m=0

h(P̃D (m+ 1))
P (D > m)

E(D)
.

The claim follows from Lemma 1.
The interpretation of Theorem 3 is as follows: If the length

of Y sequence is n, the total entropy will be n times the
entropy of one element in Y on average. Each symbol in
the Y sequence will reveal part of the uncertainty in the
inter-departure time D. With each departure, the length of
corresponding inter-departure time is resolved. Since the time
between two consecutive departures is on average E(D),
entropy H(D) is obtained every E(D) units of time using
the concept of renewal reward theory which states that the
time average of the amount of entropy you get is equal to the
entropy per period divided by the expected value of the period.

Based on (12) and Theorem 3, the directed information rate
from the source node A to sink node B is

I∞ (DX → Y ) =
H(D)

E(D)
− H(S)λ

1 + λ (E(S)− 1)
.

Moreover, the reverse directed information rate can be shown
to be zero since the arrival process is independent of service
process in the system.

For the M/G/1 queue, the idling times Wi are shifted
geometric (λ) random variables PW (w) = λ (1− λ)

w
, w =
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Fig. 2. The directed information rate I∞ (X → Y ) /µ for the M/M/1
and M/U/1 (M/G/1 with uniform service times) queues. For each service
discipline, we have observe that the normalized information rates are indis-
tinguishable for µ ∈ {0.01, 0.005, 0.001}.

0, 1, 2, · · · independent of S. In the special case of M/M/1,
the service time is geometric with success probability µ so
PS(s) = µ (1− µ)

s−1
, s = 1, 2, 3, · · · . In this case, S has

entropy H(S) = h(µ)/µ and D = W + S has PMF

PD(d) =
µλ

µ− λ

(
(1− λ)

d − (1− µ)
d
)
, d = 1, 2, · · · .

Another case to study is M/G/1 where S has uniform PMF
PS(s) = 1/n for s = 1, 2, . . . , n. Then, with n = (2/µ)− 1,
the PMF of D = S +W is

PD(d) =

{
(1− (1− λ)d)/n 1 ≤ d ≤ n,
(1− (1− λ)n)(1− λ)d−n/n d > n.

Figure 2 illustrates the directed information rate
I∞ (X → Y ) /µ for the case that the time slot is 1 second
and the time scale represents tweeting with 10−4 ≤ λ ≤ 10−2

which corresponds to approximately 8 tweets per day to
860 tweets per day. Moreover, average thinking time is 1/µ
where µ ∈ {0.01, 0.005, 0.001} . In the figure, we observe
that the normalized directed information rate as a function of
the normalized arrival rate λ/µ is insensitive to the choice of
µ; however, analytic verification of this observation remains
to be completed. Furthermore, it can be seen that when λ is
close to 0, the directed information rate is negligible since the
source node rarely tweets so it does not have high influence.
By increasing λ, the source node is tweeting more, so the
measured influence will increase. However, when the sender
tweets much faster than the receiver node can process, many
tweets are deleted, ultimately leading to a decrease in the
directed information rate. Another important point is that for
the same tweet arrival rate λ, increasing µ will increase the
information rate. Intuitively, increasing µ could be interpreted
as an increase in a person’s willingness to read the tweets
faster. The apparent similarity of the figures suggests that
timing information in this setting appears to be relatively

insensitive to the service time distributions.

IV. CONCLUSION

In this paper, we have investigated the role of timing
information in understanding influence in social networks.
For a simple two-node Twitter network in which one nodes
influences the other, we have related the problem of inference
of influences to that of packet transmissions in bufferless
single-server timing queues. We have computed the directed
information rate in this case and interpreted the effects of
changes in input/output timings on the directed information
rate. Future work in this direction involves understanding the
role of memory in the timing information of the influencing
user’s tweets, extensions to the case when both users exert
some influence on each other, and generalizations of this
problem to larger social networks.
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