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ABSTRACT

This paper provides bounds on the sample complexity of estimat-
ing Kronecker-structured dictionaries forKth-order tensor data. The
training samples are generated by linear combinations of these struc-
tured dictionary atoms and observed through white Gaussian noise.
The lower bound follows from a lower bound on the minimax risk
for general coefficient distributions and can be further specialized
to sparse-Gaussian coefficients. This bound scales linearly with the
sum of the product of the dimensions of the (smaller) coordinate dic-
tionaries for tensor data. An explicit dictionary estimation algorithm
for 2nd-order tensor data is also provided whose sample complex-
ity matches the lower bound in the scaling sense. Numerical experi-
ments highlight the advantages associated with explicitly accounting
for tensor structure of data during dictionary learning.

Index Terms— Kronecker-structured dictionary learning, mini-
max bounds, sparse representations, tensor data.

1. INTRODUCTION

Dictionary learning is a technique for finding sparse representations
of signals or data and has applications in various tasks, such as image
denoising and inpainting [1], audio processing [2], and classifica-
tion [3,4]. In data-driven learning of geometric structures, explicitly
accounting for the structure of the data has been shown to be advan-
tageous over traditional dictionary learning methods such asK-SVD
[5–12]. Many real-world signals are high dimensional but may have
a simpler latent structure; dictionary learning that uses this structure
can yield more efficient representations and subsequent processing.
Although there has been prior works that empirically demonstrate
the effectiveness of structured learning techniques [6–12], our goal
in this paper is to prove that taking advantage of the data’s tensor
structure can yield more sample-efficient dictionary learning.

In this paper, we focus on the Tucker model [13] for tensor
data and provide lower bounds on the minimax risk of estimating
Kronecker-structured (KS) dictionaries consisting of K ≥ 2 coordi-
nate dictionaries that sparsely represent Kth-order tensor data. Our
approach uses the standard procedure for lower bounding the mini-
max risk in nonparametric estimation by connecting it to the maxi-
mum probability of error on a carefully constructed multiple hypoth-
esis testing problem [14, 15]: the technical challenge is in finding
the right hypotheses. In particular, consider a dictionary D ∈ Rm×p

consisting of the Kronecker product of K coordinate dictionaries
Dk ∈ Rmk×pk , k ∈ {1, . . . ,K}, where m =

∏K
k=1mk and

p =
∏K

k=1 pk, that is generated within the radius r neighborhood
(taking the Frobenius norm as the distance metric) of a fixed refer-
ence dictionary. Then, our analysis shows that given a sufficiently
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large r and keeping some other parameters constant, a sample com-
plexity of N = Ω(

∑K
k=1mkpk) is necessary for reconstruction of

the true dictionary up to a given estimation error. Our second con-
tribution is development and analysis of an algorithm to learn dic-
tionaries formed by the Kronecker product of 2 smaller dictionaries
that can be used to represent 2nd-order tensor data. To this end, we
show that under certain conditions on the local neighborhood, the
proposed algorithm can achieve one of the earlier obtained minimax
lower bounds (in terms of scaling). While not a complete converse,
this result suggests our lower bounds may be tight in more general
settings. Furthermore, we demonstrate the performance of the pro-
posed algorithm via numerical experiments.

Prior theoretical studies of dictionary learning have either fo-
cused on existing algorithms for non-KS dictionaries [5, 16–21] or
lower bounds on minimax risk of dictionary learning for vector-
valued data [22, 23]. In particular, Jung et al. [22, 23] provide
minimax lower bounds for dictionary learning from vector-valued
data under several coefficient vector distributions and discuss a
regime where the bounds are tight for some signal-to-noise (SNR)
values. In the case of a given (unstructured) dictionary D and suf-
ficiently large neighborhood radius r, they show that N = Ω(mp)
samples are required for reliable recovery of the dictionary up to
a prescribed mean squared error (MSE). This is in contrast to our
N = Ω(

∑K
k=1mkpk) bound for learning of structured dictionaries,

which matches the essential number of degrees of freedom in a KS
dictionary and also generalizes our previous construction [24] for
K = 2 to general K. Further, we provide an algorithm that matches
our lower bound for K = 2. We conclude by noting that many
technical details are omitted in this paper due to space constraints;
nonetheless, full details can be found in our journal preprint [25].

Notation Conventions: Underlined bold upper-case, bold upper-
case and lower-case letters are used to denote tensors, matrices and
vectors, respectively. Lower-case letters denote scalars. The k-th
column of X is denoted by xk and xI denotes the vector consisting
of the elements of x with indices I. Let Id be the d × d identity
matrix. Norms are given by subscripts, so ‖v‖0 and ‖v‖2 are the
`0 and `2 norms of v, while ‖X‖2 and ‖X‖F are the spectral and
Frobenius norms of X. We write [K] for {1, . . . ,K}. We write
X1 ⊗X2 for the Kronecker product of two matrices X1 ∈ Rm×n

and X2 ∈ Rp×q: the result is an mp × nq matrix. For matrices
X1 and X2, we define their distance to be ‖X1 −X2‖F . We write
vec(Y) for the vectorization of a tensor Y ∈ Rm1×m2×···×mK . We
use the standard “big-O” notation for asymptotic scaling.

2. PROBLEM FORMULATION

We model our multidimensional (training) signals as Kth-order ten-
sors Yj ∈ Rm1×m2×···×mK . According to the Tucker model [13],
given coordinate dictionaries Dk ∈ Rmk×pk , a coefficient tensor
Xj ∈ Rp1×p2×···×pK , and a noise tensor Nj = Rm1×m2×···×mK ,



we can write yj , vec(Yj) as

yj =
( ⊗
k∈[K]

Dk

)
xj + nj , (1)

where xj , vec(Xj) and nj , vec(Nj). Let m =
∏

k∈[K]mk

and p =
∏

k∈[K] pk. Concatenating N independent and identically
distributed (i.i.d) noisy observations {yj}Nj=1, which are realizations
according to the model (1), into Y ∈ Rm×N , we obtain

Y = DX + N, (2)

where D ,
⊗

k∈[K] Dk is the unknown KS dictionary, X ∈ Rp×N

is a coefficient matrix consisting of i.i.d random coefficient vectors
with known distribution that has zero-mean and covariance matrix
Σx, and N ∈ Rm×N is assumed to be additive white Gaussian
noise (AWGN) with zero mean and variance σ2.

We assume the true KS dictionary D consists of unit norm
columns and we carry out local analysis around a reference dictio-
nary D0. Specifically, let D0 =

⊗
k∈[K] D(0,k) ∈ D be a KS

dictionary with ‖d(0,k),i‖2 = 1 for all k ∈ [K] and i ∈ [pk], where

D ,
{
D′ ∈ Rm×p :‖d′i‖2 = 1 ∀i ∈ [p],D′ =

⊗
k∈[K]

D′k,

D′k ∈ Rmk×pk ∀k ∈ [K]
}

(3)

and we assume the true generating KS dictionary D belongs to a
neighborhood around D0:

D ∈ X (D0, r) ,
{
D′ ∈ D :

∥∥D′ −D0

∥∥
F
< r
}

(4)

for some fixed radius r. Note that the reference dictionary D0 ap-
pears in the analysis as an artifact of our proof technique to con-
struct the dictionary class. In particular, if r is sufficiently large,
then X (D0, r) ≈ D.
Minimax Risk. We are interested in lower bounding the minimax
risk of estimating D based on observations Y, which is defined as
the worst-case mean squared error (MSE) that can be obtained by
the best KS dictionary estimator D̂(Y). That is,

ε∗ = inf
D̂

sup
D∈X (D0,r)

EY

{∥∥D̂(Y)−D
∥∥2
F

}
, (5)

where D̂(Y) can be estimated using any KS dictionary learning
algorithm. In order to lower bound this minimax risk ε∗, we em-
ploy a standard reduction to the multiple hypothesis testing used in
the literature on nonparametric estimation [14, 15]. This approach
is equivalent to generating a KS dictionary Dl uniformly at ran-
dom from a carefully constructed class DL = {D1, . . . ,DL} ⊆
X (D0, r), L ≥ 2, for a given (D0, r). A lower bound on the min-
imax risk in this setting depends not only on problem parameters
such as the number of observations N , noise variance σ2, dimen-
sions {mk}Kk=1 and {pk}Kk=1 of the true KS dictionary, neighbor-
hood radius r, and coefficient covariance Σx, but also on various
aspects of the constructed class DL [14]. To ensure a tight lower
bound, we must construct DL such that the distance between any
two dictionaries in DL is large but the hypothesis testing problem
is hard; that is, two distinct dictionaries Dl and Dl′ should produce
similar observations. Specifically, for l, l′ ∈ [L], and given error
ε ≥ ε∗, we desire a construction such that for all l 6= l′

‖Dl −Dl′‖F ≥ 2
√
γε, and DKL

(
fDl(Y)||fDl′ (Y)

)
≤ αL,

where DKL

(
fDl(Y)||fDl′ (Y)

)
denotes the Kullback-Leibler

(KL) divergence between the distributions of observations based on
Dl ∈ DL and Dl′ ∈ DL, while γ, αL, and ε are non-negative
parameters. Observations Y = DlX + N in this setting can be
interpreted as channel outputs that are used to estimate the input Dl

using an arbitrary KS dictionary algorithm that is assumed to achieve
the error ε. Our goal is to detect the correct generating KS dictionary
index l from estimated dictionary D̂(Y). For this purpose, we use a
minimum distance detector, l̂ = minl′∈[L]

∥∥D̂(Y)−Dl′
∥∥
F

. We can
then derive a lower bound on the probability of error using Fano’s
inequality [15], which involves the mutual information I(Y; l) be-
tween the observations Y and the dictionary Dl. Since evaluating
I(Y; l) is challenging, we adopt the same approach as Jung et
al. [23] by assuming the decoder/estimator has access to some side
information T(X) such that the conditional distribution of Y be-
comes multivariate Gaussian (recall that I(Y; l) ≤ I(Y; l|T(X))).
Our final results then follow from the fact that any lower bound for
ε∗ given the side information T(X) is also a lower bound for the
general case [23]. Note that our final results are applicable to the
global KS dictionary learning problem, since the minimax lower
bounds that are obtained for any D ∈ X (D0, r) are also trivially
lower bounds for D ∈ D.
Coefficient Distribution. Our lower bounds hold under a generative
model for the tensor data. We provide a bound for general coefficient
distributions and a tighter bound (in some regimes) for the special
case of sparse Gaussian coefficients.

1. General Coefficients: First, we consider the general case,
where x is a zero-mean random coefficient vector with covariance
matrix Σx = Ex

{
xx>

}
. We make no additional assumption on

the distribution of x. We assume side information T(X) = X to
obtain a lower bound on the minimax risk in this case.

2. Sparse Gaussian Coefficients: We also consider sparse co-
efficient vectors and obtain a bound which only uses the support
supp(x) (indices of nonzero entries of x) as side information. In
this case, the random support of x is assumed to be distributed uni-
formly over E = {S ⊆ [p] : |S| = s}:

P(supp(x) = S) =
1(
p
s

) , for any S ∈ E . (6)

We further assume that the coefficient vectors generated according to
(6) are i.i.d. Gaussian: xS ∼ N (0, σ2

aIs). As a result, conditioned
on side information T(xk) = supp(xk), observations yk follow a
multivariate Gaussian distribution. Parts of our forthcoming results
also rely on the restricted isometry property (RIP) of a matrix:

Restricted Isometry Property (RIP): A matrix D̃ with unit `2
norm columns satisfies the RIP of order s with constant δs if (1 −
δs)‖x‖22 ≤ ‖D̃x‖22 ≤ (1 + δs)‖x‖22 for all x such that ‖x‖0 ≤ s.

3. LOWER BOUND FOR GENERAL DISTRIBUTION

Theorem 1. Consider a KS dictionary learning problem withN i.i.d
observations generated according to model (1). Suppose the true
dictionary satisfies (4) for some r and fixed reference dictionary D0.
Then for any coefficient distribution with mean zero and covariance
Σx, we have the following lower bound on ε∗:

ε∗ ≥ t×min

{
p

4
,
r2

8K
,

σ2

16NK‖Σx‖2

(
c1
( ∑
k∈[K]

pk(mk − 1)
)

− K

2
log2 2K − 2

)}
, (7)



for any 0 < t < 1 and any 0 < c1 <
1−t

8 log 2
.

Outline of Proof: The idea of the proof is to construct a set
of L distinct KS dictionaries DL = {D1, . . . ,DL} ⊂ X (D0, r)
such that for any pair l, l′ ∈ [L] and any positive desired error

ε < tp
4

min
{
r2, r4

2Kp

}
,

‖Dl −D′l‖F ≥ 2
√

2ε, for l 6= l′. (8)

We select Dl ∈ DL uniformly fromDL and generate data according
to (2). Given side information T(X) = X, the entries of Y are mul-
tivariate Gaussian; we can then upper bound the conditional mutual
information I(Y; l|T(X)) by upper bounding the KL divergence
between multivariate Gaussians. Assuming (8) holds forDL, if there
exists an estimator achieving the minimax risk ε∗ ≤ ε and the recov-
ered dictionary D̂(Y) satisfies ‖D̂(Y) −Dl‖F <

√
2ε, the mini-

mum distance detector can recover Dl. Since ε∗ is bounded, using
Markov’s inequality, the probability of error P(D̂(Y) 6= Dl) ≤
P(‖D̂(Y)−Dl‖F ≥

√
2ε) can be upper bounded by 1

2
. Then from

Fano’s inequality, (1 − P(D̂(Y) 6= Dl)) log2 L − 1 ≤ I(Y; l) ≤
I(Y; l|T(X)), we find a lower bound on I(Y; l|T(X)). Using our
bounds on the conditional MI, we can finally give a bound on ε∗ in
terms of L. We use the constraint in (8) in the proof of Theorem 1
for simplicity: the constant 2

√
2 can be replaced with any arbitrary

γ > 0. The complete technical proof of Theorem 1 is given in [25].
Although the similarity of our model to that of [23] suggests that the
proof should be a simple extension of the proof of Theorem 1 in Jung
et al. [23], the hypotheses construction for KS dictionaries is more
complex and its analysis requires a different approach.

4. LOWER BOUND FOR SPARSE GAUSSIAN
DISTRIBUTION

Theorem 2. Consider a KS dictionary learning problem with N
i.i.d observations generated according to model (1). Suppose the
true dictionary satisfies (4) for some r and fixed reference dictionary
D0. If the reference coordinate dictionaries {D0,k, k ∈ [K]} satisfy
RIP(s, 1

2
) and the random coefficient vector x is selected according

to (6) with xS ∼ N (0, σ2
aIs), we have the following bound on ε∗:

ε∗ ≥ t×min

{
p

4s
,
r2

8K
,

σ4p

144(34K)σ4
aNs2

(
c1
( ∑
k∈[K]

pk(mk − 1)
)

− K

2
log2 2K − 2

)}
, (9)

for any 0 < t < 1 and any 0 < c1 <
1−t

8 log 2
.

Note that in Theorem 2, D (or its coordinate dictionaries) need
not satisfy the RIP condition. Rather, the RIP is only needed for
the coordinate reference dictionaries, {D0,k, k ∈ [K]}, which is a
significantly weaker (and possibly trivial to satisfy) condition. The
proof of Theorem 2 is provided in [25].

5. PARTIAL CONVERSE

We now study a special case and introduce an algorithm that achieves
the lower bound in Theorem 1 for 2nd-order tensors.

Theorem 3. Consider a dictionary learning problem with N i.i.d
observations according to model (1) for K = 2 and let the true
dictionary satisfy (4) for D0 = Ip and some r > 0. Further, as-
sume the random coefficient vector x is selected according to (6),

x ∈ {−1, 0, 1}p and nonzero entries of x can have any distribu-
tion. Next, assume noise standard deviation σ and express the KS
dictionary as D = (Ip1 + ∆1) ⊗ (Ip2 + ∆2), where p = p1p2,
‖∆1‖F ≤ r1 and ‖∆2‖F ≤ r2. Then, if the following inequalities
are satisfied:

r1
√
p2 + r2

√
p1 + r1r2 ≤ r, (r1 + r2 + r1r2)

√
s ≤ 0.1

max

{
r21
p2
,
r22
p1

}
≤ 1

2N
, σ ≤ 0.4, (10)

there exists a dictionary learning scheme whose MSE satisfies

EY

{
‖D̂(Y)−D‖2F

}
≤ 8p

N

(
σ2(p1m1 + p2m2)

s
+ 3(p1 + p2)

)
+8p exp

(
−0.08pN

σ2

)
.

KS Dictionary Learning Algorithm: To prove Theorem 3, we de-
scribe an estimator that thresholds observations and applies an alter-
nating update rule to learn the coordinate dictionaries. The analysis
of this estimator (provided in [25]) is the proof of Theorem 3.

Coefficient Update: We utilize a simple thresholding technique
for this purpose. Specifically, for all j ∈ [N ] we have:

x̂j = (x̂j,1, . . . , x̂j,p)>, x̂j,l =


1 if yj,l > 0.5,

−1 if yj,l < −0.5,

0 otherwise.
Dictionary Update: Denoting A , Ip1 + ∆1 and B , Ip2 +

∆2, we can write D = A ⊗ B. We update the columns of Â

and B̂ separately. To learn Â, we take advantage of the Kronecker
structure of the dictionary and divide each observation yj ∈ Rp1p2

into p2 observations y′(j,k2)
∈ Rp1 :

y′(j,k2) = {yj,p2i+k2}
p1−1
i=0 , k2 = [p2], j = [N ]. (11)

This increases the number of observations to Np2. We also divide
the original and estimated coefficient vectors and the noise vectors:

x′(j,k2) = {xj,p2i+k2}
p1−1
i=0 , x̂′(j,k2) = {x̂j,p2i+k2}

p1−1
i=0 ,

n′(j,k2) = {nj,p2i+k2}
p1−1
i=0 , k2 = [p2], j = [N ]. (12)

To update columns of B̂, we follow a different procedure to divide
the observations. Specifically, we divide each observation yj ∈
Rp1p2 into p1 observations y′′(j,k1)

∈ Rp2 :

y′′(j,k1) =
{
yj,i+p1(k1−1)

}p2
i=1

, k1 = [p1], j = [N ]. (13)

This increases the number of observations to Np1. The coefficient
vectors and noise vectors are also divided similarly:

x′′(j,k1) =
{
xj,i+p1(k1−1)

}p1−1

i=0
, x̂′′(j,k1) =

{
x̂j,i+p1(k1−1)

}p1−1

i=0
,

n′′(j,k1) =
{
nj,i+p1(k1−1)

}p2
i=1

, k1 = [p1], j = [N ]. (14)

The recovered dictionary in this case is D̂ = Â⊗ B̂ and the update
rules for columns of Â and B̂ are:

ãl1 =
p1
Ns

N∑
j=1

p2∑
k2=1

x̂′(j,k2),l1y′(j,k2), âl1 = PB1(ãl1), l1 ∈ [p1],

b̃l2 =
p2
Ns

N∑
j=1

p1∑
k1=1

x̂′′(j,k1),l2y′′(j,k1), b̂l2 = PB1(b̃l2), l2 ∈ [p2],



(a)

(b)

Fig. 1: Performance summary of KS dictionary learning algorithm
for p = {128, 256, 512}, s = 5 and r = 0.1. (a) plots the ratio
of the empirical error of our KS dictionary learning algorithm to the
obtained error upper bound along with error bars and (b) shows the
performance of our KS dictionary learning algorithm compared to
the unstructured learning algorithm proposed in [23].

where PB1(·) denotes projection on the closed unit ball and ensures
that ‖âl1‖2 ≤ 1 and ‖b̂l2‖2 ≤ 1. Note that although projection
onto the closed unit ball does not ensure the columns of D̂ will have
unit norms, our analysis only imposes this condition on the gener-
ating dictionary and the reference dictionary, and not on the final
recovered dictionary.

6. NUMERICAL EXPERIMENTS

We implemented the preceding estimation algorithm for 2nd-order
tensor data. Figure 1a shows the ratio of the empirical error of the
proposed KS dictionary learning algorithm to the obtained upper
bound in Theorem 3 for 50 Monte Carlo experiments. This ratio
is plotted as a function of the sample size for three choices of the
number of columns p: 128, 256, and 512. The experiment shows
that the ratio is approximately constant as a function of sample size,
verifying the theoretical result that the estimator meets the mini-
max bound in terms of error scaling as a function of sample size.
Figure 1b shows the performance of our KS dictionary learning al-

gorithm compared to the unstructured dictionary learning algorithm
provided in [23]. It is evident that the error of our algorithm is sig-
nificantly less than that for the unstructured algorithm for all choices
of p. This verifies that taking the structure of data into consideration
can indeed lead to lower dictionary identification error.

7. DISCUSSION AND CONCLUSION

Table 1: Order-wise lower bounds on the minimax risk

Distribution
Dictionary Unstructured KS (this paper)

1. General
σ2mp

N‖Σx‖2
σ2(
∑

k∈[K]mkpk)

NK‖Σx‖2

3. Gaussian Sparse
p2

NmSNR2

p(
∑

k∈[K]mkpk)

34KNm2 SNR2

In this paper we first gave a lower bound for the worst-case
mean-squared error (MSE) in learning Kronecker-structured (KS)
dictionaries that generateKth-order tensor data. Table 1 summarizes
the lower bounds on the minimax rates from [23] and this work. The
bounds are given in terms of the number of coordinate dictionaries
K, the dictionary size parameters (mk’s and pk’s), the coefficient
distribution parameters, the number of samples N , and SNR, which

is defined as SNR =
Ex

{
‖x‖22

}
En {‖n‖22}

=
Tr(Σx)

mσ2
. These scaling results

hold for sufficiently large p and neighborhood radius r. Compared to
the results for the unstructured dictionary learning problem [23], we
are able to decrease the lower bound for various coefficient distribu-
tions by reducing the scaling Ω(mp) to Ω(

∑
k∈[K]mkpk), which is

the number of degrees of freedom in a KS dictionary. The risk de-
creases with the number of samplesN and the tensor orderK; larger
K for fixedmpmeans assuming more structure, thereby simplifying
the problem.

The general coefficient results in the first row of Table 1 show
that the minimax risk scales like 1/SNR (since ‖Σx‖2 ≤ Tr(Σx)).
For the sparse Gaussian coefficient results in the second row, we
assume less side information for the lower bound but require that
the reference coordinate dictionaries satisfy RIP(s, 1/2). This addi-
tional assumption has two implications: (1) it introduces the factor of
1/34K in the minimax lower bound, and (2) it imposes the following
condition on the sparsity model: s ≤ mink∈[K]{pk}. Nonetheless,
the minimax lower bound is tighter for sparse Gaussian coefficients
than general coefficients for some SNR regimes.

We also provided a simple KS dictionary learning algorithm in
Section 5 for K = 2 and analyzed its MSE E

{
‖D̂(Y) − D‖2F

}
.

In terms of scaling, the upper bound obtained for the MSE in Theo-
rem 3 matches the lower bound in Theorem 1 provided p1 + p2 <
m1p1 +m2p2

mSNR
holds. This result suggests that more general KS dic-

tionary learning algorithms may be developed to achieve the lower
bounds reported in this paper.

Finally, while our analysis is local in the sense that we assume
the true dictionary belongs in a local neighborhood with known ra-
dius around a fixed reference dictionary, the derived minimax risk
lower bounds effectively become independent of this radius for suf-
ficiently neighborhood radius. The full version of this work can be
found in our journal preprint [25].
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