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Abstract—This paper investigates the capacity of a discrete-
time channel in which information is conveyed by the timing of
consecutive packets passing through a queue with independent
and identically distributed service times. Such timing chan-
nels are commonly studied under the assumption of a work-
conserving queue. In contrast, this paper studies the case of a
discrete-time bufferless queue that drops arriving packets while
a packet is in service. Under this bufferless model, the paper
provides upper bounds on the capacity of timing channels and
establishes capacity for the case of bufferless M/M/1 queue.

I. INTRODUCTION

Timing channels convey information by the timing of con-
secutive packets – rather than by their contents. Such channels
not only arise in many engineering contexts, such as covert
communications [1], [2], energy harvesting communication
systems [3], and sensor networks [4], but can also provide
a reasonable abstraction of interactions in biological systems
[5]. In addition, information theoretic understanding of timing
channels can potentially help us attack the challenging prob-
lem of causal inference in systems where causal relationships
are determined by timing information [6], [7].

Information theoretic study of timing channels began in the
seminal paper [8], which characterizes the capacity of a timing
channel described by a single-server timing queue (SSTQ)
with independent and identically distributed (iid) service times.
In particular, we have from [8] that the capacity of an SSTQ
with iid exponential service times (·/M/1 queue) is equal to
e−1 nats per average service time. In [9], Bedekar and Azi-
zoglu analyzed the discrete-time version of SSTQ discussed in
[8] with iid service times. The maximum achievable rate for a
discrete-time SSTQ with an arrival process of mean 1/λ time
slots and geometrically distributed service time with mean 1/µ
time slots was shown to be

C(λ) = HBin(λ)−
λ

µ
HBin(µ), (1)

which is the smallest among queues with the same average
service time where HBin (·) is the binary entropy function.
Moreover, [9] proved that for the capacity maximizing λ, the
capacity is

C = log
[
1 + µ (1− µ)(1−µ)/µ

]
. (2)

In [10] we presented the capacity analysis of continuous-
time bufferless SSTQ with iid service times that discards
incoming packets while a packet is in service. Bufferless

SSTQs, despite their apparent simplicity, are effective in math-
ematically modeling some systems including protein synthesis
networks [11]. Our interest in bufferless SSTQs is related to
the mutual information in tweet sequences. Suppose Bob re-
ceives tweets from Alice and occasionally tweets in response.
While formulating a response, Bob ignores subsequent tweets
from Alice. In this model, we can view Alice’s tweets as
arrivals and Bob’s tweets as departures from a queue. The
time Bob spends formulating a response is the service time of
a tweet admitted to the system. While the bufferless SSTQ is
a simple model, it provides a starting point for characterizing
how much information can be gleaned from tweet timing data.

In [10], we proved a single-letter upper bound on the
channel capacity under arbitrary service distributions for the
case of iid inter-arrival packet times was provided. In addition,
we presented a looser closed-form upper bound on the chan-
nel capacity under arbitrary service distributions. Finally, we
provided achievability results for bufferless M/M/1 and M/G/1
queues using information density methods [12].

In this paper, we focus our attention on the capacity analysis
of discrete-time bufferless SSTQs, which to the best of our
knowledge has not been explored in prior work. While the
bufferless SSTQ shares some similarities with the buffered
SSTQ in [9], we will see that analyzing its capacity presents
some new challenges in the absence of a one-to-one correspon-
dence between incoming and departing packets. In contrast to
continuous-time model in which mutual information is accu-
mulated at the receiver with each departure from the queue,
a discrete-time model enables a finer-grained characterization
of mutual information. Specifically, with each discrete step in
time, the departure or non-departure of a customer in service
contributes to the mutual information accumulated by the
receiver.

In this paper, we make the following contributions to the
capacity analysis of discrete-time timing channels described
by bufferless SSTQs with iid service times. First, we provide
a single-letter upper bound on the channel capacity under
arbitrary service distributions for the case of iid inter-arrival
packet times. Next, we provide a single-letter upper bound
and a looser closed-form upper bound on the channel capacity
under arbitrary service distributions. For the case of ·/M/1
queue, this closed-form upper bound matches the one for the
work conserving queue. Finally, we provide capacity results
for bufferless M/M/1 queue.
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Fig. 1. One realization of the input and output sequence of the system
is illustrated. The arrows with hollow arrowheads show the packets arriving
at the server that are dropped, the arrows with solid arrowheads show the
packets that enter the server, and the lines with circles on top show the packets
departing the server. The corresponding input and output sequences are X9

0 =
{1, 1, 0, 1, 1, 1, 0, 1, 1, 0} and Y 9

0 = {0, 0, 1, 0, 0, 0, 0, 1, 0, 1} respectively.

The rest of the paper is organized as follows. In Section II,
we provide an overview of our system, and provide a formal
definition of capacity in our setup. Section III derives outer
bounds on the timing capacity that hold for all arrival pro-
cesses. Section IV provides outer bounds for specific arrival
processes and service time distributions, and computes the
capacity of bufferless M/M/1 queue. Concluding remarks are
in Section V.

Note that we use PX(·) to denote the probability mass
function (PMF) of random variable X . Similarly PX|Y (·|·)
is the conditional PMF of X given Y .

II. SYSTEM MODEL

An important feature of the timing channel in [8] and [9]
(the former in continuous-time and the latter in discrete-time)
is to use packet inter-arrival times to the server to encode a
message. The receiver, based on the departure times of packets
from the server, decides which message has been transmitted.
In this paper, we consider the discrete-time version of the
model in [10] consisting of a single server bufferless queue
with a zero packet waiting room. Upon arrival at an idle server,
a packet immediately enters service; otherwise, if the server is
busy with a previous packet, the incoming packet is blocked
and discarded. To be consistent with the definition of discrete-
time queues in [9], we assume that in each time slot, at most
one arrival and one departure can occur.

We use Si to denote the service time of the ith packet
admitted to service. As is customary in discrete-time queuing
systems, we assume that service times are iid strictly positive
integer-valued random variables, independent of packet arrival
times. Thus we refer to the timing channel induced by the
(bufferless) queue with service time S as the (bufferless)
timing channel S. In Fig. 1, one realization of the input and
output sequences, including arriving, dropped and departing
packets, is illustrated under our setup. In particular, a packet
that remains in service at the end of slot i−1 will receive one
unit of service in slot i, and if its service is completed, depart
the instant before the end of slot i. Furthermore, an arrival in
slot i occurs at the end of the slot i, the instant after a possible
departure. Thus, a packet that arrives in slot i begin service in
slot i+ 1 and departs no earlier than slot i+ 1 . As a result,
the service time is S ≥ 1.

A. Encoder
The transmitted message is represented by the discrete

uniform index U ∈ {1, · · · ,M}. At the transmitter, each

message U = u will be encoded in an infinite binary sequence
codeword Xu = (X0 = 1, Xu,1, Xu,2, · · · ). In this system,
Xu,i = 1 means that a packet arrives at the server at the end
of slot i. We refer to the packet submitted at time 0 as packet
zero. This packet carries no timing information and serves
only to initialize the system. Similarly, we refer to packets
1, 2, . . . as codeword packets as their inter-arrival times define
the codewords.

B. Decoder

At the receiver, the decoder observes the sequence Y =
Y0, Y1, · · · , YKn

∈ {0, 1}Kn which is used in estimating
the index V ∈ {1, · · · ,M} corresponding to the transmitted
message. A decoding error occurs when V 6= U . Observing a
departure at the end of slot i is represented by Yi = 1.

In our system, the number of observed departure times is
fixed at n. In this case the length of corresponding departure
sequence Y (the number of time slots until the nth departure
is observed) will be random since it will equal

Kn = min

{
k|

k∑
i=1

Yi = n

}
. (3)

To simplify the entropy computation of a sequence with
random length, we first construct an infinite sequence through
concatenation of infinite zeros to Y Kn

0 resulting in Y∞0 =[
Y Kn
0 0 0 · · ·

]
.

After n codeword packets are received, the maximum a
posteriori probability (MAP) decoder observes the departure
times Y∞0 = y∞0 and finds the most probable codeword to
have been transmitted. Since the codewords are equiprobable,
the decoder solves the maximum likelihood (ML) problem

u∗(y∞1 ) = argmax
u

PY∞0 |U [y∞0 |u] . (4)

Description of the ML decoder is omitted as the implementa-
tion would parallel that in [10].

C. Capacity

In this work, we aim to compute the capacity of the buffer-
less timing channel. While each decoded message conveys
log2M bits of information, the time required by the receiver
to decode a message depends on the packet departure times. In
particular, we assume that the receiver decodes after observing
the departures of n codeword packets. The expected time
required to observe these departures is Tn = E [Kn] .

Following [8], [13] the achievable rate and the capacity for
our system are defined as follows.

Definition 1. If for every γ > 0, a sequence of codewords
from a codebook with Mn entries exists with (logMn) /Tn >
R − γ for all sufficiently large n, and the corresponding
maximum probability of error εn satisfies limn→∞ εn = 0,
then the rate R is achievable. The maximum rate R that
satisfies this definition is called the capacity of the timing
channel and is denoted by C.



III. CONVERSE THEOREM

We follow the approach of [8] in deriving a converse. Using
Pe to denote the probability of a decoding error, we observe
that Fano’s inequality [14, sec. 2.10] and equiprobable U
imply

H(U |V ) ≤ HBin(Pe) + Pe logMn (5)
≤ HBin(Pe) + εn logMn (6)
≤ log 2 + εn logMn (7)
= log 2 + εn logMn +H(U)− logMn, (8)

where we assume that HBin(Pe) ≤ log 2. We can conclude
that

logMn ≤
1

1− εn
[I(U ;V ) + log 2] (9)

≤ 1

1− εn
[I(X∞0 ;Y∞0 ) + log 2] , (10)

where (10) follows from the data processing lemma [14,
sec. 2.8]. Before stating a converse for our system, we need
the following lemmas.

Lemma 1. For any non-negative integer-valued random vari-
able D, the following relationship holds

H(D) =

∞∑
l=0

HBin(P [D = l + 1|D > l])P [D > l] . (11)

Proof: Starting from the right side of (11),
∞∑
l=0

HBin(P [D = l + 1|D > l])P [D > l]

=

∞∑
l=0

HBin

(
P [D = l + 1]

P [D > l]

)
P [D > l] (12)

= −
∞∑
l=0

[
P [D = l + 1] log

(
P [D = l + 1]

P [D > l]

)
+P [D > l + 1] log

(
P [D > l + 1]

P [D > l]

)]
(13)

= H(D)−
∞∑
l=0

[P [D > l + 1] log (P [D > l + 1])

−P [D > l] log (P [D > l])] (14)
= H(D), (15)

where (14) transforms into (15) since the summation in (14)
is a telescoping sum.

Definition 2. Given a random sequence L0, · · · , Ln with PMF
PLj (l), we define, for j ∈ Z the indicator random variables

Il(j) =

{
1 Lj = l,

0 otherwise.
(16)

Note that E [Il(j)] = P [Il(j) = 1] = PLj
(l). Moreover,∑n

j=0 Il(j) is the number of elements in {L0, · · · , Ln} that
equal l.

Theorem 1. For a system with iid service process where the

arrival and service process are independent, the following
relationship holds:

∞∑
i=1

H(Yi|Y i−10 , X∞0 ) = nH(S). (17)

Proof: At time i, let Ji ∈ {0, 1, · · · , n} specify how
many departures we have observed. In addition, let Bi ∈
{−1, 0, 1, · · · } specify the number of units of service received
by a customer in service if any such that Bi = −1 indicates
that either the server is idle at the end of slot i or n departures
have been observed.

Since Ji−1 and Bi−1 are deterministic functions of
(Y i−10 , X∞0 ),

H(Yi|Y i−10 , X∞0 ) = H(Yi|Y i−10 , Bi−1, Ji−1). (18)

Furthermore,

H(Yi|Y i−10 , Bi−1 = b, Ji−1 = j) = 0 (19)

if b = −1 or j = n. Otherwise, for 0 ≤ j < n and b ≥ 0,
H(Yi|Y i−10 = yi−10 , X∞0 = x∞0 , Bi−1 = b, Ji−1 = j)

= HBin(P [Sj+1 > b+ 1|Sj+1 > b]).

Consequently,
∞∑
i=1

H(Yi|Y i−10 , X∞0 )

=

∞∑
i=1

n−1∑
j=0

∞∑
b=0

(HBin(P [Sj+1 > b+ 1|Sj+1 > b])

P [Bi−1 = b, Ji−1 = j]) (20)

=

∞∑
b=0

HBin(P [S > b+ 1|S > b]) ∞∑
i=1

n−1∑
j=0

P [Ji−1 = j|Bi−1 = b]PBi−1
(b)

 . (21)

Using
∑n−1
j=0 P [Ji−1 = j|Bi−1 = b] = 1, and following Def-

inition 2, (21) can be written as
∞∑
i=1

H(Yi|Y i−10 , X∞0 )

=

∞∑
b=0

HBin(P [S > b+ 1|S > b])

∞∑
i=1

PBi−1
(b) (22)

=

∞∑
b=0

HBin(P [S > b+ 1|S > b])E

[ ∞∑
i=1

Ib(i− 1)

]
, (23)

where
∑∞
i=1 Ib(i − 1) can be interpreted as the number of

service times Sj such that Sj > b which can be represented
by CountSn

0
(b). Based on this definition of the Count(.)

function, E
[
CountSn

0
(b)
]
= nP [S > b]. As a result, (23) can

be written as



∞∑
i=1

H(Yi|Y i−10 , X∞0 )

=

∞∑
b=0

HBin(P [S > b+ 1|S > b])nP [S > b] (24)

= nH(S). (25)

Using Lemma 1, (25) follows from (24).

Lemma 2. The mutual information between the input code-
word and the observed output sequence satisfies

I(X∞0 ;Y∞0 ) = H(Y∞0 )−
n∑
i=1

H(Si). (26)

Proof: By the chain rule,

I(X∞0 ;Y∞0 ) = I(X∞0 ;Y0) +

∞∑
i=1

I(X∞0 ;Yi|Y i−10 ). (27)

Since we assume that Y0 = 0, I(X∞0 ;Y0) = 0. Moreover,
∞∑
i=1

I(X∞0 ;Yi|Y i−10 ) = H(Y∞0 )−
∞∑
i=1

H(Yi|X∞0 , Y i−10 )

= H(Y∞0 )−
n∑
i=1

H(Si). (28)

Note that (28) holds using Theorem 1.

Definition 3. The sequence of packet inter-arrival times are
represented by Au = (A0 = 0, Au,1, Au,2, · · · ) where Au,j ∈
N is the inter-arrival time between packets j − 1 and j in
codeword Xu (in slots). A fundamental difference between the
Au sequence and Xu sequence is that even if the Au sequence
is iid, the Xu sequence is not iid since the elements of Xu

that correspond to the same Ai are correlated.

The number of time slots between the (i − 1)th and the
ith observed departures correspond to Di where D0 is the
departure time of packet 0 and Kn =

∑n
i=1Di. In the

bufferless queue, the subset of arrivals that are admitted into
service is denoted by the subsequence k0 = 0, k1, · · · such
that

ki = min

m|
m∑
j=1

Aj −
i−1∑
j=0

Dj > 0

 (29)

denotes the index of the packet i > 0 admitted to service. The
time that the server is idle between departure i and the next
arrival is represented by Wi. Since the queue in our system
is blocking and has no buffer, the idling time Wi can be
represented as a deterministic function of the message index
U and prior departures Di

0 as

Wi(U,D
i
0) =

ki+1∑
j=1

AU,j −
i∑

j=0

Dj . (30)

Based on the assumption that in each time slot, at most
one arrival and one departure can happen such that if the
next arrival occurs in the same timeslot the instant after a
departure, the packet would enter the server with zero idling

time so the idling time is Wi ≥ 0. For ease of notation, we
use Wi(U,D

i
0) and the shorthand Wi interchangeably. The

relationship between departure time Di and the corresponding
idling time and service time is

Di =Wi−1(U,D
i−1
0 ) + Si. (31)

Equivalent to (30) and (31), we can explicitly represent Wi and
Di as functions of the arrival times A∞1 and past departures
Di−1

0 :

Wi(A
∞
1 , D

i
0) =

ki+1∑
j=1

Aj −
i∑

j=0

Dj , (32)

Di =Wi−1(A
∞
1 , D

i−1
0 ) + Si. (33)

Since we assumed that in each time slot, at most one arrival
and departure can happen, Au,i ≥ 1 for i ≥ 1and Du,j ≥ 1
for 1 ≤ j ≤ n.

Moreover, Tn can be rewritten as

Tn =

n∑
i=0

E [Di] = E [S0] +
n∑
i=1

E [Wi−1 + Si] . (34)

Lemma 3. The mutual information between the input code-
word and the output departure times satisfies

I(X∞0 ;Y∞0 ) ≤
n∑
i=1

I(Wi−1;Wi−1 + Si). (35)

Proof: Based on Lemma 2

I(X∞0 ;Y∞0 ) = H(Y∞0 )−
n∑
i=1

H(Si). (36)

Since there is a bijective map between Y∞0 and Dn
0 , H(Y∞0 ) =

H(Dn
0 ) [15]. Since conditioning reduces the entropy,

H(Dn
0 ) =

n∑
i=0

H(Di|Di−1
0 ) ≤

n∑
i=0

H(Di).

As a result, (36) can be written as

I(X∞0 ;Y∞0 ) ≤
n∑
i=1

(H(Wi−1 + Si)−H(Si)) . (37)

To develop universal bounds valid for all arrival and service
processes, we follow the approach in [8] and define

c(a) ≡ sup
Z≥0

E[Z]≤a

I(Z;Z + S), (38)

where Z is independent of S. We note that c(a) is a monotone
concave function in the argument a, and that this will provide
a universal upper bound on the capacity of the timing channel.

Theorem 2. The discrete-time timing channel S with E [S] =
1/µ has capacity

C ≤ C(S) ≡ sup
λ>0

c( 1λ − 1)
1
λ + 1

µ − 1
. (39)

Proof: Let

Rn =
(1− εn) logMn

Tn
. (40)



Combining (34), (10), and

I(X∞0 ;Y∞0 ) ≤
n∑
i=1

c (E [Wi−1]) , (41)

(the proof of (41) follows the approach in [10, Lemma 3] using
Lemma 3) yields

Rn ≤
1
n [
∑n
i=1 c(E [Wi−1]) + log 2]

E[S0]
n + 1

n

∑n
i=1 (E [Wi−1] + E [Si])

. (42)

Defining λ−1n − 1 = 1
n

∑n
i=1 E [Wi−1], concavity of c(a)

implies

Rn ≤
c( 1
λn
− 1) + log 2

n
1
λn

+ 1
µ − 1

≤ sup
λ>0

c( 1λ − 1)
1
λ + 1

µ − 1
+

log 2

n/µ
. (43)

The claim follows as n→∞.
We can further loosen Theorem 2 by making use of the

following lemma.

Lemma 4. For a timing channel S, c(a) defined in (38)
satisfies

c(a) ≤ (a+ E [S])HBin((a+ E [S])
−1

)−H(S). (44)

Proof: Based on (38), we have

c(a) = sup
E[Z]≤a
Z≥0

H(Z + S)−H(S). (45)

Notice that H(Z + S) subject to the constraints E [Z] ≤ a
and Z ≥ 0 and fixed service distribution will be maximized
when Z+S has geometric distribution with success probability
(a+ E [S])

−1 [14]. The proof now follows from the entropy
of a geometric distribution.

However, there is no guarantee that for any given ser-
vice distribution, there exists a nonnegative discrete ran-
dom variable with E [Z] ≤ a such that its sum-
mation with S has geometric distribution. As a result,
(a+ E [S])HBin((a+ E [S])

−1
)−H(S) is an upper bound on

c(a). A universal upper bound on the capacity of the system
can now be stated.

Theorem 3. The bufferless timing queue S with E [S] = 1/µ
has capacity

C ≤ log
(
1 + e−H(S)

)
, (46)

when H(S) ≥ log
(

1
µ − 1

)
.

Proof: Based on Theorem 2 and Lemma 4, Rn defined
in (40) satisfies

Rn ≤ sup
λ>0

(
1
λ + 1

µ − 1
)
HBin(

(
1
λ + 1

µ − 1
)−1

)−H(S)

1
λ + 1

µ − 1
.

(47)

By taking the derivative of the upper bound in (47) with
respect to λ−1, the optimal λ, λ∗ will satisfy

H(S) = log

(
1

λ∗
+

1

µ
− 2

)
. (48)

Since λ is a nonnegative number between 0 and 1, H(S) ≥
log( 1µ − 1) must hold, and the upper bound (46) follows.

For the case of geometric service distribution, we obtain the
same outer bound as [9] (see (2)).

IV. QUEUE-SPECIFIC OUTER BOUNDS

Although Lemmas 2 and 3 hold for any arrival process,
characterization of Wi will be difficult in case of having
memory in the arrivals. To go further, we focus on the
special case of codebooks with iid inter-arrival times. With
iid inter-arrivals, each time a packet enters service, the queue
undergoes a renewal. In particular, the ith renewal point marks
the beginning of a service time Si and a set of subsequent
iid packet inter-arrival times Aki+1, Aki+2, . . . such that the
distributions of Si and {Aki+j} are sufficient to evaluate
the distribution of the number of packet arrivals that are
dropped during the service as well as the idling time Wi

that follows the service completion. Because service times
and inter-arrival times are both iid, a renewal occurs at the
end of the idling period when the next arrival is admitted. We
note that Wi depends on Si; however the renewal implies that
(S0,W0) , (S1,W1) , · · · , (Sn,Wn) constitute independent tu-
ples. Based on this observation, the following outer bound
yields for

C ≤ C(A,S) ≡ I(W ;W + S)

E [W ] + E [S]
, (49)

where W is independent of S but has the idling time distri-
bution induced by A and S. The proof follows the approach
in [10, Theorem 3].

In general, computing the PMF of W is nontrivial as it can
involve n-fold convolutions of the PMF of Ai. Thus, the pri-
mary use of (49) is for the case when the Xi form a Bernoulli
arrival process with probability of Xi being 1 equal to λ.
In this case, the idling times Wi are Geometric (λ) random
variables, PW (w) = λ (1− λ)w , w = 0, 1, 2, · · · independent
of S, and the queueing system is an M/G/1 single server
bufferless queue. For Bernoulli arrival process, the outer bound
C(A,S) reduces to a straightforward numerical evaluation of
I(W ;W + S).

As a special case, we analyze the discrete-time M/M/1
queue in which the service time is geometric with success
probability µ so PS(s) = µ (1− µ)s−1 , s = 1, 2, 3, · · · . In
this case, S will have entropy

H(S) =
HBin (µ)

µ
(50)

and D =W + S will have the following distribution:

PD(d) =
µλ

µ− λ

(
(1− λ)d − (1− µ)d

)
, d = 1, 2, 3, · · · ,

(51)
which we call Hypogeometric distribution whose entropy is
H(D) = Hhypo(λ, µ).

Proposition 4. The capacity of the discrete timing channel
with memoryless service time with mean 1/µ and memoryless
arrival time with mean 1/λ is
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Fig. 2. Comparison of C(λ) of the (DBTQ) paper [9, Proposition 4], and
the capacity R(λ, µ) for the M/M/1 bufferless queue when µ = 0.6. All
the systems have geometric service time of success probability µ and arrival
mean value of 1/λ. The DBTQ plot has maximum equal to 0.2820 nats per
average service time whereas the maximum achievable rate is 0.2767 nats per
average service time.

C(A,S) =
Hhypo(λ, µ)− HBin(µ)

µ

1/λ+ 1/µ− 1
. (52)

Proof: Since I(W ;W +S) = H(D)−H(S), (49) yields
the outer bound

C(A,S) = R(λ, µ) (53)

where

R(λ, µ) ≡
Hhypo(λ, µ)− HBin(µ)

µ

1/λ+ 1/µ− 1
, (54)

which completes the converse proof. The achievability part
of the proposition can be proven using information density
methods introduced in [12].

The entropy Hhypo(λ, µ) cannot be computed in a closed
form. Using numerical methods, the capacity in (53) is com-
puted as a function of λ/µ as shown in Fig. 2 for µ = 0.6.
The ·/M/1 capacity of [9, eq. 7] is plotted for comparison (the
supremum of which over λ is equal to supremum of (46) over
λ). In these plots, 0 < λ/µ < 1 since the ·/M/1 queue in
[9, eq. 7] requires λ ≤ µ for stability. It can be seen from
this figure that when λ/µ is close to zero, corresponding to a
queue that is idle most of the time, the capacity is also close to
zero; this is to be expected since the time required to receive
n packets will be large in this case. On the other hand, when
λ� µ, the expected idling time reduces, but more and more
packets are dropped, and it becomes difficult for the receiver
to decode messages, resulting in a decreasing capacity.

The maximum achievable rate in (52) is 0.2767 nats per
average server time, and the maximum of the universal upper
bound in Theorem 3 is 0.282 when µ = 0.6.

V. CONCLUSION

This paper studied the capacity of discrete-time timing
channels described by bufferless single-server timing queues

with iid service times. One of the main challenges in the
analysis of such timing channels is the lack of a one-to-
one correspondence between packets arriving at and departing
from the queue. This challenge was circumvented by resort-
ing to codewords with infinite length, with the rate of the
code defined using the average time it takes to observe the
departure of n codeword packets. In general, we believe that
an information-theoretic understanding of the setup studied in
here will help us address the challenge of causal inference
in systems, such as (online) social networks, that lack a one-
to-one correspondence between different actions (e.g., tweets
versus retweets). In this regard, this paper discussed provided
upper bounds on the channel capacity—including a single-
letter upper bound and a looser universal upper bound, and
computed achievable rates for bufferless M/M/1. Computing
tighter upper bounds on the capacity and achievable rates for
·/M/1 and ·/G/1 queues that meet the upper bounds remain
areas of future work.
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