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ABSTRACT

We consider a colocated MIMO radar scenario, in which the
receive antennas forward their measurements to a fusion cen-
ter. Based on the received data, the fusion center formu-
lates a matrix which is then used for target parameter esti-
mation. When the receive antennas sample the target returns
at Nyquist rate, and assuming that there are more receive an-
tennas than targets, the data matrix at the fusion center is low-
rank. When each receive antenna sends to the fusion center
only a small number of samples, along with the sample index,
the receive data matrix has missing elements, corresponding
to the samples that were not forwarded. Under certain con-
ditions, matrix completion techniques can be applied to re-
cover the full receive data matrix, which can then be used in
conjunction with array processing techniques, e.g., MUSIC,
to obtain target information. Numerical results indicate that
good target recovery can be achieved with occupancy of the
receive data matrix as low as 50%.

Index Terms— Array processing, compressed sensing,
matrix completion, MIMO radar, MUSIC

1. INTRODUCTION

Multiple-input and multiple-output (MIMO) radar systems
have received considerable attention in recent years due
to their superior target estimation performance. Colocated
MIMO radar systems exploit waveform diversity to formu-
late a long virtual array with number of elements equal to the
product of the number of transmit and receive antennas. As a
result, they achieve higher resolution than traditional phased
array radars for the same amount of data [1][2]. Compressed
sensing (CS) enables MIMO radar systems to maintain their
advantages while significantly reducing the required mea-
surements per receive antenna [3][4]. In CS-based MIMO
radar, target parameters are estimated by exploiting the spar-
sity of targets in the angle, Doppler and range space, referred
to as thetarget space. For CS-based sparse target estimation,
the target space needs to be discretized into a fine grid, based
on which the CS sensing matrix is constructed. However, per-
formance of CS-based MIMO radar degrades when targets

This work was supported by the Office of Naval Research under Grant
ONR-N-00014-12-1-0036.

fall between grid points, a case also known as basis mismatch
[5] in the CS literature.

Another approach related in spirit to CS is that of matrix
completion. Matrix completion aims to recover a low-rank
data matrix from partial samples of its entries by solving a re-
laxed nuclear norm optimization problem [6][7]. Array signal
processing with matrix completion has been studied in [8][9].
To the best of our knowledge, however, matrix completion has
not been exploited for target estimation in colocated MIMO
radar. Our paper is related to the ideas in [9] in the sense
that matrix completion is applied to the received data matrix
formed by an array. However, due to the unique structure of
the received signal in MIMO radar, the problem formulation
and treatment in here is different than that in [9].

The main idea of our work is as follows. We consider
a colocated MIMO radar scenario in which receive antennas
forward their measurements to a fusion center. Based on the
received data, the fusion center formulates a matrix, whichis
then used for estimating the target parameters. When the re-
ceive antennas sample the target returns at Nyquist rate, and
assuming that there are more receive antennas than targets,
the data matrix at the fusion center is low-rank. When each
receive antenna sends to the fusion center only a small num-
ber of samples, along with the sample index, the receive data
matrix has missing elements, corresponding to the samples
that were not forwarded. Under certain conditions, matrix
completion techniques can be applied to recover the full re-
ceive data matrix, which can then be used in conjunction with
parametric methods such as MUSIC to obtain target informa-
tion. Compared to CS MIMO radar, our proposed method has
the same advantage in terms of reduction of samples needed
for accurate estimation but it avoids the basis mismatch issue
inherent in CS-based approach.

The rest of the paper is organized as follows. The colo-
cated MIMO radar system model is described in Section 2.
Some background of noisy matrix completion is introduced in
Section 3. The applicability of matrix completion to MIMO
radar is discussed in Section 4, and numerical results are given
in Section 5. Finally, Section 6 provides concluding remarks.

2. COLOCATED MIMO RADAR SYSTEM

We consider a MIMO radar system that employs colocated
transmit and receive antennas, shown in Fig. 1. We use
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Fig. 1. Colocated MIMO radar system under the ULA model.

Mt andMr to denote the numbers of transmit antennas and
receive antennas, respectively. Although our results can be
extended to an arbitrary antenna configuration, the results
here are presented for the case in which the transmit and
receive antennas form a uniform linear array (ULA) with
inter-element spacing between transmit and receive antennas
dt anddr, respectively. We further assumedt = dr = λ/2,
whereλ is the wavelength of the carrier signal. Further, the
waveformssk (t) , k = 1, ...,Mt, transmitted from the trans-
mit antennas are assumed to be narrow-band and orthogonal.
Now suppose there areK point targets in the far field at
anglesθk, k = 1, ...,K, each moving with speedϑk. The
correspondingMt ×K dimensional transmit steering matrix
can be expressed asA (θ) = [a (θ1) , ..., a (θK)], where

a (θk) =
[

1, ej
2π
λ

dt sin(θk), ..., ej
2π
λ

(Mt−1)dt sin(θk)
]T

, (1)

and theMr×K dimensional receive steering matrixB (θ) can
be defined in a similar fashion based on the receive steering
vectorsb(θk).

In order to estimate the speed of each target, multiple
pulses need to be transmitted. LetQ be the number of trans-
mitted pulses, withTPRI being the pulse repetition interval.
Assume the target reflection coefficients{βk} , k = 1, ...,K
are complex and remain constant during theQ pulses. For
slowly moving targets, (2ϑTp/λ ≪ 1, whereTp is the pulse
duration) the Doppler shift within a pulse can be ignored,
while the Doppler changes from pulse to pulse.

Under the narrowband assumption the received signal at
thelth receive antenna can be approximated as [4]

xl (t) ≈
K
∑

k=1

βke
j 2π

λ
2ϑktbl (θk) a

T (θk)s (t) + wl (t) . (2)

Heres (t) = [s1 (t) , ..., sMt
(t)]

T .
Suppose that each receive antenna samples the received

signal at rateL/Ts and forwards the samples to the fusion
center. Here,Ts is the sampling time,L is the number of
nonzero samples and we assumeL ≫ K. At the fusion cen-

ter, received data during theqth pulse can be written as [10]

Xq = B (θ)ΣDqA
T (θ)S+Wq = Zq +Wq, (3)

where Σ = diag ([β1, ..., βK ]); Dq = diag (dq), with

dq =
[

ej2π2ϑ1(q−1)TPRI , ..., ej2π2ϑK(q−1)TPRI
]T

; S =
[s (0Ts) , ..., s ((L− 1)Ts)]; and Wq is a Gaussian noise
matrix. Note that both matricesΣ andDq are rank-K, while
the rank of matrixS is min {Mt, L}. Thus, forMt > K the
rank of the noise free data matrixZq = B (θ)ΣDqA

T (θ)S
isK. In other words, the data matrixZq is low-rank based on
the assumption thatMr ≫ K.

3. MATRIX COMPLETION WITH NOISE

We now provide a brief overview of the problem of recov-
ering a rankr matrixM ∈ Cn1×n2 based on partial knowl-
edge of its entries, possibly corrupted by noise, i.e.,[Y]ij =
[M]ij + [E]ij , (i, j) ∈ Ω, where,[E]ij represents noise and
Ω is the set of observed entries. This can also be expressed as
PΩ (Y) = PΩ (M) +PΩ (E), wherePΩ represents the sam-
pling operation. According to [7], whenM is low-rank and
its singular vectors are sufficiently spread, i.e., both thenum-
bers of zero and large elements in the singular vectors are not
large,M can be recovered by solving a relaxed nuclear norm
optimization problem, given by

min ‖X‖∗ s.t. ‖PΩ (X−Y)‖F ≤ δ (4)

where‖·‖∗ denotes the nuclear norm, i.e., the sum of singular
values ofX, while δ > 0 is a constant.

To test the ‘sufficiently spread’ requirement, thestrong
incoherence property of matrix M with parameterµ has
been introduced in [6]. Consider the singular value de-

composition (SVD) ofM, i.e., M =
r
∑

k=1

ρkukv
H
k , and

definePU =
∑

1≤i≤r

uiu
H
i , PV =

∑

1≤i≤r

viv
H
i , andT =

∑

1≤i≤r

uiv
H
i . When the following conditions are satisfied, the

matrix M is said to satisfy the strong incoherence property
with µ = max (µ1, µ2).

A1) For all pairs(a, a′) ∈ [n1]× [n1] and(b, b′) ∈ [n2]×
[n2], there isµ1 > 0 such that

∣

∣

∣

∣

〈ea, PUea′〉 − r

n1
1a=a′

∣

∣

∣

∣

≤ µ1

√
r

n1
, (5)

∣

∣

∣

∣

〈eb, PV eb′〉 −
r

n2
1b=b′

∣

∣

∣

∣

≤ µ1

√
r

n2
, (6)

whereea is the vector with theath element equal to1 and
others being zero, while1a=a′ indicates that it is equal to1
whena = a′ and0 otherwise.

A2) For all (a, b) ∈ [n1] × [n2], there exists a constant

µ2 > 0 such that|Tab| ≤ µ2

√
r√

n1n2

, whereTab is the(a, b)
entry of the matrixT.



Note that it has been shown in [6] that when the maximum
(in magnitude) values of theK left and right singular vectors
are bounded, i.e.,

‖uk‖ℓ∞ ≤
√

µB

n1
, ‖vk‖ℓ∞ ≤

√

µB

n2
(7)

with µB = O (1), then the strong incoherence property is
guaranteed withµ ≤ µB

√
r.

Now definen = max (n1, n2) and supposeM satisfies
the strong incoherence property. Then [6] establishes in the
noiseless case that, by observingN randomly selected entries
with N ≥ Cµ2nrlog6n for some constantC, the matrixM
can be recovered exactly with a probability of at least1−n−3.
Further, [7] establishes that, when observations are corrupted
with white noise[E]ij that is zero-mean Gaussian with vari-

anceσ2, the recovery error is bounded as
∥

∥

∥
M− M̂

∥

∥

∥

F
≤

4
√

1
p
(2 + p)min (n1, n2)δ+2δ, wherep = N

n1n2

is the frac-

tion of observed entries.

4. MATRIX COMPLETION FOR MIMO RADAR

The left singular vectors ofZq defined in (3) are the eigenvec-
tors ofZqZ

H
q = HSSHHH , whereH = B (θ)ΣDqA

T (θ).
The right singular vectors ofZq are the eigenvectors of
SHHHHS. SinceS is orthogonal, it holds thatSSH = I.
Thus, the left singular vectors are only determined by ma-
trix H, while the right singular vectors are affected by both
transmit waveforms and matrixH.

For the problem considered in this paper, it is difficult to
determine analytically the behavior of the entries of the left
and right singular vectors ofZq. Instead, we get an idea of
the behavior of the maximum values and the parameters that
affect their spread using simulations. We consider a MIMO
radar setup in which the target direction of arrival (DOA) an-
gles are uniformly distributed in[−90◦, 90◦] and the corre-
sponding target speeds are uniformly distributed in the range
[150, 450]m/s. In addition,βk are following complex Gaus-
sian distribution and kept unchanged forQ = 10 pulses. The
pulse repetition interval isTPRI = 1/4000 second, and the
carrier frequency isf = 109 Hz, resulting inλ = c/f =
0.3 meter. Two types of orthogonal waveforms are consid-
ered: Hadamard and Gaussian orthogonal waveforms. Sev-
eral cases of parameters are verified. Case I:Mr = 40,
L = 128; Case II:Mr = 1000,L = 128; Case III:Mr = 40,
L = 1024. Each case runs for 300 iterations.

Let m1 andm2 denote the maximum element value ofK
left and right singular vectors ofZq. The complementary cu-
mulative distribution function (CDF) curves ofm1 andm2,
i.e.,Pr (m > mi) , i = 1, 2 are plotted in Fig. 2 for Cases I
and II. It can be seen from these plots that asMr increases, the
bounds ofm1 for bothK = 2 andK = 10 decrease, while
the distribution ofm2 does not significantly change whenL
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Fig. 2. Complementary CDF ofm1 andm2. Case I:Mr =
40, L = 128; (a) left singular vectors, (b) right singular vec-
tors; Case II:Mr = 1000, L = 128; (c) left singular vectors,
(d) right singular vectors.

is fixed. Figure 2 (c) shows that asMr gets large,m1 gets
bounded by a small number with high probability. Space lim-
itations prevent us from displaying more figures of Case III,
which show thatm2 is bounded by a small number with high
probability asL gets large.

Extensive simulations also show that the bounds onm1

andm2 scale as1
/√

Mr and1
/√

L, respectively, with some

constant
√
µB. For Gaussian orthogonal waveform andK =

2, µB ≈ 2.4 for the bound ofm1 (see Fig. 3 (a)) andµB ≈
6.5 for the bound ofm2 (see Fig. 3 (b)). ForK = 10
and Hadamard waveform, the scaling laws also hold but with
larger constantsµB. Therefore, depending on the number of
receive antennasMr and the number of samplesL in one
pulse,m1 andm2 can be assumed to be bounded by small
numbers. Based on [6], therefore, we conclude that the strong
incoherence property is likely satisfied in our problem.

It is also worth noting that under Gaussian orthogonal
waveforms,m2 is concentrated in a smaller range as com-
pared with the range for Hadamard waveforms. This indi-
cates that the waveform indeed plays a role for the use of ma-
trix completion, and perhaps the waveform can be optimally
designed to result in low probability of large values form2.

Since the matrix completion conditions appear to be sat-
isfied in our case, we propose that each antenna obtains and
forwards to the fusion center a small number of samples dur-
ing each pulse. Note that along with the samples, the antenna
needs to inform the fusion center on how the sample was ob-
tained so that the fusion center can determine where to posi-
tion the received samples in the receive data matrixZq. In a
practical setting, a pseudo-random sampling ADC at each re-
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Fig. 3. Bounds ofm1 andm2 scales with reciprocal of
√
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and
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L, respectively.

ceive antenna could be used in the place of the Nyquist sam-
pler, where the pseudo-random generator seeds would be dis-
tributed to the receive antennas by the fusion center. Finally,
the fusion center can recover the data matrixX̂q by applying
matrix completion to the received data.

Once the data matrix̂Xq is recovered, it can go through a
matched-filter bank to produce

Yq =
1

L
X̂qS

H = B (θ)ΣDqA
T (θ) + W̃q, (8)

whereW̃q is noise whose distribution is a function of the ad-
ditive noiseWq and the nuclear norm minimization problem
in (4). Next, stackingYq ∈ CMr×Mt into a vectoryq, and
based on the vectors corresponding toQ pulses, the follow-
ing matrix can be formed:YR = [y1, ...,yQ] ∈ CMrMt×Q.
ReshapingYR intoY ∈ C

QMt×Mr , we have

Y = FΣ [b (θ1) , ...,b (θK)] +W, (9)

whereF = [d (ϑ1)⊗ a (θ1) , ...,d (ϑK)⊗ a (θK)], d (ϑ) =
[

1, ej2π2ϑTPRI , ..., ej2π2ϑ(Q−1)TPRI
]T

, with ⊗ denoting the
Kronecker product. The sampled covariance matrix of the
receive data signal can then be obtained asR̂Y = 1

Mr
YYH ,

based on which target estimation can be implemented using
any array processing method such as MUSIC.

5. NUMERICAL RESULTS

In this section we present some simulation results on the per-
formance of the proposed method. We use the simulation set-
ting considered in the previous section, i.e.,Mt = 20, Mr =
40, Q = 5, L = 128. The signal-to-noise ratio (SNR) is set
to 25 dB, whileβk are following complex Gaussian distribu-
tion and kept unchanged forQ pulses. For matrix completion,
the TFOCS software package [11] is used.

First, we plot relative errors (averaged over50 Monte
Carlo runs) of the received data matrix̂Xq for Hadamard
and Gaussian orthogonal (G-Orth) waveforms. The relative

error is defined as
‖Zq−X̂

q‖F

‖Zq‖F

, whereZq is the data matrix
calculated without missing elements. Under each waveform,

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

p

V
al

ue
s

 

 

Reciprocal of SNR
Hadamard
G−Orth

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Minimum DOA separation (degree)

P
ro

ba
bi

lit
y 

of
 r

es
ol

ut
io

n

 

 

Hadamard p=0.3
Hadamard p=0.5
G−Orth p=0.3
G−Orth p=0.5

(b)

Fig. 4. Performance comparisons: (a) Relative error of the
recovered data matrix; (b) Probability of DOA estimation res-
olution.

K = 2 point targets in the far field are randomly generated.
The result is shown in Fig. 4 (a) forq = 1. It can be seen
from this figure that, asp increases, the relative recovery
error of the data matrix under Gaussian orthogonal waveform
reduces to the reciprocal of the SNR faster than that under
Hadmard waveform. A plausible reason for this is that under
the Gaussian orthogonal waveform, the maximum value of
elements in the singular vectors ofZq is bounded by a smaller
number with high probability, as compared with that under
the Hadamard waveform (see Fig. 2).

Next, the probabilities of DOA estimation resolution un-
der the two orthogonal waveforms are plotted in Fig. 4 (b)
for the following scenario. Two targets are randomly gen-
erated among DOA range[−15◦, 15◦] with minimum DOA
separationsdθ = [0.2◦, 0.3◦, 0.4◦, 0.5◦, 0.7◦, 1◦] and the cor-
responding speeds are set to150 and400 m/s. The MUSIC
algorithm is applied to obtain the target DOA information. If

the DOA estimateŝθi, i = 1, 2 satisfy
∣

∣

∣
θi − θ̂i

∣

∣

∣
≤ εdθ, ε =

0.1, we declare this as a success. The probability of DOA res-
olution is then defined as the fraction of successful events in
50 iterations. It can be seen from the figure that whenp = 0.3,
the Gaussian orthogonal waveform has a much better DOA
estimation resolution compared with Hadamard waveform.
As p increases to0.5, the performance difference becomes
small since the relative recovery errors under both waveforms
are similar (see Fig. 4 (a)). Figure 4 confirms that Gaussian
orthogonal waveforms are better than Hadamard waveforms
for matrix completion-based DOA estimation.

6. CONCLUSIONS

We have provided results suggesting that matrix completion
can be used in MIMO radar to reduce the number of data
needed to be communicated to the fusion center by each re-
ceive antenna. Numerical results show that matrix comple-
tion in conjunction with MUSIC can achieve accurate tar-
get estimation with sub-Nyquist samples. Thus, the proposed
method can result in significant savings in terms of data that
need to be obtained at the receive antennas and subsequently
transmitted to the fusion center.
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