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Abstract— This paper addresses the problem of collaborative training
of nonlinear classifiers using big, distributed training data. The supervised
learning strategy considered in this paper corresponds to data-driven
joint learning of a nonlinear transformation that maps the (training)
data to a higher-dimensional feature space and a ridge regression based
linear classifier in the feature space. The key aspect of this paper, which
distinguishes it from related prior work, is that it assumes: (7) the training
data are distributed across a number of interconnected sites, and (i7) sizes
of the local training data as well as privacy concerns prohibit exchange
of individual training samples between sites. The main contribution of
this paper is formulation of an algorithm, termed cloud D-KSVD, that
reliably, efficiently and collaboratively learns both the nonlinear map and
the linear classifier under these constraints. In order to demonstrate the
effectiveness of cloud D-KSVD, a number of numerical experiments on
the MNIST dataset are also reported in the paper.

I. INTRODUCTION

Classification is one of the most important information process-
ing tasks. There exists an extensive body of literature on training
classifiers from labeled data, but much of that work assumes the
training data to be available at a centralized location [1], [2]. On
the other hand, many disciplines in the world today—ranging from
search engines to medical informatics—are increasingly faced with
scenarios in which the training data are geographically distributed
across different interconnected locations (sites). While each one of
the sites in this setting can rely only on its local data for supervised
learning, such an approach can be suboptimal due to issues ranging
from noisy local data and labels to local class imbalance. At the
same time, it might be infeasible in many of these cases to gather all
the distributed data at a centralized location for supervised learning
due to the massive nature of these data and/or privacy concerns.
The challenge in this setting then is design of a collaborative
supervised learning framework in which individual sites collaborate
with each other to approach centralized classification performance
without exchange of individual training samples between the sites.

In this paper, we undertake this challenge and develop a framework
that collaboratively learns a nonlinear classifier at individual sites
from the distributed training data. Our collaborative supervised learn-
ing strategy in this regard corresponds to data-driven collaborative
and joint learning of a nonlinear transformation that maps (training)
data in the input space R™ to a higher-dimensional feature space
and a ridge regression based linear classifier in the feature space. In
order to learn the nonlinear mapping, we resort to the framework
of dictionary learning [3], [4] in computational harmonic analysis.
Specifically, the task of dictionary learning corresponds to obtaining
an overcomplete basis D € R"** K >> n, such that each sample
in the training data is well approximated by no more than 7o < n
columns (atoms) of D. Such a dictionary, which is a linear map
from Fr, = {x € R¥ : ||z|lo < To} to R", in turn (under suitable
conditions on D and 7p) induces a nonlinear map ® p from the input
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space R™ to the feature space Fr, as follows:
®p(y) = arg min [ly — Dzll>. M
zE]—'TO

In the literature, evaluation of nonlinear maps of the form (1) for
a given y € R" is termed sparse coding [4]. We can now use this
terminology to formally describe the goal of this paper as follows:
collaborative exploitation of labeled training data distributed across
sites for joint learning of a dictionary D (equivalently, the nonlinear
map ®p : R" — Fr,) and a linear classification rule in Fr,.

A. Our Contributions and Related Work

There are two main contributions of this paper. First, it develops
a collaborative supervised learning framework for joint dictionary
learning and linear classification rule from distributed training data.
Our development in this regard leverages the centralized framework
of [5] for joint dictionary and classifier learning, termed discrim-
inative K-SVD (D-KSVD), and the collaborative framework of [6]
for reconstructive dictionary learning from distributed data, termed
cloud K-SVD. We accordingly term the framework developed in
this paper as cloud D-KSVD. The second main contribution of this
paper is that it evaluates the performance of cloud D-KSVD by
carrying out a series of numerical experiments on the MNIST dataset
of handwritten digits [7]. The results of these experiments confirm
that collaborative supervised learning is superior to local supervised
learning, especially in the presence of class imbalance at (some of
the) individual sites. These experiments also demonstrate that the
classification performance of our proposed framework not only comes
very close to that of centralized supervised learning, but is also better
than the classification performance of a collaborative framework
based on cloud K-SVD alone.

In terms of connections to prior work, note that a number of
dictionary learning based classifiers have been developed in the
literature in recent years [5], [8]-[14]. Some of these works are
based on reconstructive dictionary learning [8], [9], while others
are based on discriminative dictionary learning [5], [10]-[14]. To
the best of our knowledge, however, all of these works assume the
(labeled or unlabeled) training data to be available at a centralized
location. Recently, we proposed the collaborative framework of cloud
K-SVD in [6] for reconstructive dictionary learning. In this regard,
this paper can be viewed as a demonstration of the usefulness of
some of the principles underlying cloud K-SVD for collaborative
discriminative dictionary learning. While our focus in this paper has
been on combining the ideas in cloud K-SVD and D-KSVD due to
the superior classification performance of D-KSVD in a centralized
setting, it is plausible that the D-KSVD part of our collaborative
framework can be replaced with some of the other (centralized)
discriminative dictionary learning approaches in the literature.

Outside the realm of dictionary learning, distributed classification
has been studied in the literature in various guises. Some of the



earliest interest in this topic arose in the context of distributed sensor
networks [15]-[19]. But the distributed classification problems stud-
ied in works like [15]-[18] primarily focus on fusion of distributed
data for classification, rather than collaborative training of classifiers
at individual sites from distributed data. Similarly, the focus in works
like [19] is on collaborative decision making, rather than collaborative
training, using related (but different) distributed measurements of
the same object. In recent years, there has also been an interest in
parallelizing supervised learning algorithms [20]-[23]. Such works,
however, are based on the premise that training (labeled) data is
initially available at a centralized location.

In terms of the distribution of labeled training data (see Fig. 1),
our work is most closely related to [24]-[35]. In [24], [25], the
authors collaboratively learn kernel-linear least-squares regression
estimators from training data, which can in principle also be used for
classification. In [26]-[35], the focus is on the collaborative training
of (linear and/or kernel) support vector machines (SVMs). Although
works [26], [27] require the sites to be connected in either a fully
connected [26] or a ring [27] topology, other works [28]-[35] can deal
with more general topologies. The fundamental difference between
these works and our work is that we are interested in collaborative
learning of both a nonlinear map and a classifier. In the context
of kernel SVM training, this would be akin to joint, collaborative
learning of a kernel and an SVM. To the best of our knowledge,
however, none of the earlier works address such a problem.

Notational Convention: We use lowercase and uppercase letters to
represent scalars/vector and matrices, respectively. Given a vector v,
[v]; denotes its i-th element, ||v||2 represents its £2 norm, and ||v]|o
counts the number of nonzero entries in it. Given a matrix A, || A||F
denotes its Frobenius norm, while A7 denotes its transpose.

II. PROBLEM FORMULATION

Consider a collection of NV sites that are interconnected to each
other. We express this collection through an undirected, connected
graph G = (V, &), where V ={1,...,N}and £ = {(i,j) € VxV:
sites ¢ and j are connected}. Each of these N sites is interested in
classifying n-dimensional data into one of L possible classes. In order
to facilitate this classification task, we assume each site ¢ has access to
S; labeled training samples {(yl, )}f 1> Where y] € R™ denotes a
training sample, £/ € £ denotes the label of 7, and £ = {1,..., L}.
Given these S = ZZ <y Si labeled training samples dlstrlbuted across
different sites, we are interested in collaboratively and jointly learning
a nonlinear (feature) map ®p and a linear classifier C such that
(ideally) C(®p(z)) = £, for any sample x € R™ that belongs to
class ¢, € L. Note that the composition C o ®p : R — L in this
case is a nonlinear classifier in the input space.

In order to solve this problem, we resort to the framework of
discriminative dictionary learning in which the nonlinear map ®p
is induced by a dictionary D € R™** according to (1). We motivate
that framework by collecting the training samples {yl }]S ‘, into a
matrix Y; € R"*% and writing Y = Y1,Yo,.. YN] In addition,
we associate with each label ZJ a label unit-vector hﬂ = €y e RE,

where e,; denotes the éj th column of the L x L identity ba51s Then,

collectmg the label vectors {h’ }]-;l into a matrix H; € R¥*5: and

writing H = [H1, Ha, ..., Hy], the problem of joint learning of a
dictionary D € R™ ¥ and a linear classifier C can be posed in terms
of the following optimization problem [5]:

(D, W, X) = arg min_[[Y — DX|[f + | H - WX]|;

+B|W|% suchthat Vs=1,...,5 ||zsllo < To. ()
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Fig. 1. An illustration of the distribution of labeled training data across sites.

Here, s € R¥ denotes the s-th column of the coefficient matrix
X € REXS W e REXK denotes the classification matrix, and the
final classification rule C is defined in terms of the matrix W as
C(®p(z)) = argmaxeer |[W®p(x)]e|. Note that the regularization
parameters v and (8 in (2) control the discriminative power and the
complexity of the classifier, respectively.

While (2) is a non-convex problem, [5] provides a solution to this
problem under the rubric of discriminative K-SVD (D-KSVD). But
the D-KSVD framework, which relies on the K-SVD algorithm of
[4] for dictionary learning, assumes (Y, H) to be available at one
location. In contrast, our goal in this paper is to collaboratively solve
(2) at each individual site when the training data is split across N
sites (see Fig. 1). Given the nature of this problem, we can in fact
only learn NV different dictionary—classifier pairs (D;, W;), one pair at
each site, but our goal is to ensure that the classification performances
of these pairs remain close to each other.

III. PROPOSED COLLABORATIVE FRAMEWORK

In this section, we present our approach to collaborative learning
of (D;, W;) at each individual site from distributed training data.
We term our proposed approach cloud D-KSVD, which is based
on the centralized D-KSVD solution to (2) proposed in [5]. Before
discussing cloud D-KSVD, however, we first provide a brief review
of (centralized) D-KSVD for discriminative dictionary learning.

A. Review of Centralized D-KSVD

The key to the D-KSVD solution of [5] is transformation of
the discriminative dictionary learning problem (2) into the classical
reconstructive dictionary learning problem [4]. Specifically, notice
that (2) can be rewritten in the following form:
2

(i)~ () %
viH) ~\aw )
+,BHWHF such that Vs, ||zs|lo < To. (3)

Next, define ¥ € R™*(5+L) [YT \/VHT}T as
data” and D € ROVFDIXE — [D” \ﬁWT]T as “reconstructive
dictionary.” Then it is argued in [5] that making D have unit £5-
norm columns in (3) is heuristically sufficient to remove the S| ||%
term in (3). In other words, [5] promotes the use of the following
optimization program as a surrogate for (3):

(D,W,X) = arg 1 mln +

“training

(D,X) = argmin |Y — DX||% such that Vs, ||zs[o < To. (4)
D.X

1) Training Algorithm: The formulation in (4) reduces the problem
of learning (D,W) from the training data to that of learning a
reconstructive dictionary D from Y. In the D-KSVD formulation,
(4) is solved using the K-SVD dictionary learning algorithm [4].
This involves initialization with some 3(0)7 followed by an alternate-
minimization procedure that alternates between solving (4) first for



X by fixing D and then for D by fixing X. Specifically, assuming
K-SVD has started iteration ¢ > 0, it estimates X (*) by carrying out
sparse coding as follows:

X = argmin |Y — D"V X such that Vs, [|z:[|o < To. (5)

Note that (5) can be efficiently solved using a number of greedy or
optimization-based algorithms [4].
Next, K-SVD estimates D*) by carrying out dictionary update as:

DY = arg min |Y — DX V|2, (6)

The main novelty of K-SVD lies in the manner it efficiently
solves (6). To this end, K-SVD fixes all but the k-th column
c/lm k =1,...,K, of D® and then (dropping the iteration
count for ease of notatlon) defines the representation error matrix
By, =Y — ik d; )., where 2/, denotes the j-th row of X,
Next, it obtains a column submatrix £ of the matrix Ej, by retaining
those columns of Ek whose indices match the indices of the samples
in Y that utilize d Flnally, it updates d by setting it equal to
the dominant left smgular vector of Eff. In addition, it is advocated
in [4] to simultaneously update the k-th row of X ®) at this point by
setting its nonzero entries equal to o1 v{ , where o1 and v1 denote the
largest singular value and right singular vector of EF, respectively.

2) Classification Algorithm: Since K-SVD is guaranteed to con-
verge (under appropriate conditions [4]), the D-KSVD algorithm
obtams D from 4). The next challenge then becomes splitting
D= [DT Nal WT] into a desired discriminative dictionary D
and a classification matrix W. One of the main contrﬂ)u@ns of [5]
is establishing this relationship between the desired (D, W) and the
(D, W) learned using (4). Specifically, [5] shows that

- . ) )
D= [m T2l m], and (7
. ) §

W= lrh 25 - @®)

Once the pair (E,W) is obtained, the classification proceeds as
follows. Given a test sample ¥ € R"™ that belongs to one of the
L classes in £, we first obtain

Z = ®5(y) = argmin ||y — Dz||3 such that ||z[o < To.  (9)

Next, we define h = Wx and then use the classification rule
C(®5(y)) = argmaxee \[ ]e|, where [h]e is the ¢-th entry of h.

B. Cloud D-KSVD

We are now ready to discuss our proposed collaborative framework
for discriminative dictionary learning. Similar to D-KSVD, we are
interested in solving (4) onr D at each site. But the major difference

isthat Y = [?1, 172, ..., Yn] is now distributed across N sites, where
Vi=[v" yH"

1) Initialization: Unlike D-KSVD, initialization of DO in @)
is also a function of the training data at individual sites. In cloud
D-KSVD, we proceed with the initialization of the dictionary f)z@
locally at the i-th site as follows. First, we initialize a dictionary
DEO) € R™ ¥ and carry out local sparse coding using DEO), ie.,

X; = argmin ||Y; — D!” X||% such that Vs, ||zs]jo < To. (10)
X eREXS;
Next, we initialize a local classifier matrix Wi<0> by solving
W, = argmin||Hi — W X% + B[ W][E. (1)

Note that (11) is simply a multivariate ridge regression problem, with
the closed-form solution given by

w9 = x,x] + 807 X, HE. (12)

Finally, we set the initial dictionary at the ¢-th site, ¢ € V), as follows:
DO — [Dm)T fW(mTlT

2) Traznzng Algorithm: After initialization, each site ¢ € V has
access to D ) that is obtained using local data only. Our next goal
is to solve (4) at each site for D; € R*HIIxK by relying on a
collaborative variant of K- SVD that alternates between solvmg (@)
first for (global) X by fixing D; at each site and then for D; by
fixing X = [X1,X2,...,Xn], which will always be partitioned
across the N sites. In our recent work [6], we have proposed such a
collaborative variant using the moniker of cloud K-SVD. Specifically,
assuming cloud K-SVD has started iteration ¢ > 0 in the network,
each site only updates the sparse representation of its local Y; through
sparse coding as follows:

x® = arg min |V; = DI VX|% st s, ||lzsllo < To.  (13)

Next, sites focus on collaboratively updating their individual dic-
tionary estimates {Dz(t)}iev. In this regard, cloud K-SVD takes
its cue from K-SVD and fixes all but the k-th column c/lft,)C of

ﬁgt) at each site. The next challenge then is defining the global,
reduced representation error matrix Ef (we are once again drop-
ping the iteration count for ease of notation), since there are N
different versions of dictionaries in the network. In order to address
this challenge, cloud K-SVD first defines local representation error
matrices F;p = Y, — Zﬁﬁkd J:CL o> Where JJJT denotes the

j-th row of X, () 1t then obtains a submatrix El w of Ei by
retaining the columns of E; ;, whose indices match the indices of the
samples in Y; that utilize &\( ) . Finally, it defines the global, reduced
representation error matrix as ER = [EfYy, ES'y, ... E 1], which
is distributed across the network. Cloud K-SVD then advocates to
update c/izt,z by setting it equal to the dominant left singular vector
uy of EFf. Note that u; is also equal to the dominant eigenvector of
M = E,fE,fT = ey Mi, where M; denotes EkaRkT. One of
the main novelties of cloud K-SVD in this regard is formulation of a
collaborative variant of the classical power method [36] for estimation
of the dominant eigenvector of M. This variant, which is described
and rigorously analyzed in [6], relies on a finite number of iterations
of distributed consensus averaging [37]. While more details of this
part of cloud K-SVD can be found in [6], including a discussion of
the doubly-stochastic mixing matrix needed for dlstrlbuted consensus,
the end result is that each site obtains an updated dZ . that can come
arbitrarily close to wu;. Flnally, cloud K-SVD also simultaneously
updates the k- th row of X, () at this point by setting its nonzero
entries equal to dL kEL T

3) Classification Algorithm: The classification algorithm in cloud
D-KSVD is identical to that in D-KSVD. Specifically, each site at
this point obtains a dictionary D; = [DZT \/'VWZ-T]T, which is
then transformed into the final pair (51-, WZ) according to (7) and
(8). Using this pair, each site can then individually classify any test
sample y € R™ according to the procedure described in Sec. III-A2.

IV. NUMBERICAL RESULTS

In this section, we demonstrate the effectiveness of cloud D-KSVD.
We use the MNIST database [7], which consists of 28 x 28 pixel
images of handwritten digits. For simplicity, each image is down-
sampled to have only 256 features. We work on digits O to 4 in
experiments (L = 5) and we consider a total of 10 sites. We perform



5-fold cross validation on the database by treating % of the data as
test data and the rest as training data in each fold. In the first set of
experiments, we divide the training data uniformly between the 10
sites. We train dictionaries using centralized D-KSVD (assuming all
data is available at a single location), cloud D-KSVD, local D-KSVD
(assuming each site performs training on local training data only)
and cloud K-SVD (sites collaboratively learn purely representative
dictionaries, one for each class). We also train a linear SVM for the
centralized data for comparison with cloud D-KSVD.

To initial the discriminative dictionaries, we first perform 10
iterations of K-SVD for the centralized and local setting and cloud K-
SVD in the distributed setting. We then initial the classifiers according
to (12) using these initial dictionaries. Then, we perform 50 iterations
of D-KSVD for centralized and local setting and cloud D-KSVD
for distributed setting. The parameters selected in these experiments
correspond to a sparsity constraint of 7Ty = 10, v = 0.83 and
K = 500 number of dictionary atoms (100 atoms for each class).

For the representative dictionary, we train a separate dictionary for
each data label by performing 60 iterations of cloud K-SVD. We set
To = 10 and K = 100 for each dictionary (total of 500 atoms for 5
dictionaries). To classify a test data sample, the coefficient vector of
the test sample is obtained for each dictionary using sparse coding.
The assigned class to the sample is the index of the dictionary that
best represents the sample (has the least representation error).

The test data classification results are shown in Fig. 2(a) where
the sites’ average classification error is plotted along with the worst
case and best case error for each label for cloud D-KSVD, local
D-KSVD and cloud K-SVD. The results demonstrate that cloud D-
KSVD outperforms local D-KSVD and has a performance close
to the centralized D-KSVD and centralized linear SVM. Also, the
classification performance of various sites is approximately identical
when using cloud D-KSVD due to the fact that they are collaborating
with one another. Note that non-linear SVM will likely outperform
linear SVM, but we do not make the comparison with non-linear
SVM here as our parameters are not optimally chosen. Finally,
observing the classification error of cloud D-KSVD and cloud K-
SVD, it is evident that cloud D-KSVD outperforms cloud K-SVD
for all the class labels.

In the second set of experiments, we consider the case of the
sites not having the same number of training data. In real world
applications, some sites may have access to a smaller number of
training data and there may be class imbalance in some sites (different
class sizes). We consider that 80% of the labeled data is distributed
among half of the sites, while the other 20% is distributed among
the other half of the sites. The chosen parameters are similar to the
previous simulations. The classification errors for this case are plotted
in Fig. 2(b). It is apparent that distributed learning of the dictionary
and classifier has a great advantage over training based on locally
available data for sites with a smaller number of training data.

In the case of balanced data across sites, the nor@alized distance
of the dictionary learned by centrali/ged D-KSVD, D¢, and the one
learned by cloud D-KSVD at site ¢, Dp ;, as a function of the number
of dictionary learning iterations is defined as

2

g0 — % Hﬁg) - DY, L t={12,.,50), i€V, (4

Fig. 2(c) plots this normalized distance averaged over 10 sites along
with the least and most normalized distance as a function of the
number of iterations. It is evident that the average normalized distance
does not vary significantly across different iterations and sites obtain
similar dictionaries.
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Fig. 2. Performance summary of cloud D-KSVD. (a) and (b) compare the
classification performance of cloud D-KSVD with that of centralized and
local D-KSVD, centralized linear SVM, and cloud K-SVD. The results for
cloud D-KSVD, local D-KSVD and cloud K-SVD are displayed using bars
to highlight the best, worst, and average error across sites. (c) displays the
average normalized distance along with the least and most normalized distance
between the dictionaries obtained using cloud D-KSVD and centralized D-
KSVD as a function of the number of dictionary learning iterations.

V. CONCLUSION

In this paper, we developed a collaborative framework for learning
a nonlinear classifier from distributed data. Our framework corre-
sponded to joint learning of a dictionary and a linear classifier by
leveraging recent results on discriminative and collaborative dictio-
nary learning. In order to verify the effectiveness of our approach, we
carried out numerical experiments that showed that the performance
of our framework comes very close to that of centralized methods.
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