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Abstract—This paper addresses the problem of channel estima-
tion in multiple-input and multiple-output orthogonal frequency-
division multiplexing (MIMO-OFDM) systems for the case when
the underlying multipath channel is approximately sparse in the
angle-delay domain. To this end, an algorithm for deterministic
selection of pilot tones over which (either random or determinis-
tic) training vectors can be transmitted is proposed. In addition,
conditions are derived for the minimum number of pilot tones
needed by the proposed algorithm to ensure reliable estimation
of the underlying channel using reconstruction methods from the
compressed sensing literature. Finally, effectiveness of the pro-
posed algorithm is demonstrated through numerical experiments.

Index Terms—Channel estimation, compressed sensing,
MIMO-OFDM systems

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
a multi-carrier modulation scheme that achieves high data
rates in wireless systems. Benefits of OFDM are increased
symbol duration from dividing the channel into overlapping
orthogonal narrowband subchannels, thereby eliminating inter-
symbol interference, and efficient implementation using fast
Fourier transform (FFT) and inverse FFT. In multiple-input
and multiple-output (MIMO) systems, the transmitter and/or
receiver are equipped with multiple antennas, which creates
multiple parallel data streams and enhances system reliability.

For coherent signal detection and low bit error rates in
MIMO-OFDM systems, periodic channel estimation is es-
sential at the receiver. Blind channel estimation methods
use the statistics of unknown data in order to estimate the
underlying channel from the channel output [1]–[5]. Semi-
blind approaches enhance the performance of blind methods
by transmitting a small amount of training data known to the
receiver [6], [7]. Although these techniques have high spectral
efficiency, they often require a constant channel over a large
number of symbols and tend to suffer from high complexity. In
training-based methods, training data known to the receiver are
transmitted for channel estimation. OFDM subchannel selec-
tion (pilot tones) for transmitting training symbols and training
sequence design are key aspects of this problem for minimum
resource utilization and reliable estimation. Wireless industry
standards require specification of deterministic pilot tones in
wireless systems. Therefore, deterministic selection of pilot
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tones for training-based MIMO-OFDM channel estimation—
the focus of this paper—is an important problem.

Most of the current training-based methods consider rich-
scattering channels [8]–[17] and perform channel estimation
using criteria such as maximum likelihood or minimum mean
square error. In particular, in [8], a scheme is proposed for
optimal selection of pilot tones and training sequence to
minimize the mean square error in MIMO-OFDM systems.
The selected pilot sequences are equispaced in frequency,
equipowered, and phase-shift orthogonal, which result in low
channel estimation error. But such techniques overuse channel
resources, as they fail to exploit the fact that in wideband
MIMO-OFDM systems, multipath wireless channels are usu-
ally approximately sparse in the delay-angle domain [18].

One of the main contributions of this work is providing
an algorithm for deterministic pilot tone selection to estimate
approximately sparse multipath channels in MIMO-OFDM
systems. We also provide a lower bound on the number
of selected pilot tones, Ntr, to ensure reliable estimation
of the channel using the Dantzig selector (DS) [19]. We
focus on DS for mainly theoretical reasons, since it provides
some of the best guarantees in the literature for estimation
of approximately sparse signals in the presence of Gaussian
noise. In general, however, our selection of pilot tones results
in reliable estimation of channels using any state-of-the-art
reconstruction method. This is established in the paper using
extensive numerical simulations.

In terms of relation to prior work, some works on com-
pressive channel estimation in MIMO-OFDM systems include
[18], [20], [21]. But none of these works address the problem
of deterministic selection of pilot tones across all transmit
antennas of a MIMO-OFDM system for approximately sparse
channels. In [18], the selection of pilot tones and training
sequence design are random, whereas [21] addresses this
problem using a deterministic approach. We introduce a de-
terministic pilot tone selection algorithm and design random
training sequences for reliable channel recovery in this paper.
Note that the random sequence can also be substituted with a
deterministic sequence having low autocorrelation. The main
difference between our work and [21] is the selection of
deterministic pilot tones across transmitting antennas. We
select the same set of tones to transmit training data on all
transmit antennas, while in [21] the pilot tones vary across
the transmit antennas. The implementation of [21] seems an



extremely difficult, if not an impossible, task. Finally, several
works have studied single-input and single-output (SISO)
OFDM compressive channel estimation [22]–[26]. In [26],
a deterministic scheme for pilot tone and training sequence
selection is provided. Our work is an extension of the pilot
tone selection procedure of [26] to MIMO-OFDM systems.

Notational Convention: Lowercase letters are used for
scalars and vectors, and uppercase letters are used for matrices.
Also, ‖v‖1, ‖v‖2, and ‖v‖∞ denote the `1-, `2- and `∞-norms
of the vector v, respectively, while vT and vH denote the
transpose and Hermitian of the vector v, respectively.

II. SYSTEM MODEL

In this section, we describe our channel model in the
MIMO-OFDM setting. We consider a broadband multipath
channel H with NT ∈ N and NR ∈ N half-wavelength spaced
linear arrays at the transmitter and receiver, respectively,
and the time-varying frequency response matrix H(t, f) ∈
CNR×NT . We assume Np physical propagation paths with βn,
θR,n, θT,n, τn, and νn being the complex path gain, angle of
arrival (AoA), angle of departure (AoD), delay, and Doppler
shift associated with the n-th path, respectively. In this case,
the frequency response matrix can be expressed as

H(t, f) =

Np∑
n=1

βnaR(θR,n)a
H
T (θT,n)e

−j2πτnfej2πνnt, (1)

where aHT (θT ) ∈ CNT and aR(θR) ∈ CNR denote the
array steering and response vectors, respectively, for trans-
mitting/receiving in the θT /θR direction [18]. We assume the
channel is maximally spread in the angle space, (θR,n, θT,n) ∈
[−1/2, 1/2] × [−1/2, 1/2], while τn ∈ [0, τmax], and νn ∈
[−νmax/2, νmax/2].

Next, let x(t) ∈ CNT denote the transmitted signal over
H. We assume the symbol duration to be [0, T ] (i.e., x(t) =
0 ∀t 6∈ [0, T ]) and signal bandwidth to be [−W/2,W/2] (i.e.,
X(f) = 0 ∀f 6∈ [−W/2,W/2]), resulting in a temporal signal
space of dimension N0 = WT . We assume H to be strictly
frequency selective (i.e., Wτmax > 1 and Tνmax � 1), which
implies H(t, f) ≈ H(f) since the ej2πνnt factor in (1) can be
ignored for t ∈ [0, T ]. Instead of working directly with (1),
which has nonlinear dependencies on the channel parameters,
we will work with the canonical linear representation H̃(f) of
H, which corresponds to uniform sampling of the angle-delay
space at the Nyquist rate (1/NT , 1/NR, 1/W ). That is [18],

H(f) ≈ H̃(f) =

L−1∑
`=0

ARH
T
v (`)A

H
T e
−j2π `

W f . (2)

Here, L , dWτmaxe+1, AT ∈ CNT×NT and AR ∈ CNR×NR
are unitary (Fourier) matrices, and Hv(`) ∈ CNT×NR =
[hv,1(`) . . .hv,NR(`)] , ` = 0, . . . , L−1, is termed the channel
coefficient matrix associated with the `-th discrete delay. In
the following, Hv(i, k, `), k = 1, . . . , NT , will be used to
denote the k-th entry of hv,i(`) ∈ CNT . Note that the sampled
channel coefficients {Hv(i, k, `)} can be expressed in terms

of the physical paths by first dividing the propagation paths
into the following subsets:

SR,i , {n : θR,n ∈ (i/NR − 1/2NR, i/NR + 1/2NR]},
ST,k , {n : θT,n ∈ (i/NT − 1/2NT , i/NT + 1/2NT ]},
Sτ,` , {n : τn ∈ (`/W − 1/2W, `/W + 1/2W ]}, (3)

and then noting from [18] that

Hv(i, k, `) ≈
∑

n∈SR,i∩ST,k∩Sτ,`

βnfNR(i/NR − θR,n)

× f∗NT (k/NT − θT,n)sinc(`−Wτn), (4)

where fN (θ) , 1/N
∑N−1
i=0 e−j2πiθ and sinc(x) , sin(πx)

πx .
Our goal here is to estimate the NTNRL channel coeffi-

cients {Hv(i, k, `)} for the case when H is approximately
sparse, or s-compressible, per resolvable AoA.

Definition 1 (s-compressible channel). Let Hv,i(j) , j =
1, . . . , NTL, denote the j-th largest (in magnitude) coefficient
associated with i-th resolvable AoA. We say that the channel
H is s-compressible per resolvable AoA if

|Hv,i(j) | ≤ rj
− 1
s , i = 1, . . . , NR, (5)

for parameters r > 0 and s ≤ 1.

In training based methods, the transmitted signal can be
expressed as the addition of the training and data components:
x(t) = xtr(t) + xdata(t). Assuming xtr(t) to be orthogonal
to xdata(t), we can focus only on the training component at
the receiver for channel estimation. In OFDM systems, the
transmitted training signal is of the form

xtr(t) =

√
εtr
NT

Ntr∑
p=1

x̃npg(t)e
j2π

np
T t, 0 ≤ t ≤ T, (6)

where εtr denotes the total transmit energy for training, Ntr
is the number of pilot tones, np ∈ {0, . . . , N0 − 1} are
the indices of the pilot tones, and {x̃np ∈ RNT }Ntrp=1 is the
training sequence with total energy

∑Ntr
p=1 ‖x̃np‖22 = NT .

Finally, {g(t)ej2π
np
T t}Ntrp=1 in (6) denote the OFDM orthogonal

waveforms. The output associated with the training signal is

ytr(t) = H(xtr(t)) + ztr(t), 0 ≤ t ≤ T + τmax, (7)

where ztr(t) ∈ CNR is the additive white Gaussian noise
(AWGN) at the receiver. Match filtering ytr(t) at the receiver
with the OFDM waveforms, we have

ỹnp =

√
εtr
NT

Hnp x̃np + z̃np , p = 1, . . . , Ntr, (8)

where Hnp ≈ H̃(f)|f=np
T

and z̃np is AWGN with distribution
N (0NR , INR). Defining {yTnp = ỹTnpA

∗
R}

Ntr
p=1, we have

yTnp =

√
εtr
NT

x̃TnpA
∗
T

L−1∑
`=1

Hv(`)e
−j2π `

N0
np + zTnp , (9)



for p = 1, . . . , Ntr. Finally, constructing a matrix Y by
stacking {yTnp} as rows, we obtain the standard linear form

Y =

√
εtr
NT

XHv + Z. (10)

Here, X ∈ CNtr×NTL is a known measurement matrix with
rows {x̃Tnp(u

T
np ⊗ A∗T ), p = 1, . . . , Ntr}, where uTnp =

{e−j
2πnp
N0

`}L−1`=0 , while Hv = [hv,1, . . . ,hv,NR ] with columns
hv,i ∈ CNTL, i = 1, . . . , NR, comprising channel coefficients
{Hv(i, k, `)} associated with the i-th resolvable AoA.

Our goal is to specify the number of pilot tones, Ntr, the
indices of the pilot tones, {np}Ntrp=1, and the training sequence,
{x̃np}

Ntr
p=1, that will result in reliable estimation of Hv from

Y. To this end, we first need to understand conditions on the
matrix X and the corresponding reconstruction method that
lead to reliable estimation of approximately sparse channels.

III. COMPRESSIVE CHANNEL ESTIMATION

We will estimate the columns of the unknown channel
Hv one at a time. It is now a well-known fact that an s-
compressible h can be estimated from noisy observations
y = Xh + w with X having unit-norm columns and w
distributed as N (0NR , σ

2INR) by solving

ĥ = argmin
h̃

‖h̃‖1 s.t. ‖XH(y −Xh̃)‖∞ ≤ λ (11)

for an appropriate parameter λ > 0 [19]. The reconstruction
method (11) is known as the Dantzig selector and it results in
near-optimal guarantees for the estimation error ‖h− ĥ‖2 as
long as the matrix X satisfies a certain property, termed the
restricted isometry property (RIP) [27].

Definition 2 (Restricted isometry property). The matrix X ∈
CNtr×NTL with unit `2-norm columns is said to satisfy the
restricted isometry property (RIP) of order S with parameter
δS ∈ (0, 1) (i.e., X is RIP(S, δS)) as long as

(1− δS)‖h‖22 ≤ ‖Xh‖22 ≤ (1 + δS)‖h‖22 (12)

for all h ∈ CNTL having no more than S nonzero entries.

It is shown in [19] that if a measurement matrix is
RIP(2S, δ2S) with δ2S ≤ 0.3 then it can be used to near-
optimally estimate any h having S nonzero entries with high
probability. In addition, it is established in [19] that an s-
compressible h can be treated as effectively having no more
than ( rσ )

1/s nonzero entries [19]. Our goal in the following,
therefore, reduces to specification of the pilot tones and the
corresponding training sequence that result in the matrix X
in (10) satisfying RIP(2S∗, 0.3) with S∗ ≥ ( rσ )

1/s, where
σ2 , NT

εtr
in our problem formulation.

IV. DETERMINISTIC SELECTION OF PILOT TONES AND
DESIGN OF THE TRAINING SEQUENCE

In this section, we provide a deterministic algorithm for
selection of pilot tones across the transmit antennas and
discuss training sequences that can result in measurement
matrices that satisfy the RIP.

A. Selection of Pilot Tones

Our procedure for selecting pilot tones is similar to the algo-
rithm provided in [26] for single-antenna OFDM systems. We
use the same pilot tones across all the transmit antennas. We
assume the number of subcarriers in the OFDM channel, N0,
is prime. An integer R ≥ 2 is selected and integers {αi}Ri=1

are chosen such that αR ∈ {1, 2, ..., N0−1} is relatively prime
to N0, while {αi}R−1i=1 ∈ {0, 1, ..., N0 − 1}. Next, an integer
M ≥ 1 is selected and an R-degree polynomial is constructed
with coefficients {αi}Ri=1: Q(m) = α1m + ... + αRm

R,
where m = 1, . . . ,M . Finally, a multiset T = {Q(m)
mod N0 : m = 1, 2, ..,M} is formed. The number of pilot
tones, Ntr, is the number of unique elements of T and
the set of pilot tones, {np}Ntrp=1, corresponds to the unique
elements of T . Defining the multiplicity of elements in T as
Cnp , p = 1, . . . , Ntr, notice that if all pilot tone multiplicities
are 1 then Ntr = |T | =M and {np}Ntrp=1 = T . Note that this
pilot tone selection procedure is flexible and depends on the
choice of N0 (assumed to be prime), R ≥ 2, M , and {αi}Ri=1.

B. Training Sequence Design

In contrast to the tone selection procedure, the training
sequence is designed randomly. The set {x̃np}

Ntr
p=1 is taken

to be a matrix of independent and identically distributed
(i.i.d) Rademacher random variables in which each element

takes the values ±
√

Cnp
M with equal probability; this ensures∑Ntr

p=1 ‖x̃np‖22 = NT . Note that the training sequence is not
the same across different antennas. It is worth noting here
that deterministic variants of this problem include sequences
with low periodic autocorrelations such as the Alltop sequence
{x̃np}

Ntr
p=1 = { 1√

Ntr
e−j2πk

3/Ntr}Ntr−1k=0 [28] that is circularly
shifted across transmit antennas. Although we do not have
analysis for such deterministic sequences, we demonstrate
their estimation performance in numerical experiments using
the circularly shifted Alltop sequence.

The entire procedure is summarized below as Algorithm 1.

Algorithm 1 Pilot tone selection and training sequence design
1: Select integer R ≥ 2.
2: Select αR ∈ {1, 2, ..., N0− 1} relatively prime to N0 and
{αi}R−1i=1 ∈ {0, 1, ..., N0 − 1}.

3: Construct Q(m) = α1m+ ...+ αRm
R.

4: Form T = {Q(m) mod N0 : m = 1, 2, ..,M}.
5: Select Ntr to be the number of unique elements of T .
6: Set {np}Ntrp=1to be the unique elements of T .

7: Set elements of {x̃np}
Ntr
p=1 to take values ±

√
Cnp
M with

equal probability (in an i.i.d fashion).

V. MAIN RESULT AND DISCUSSION

In this section, we establish that pilot tones and training
sequences specified in Algorithm 1 result in matrix X that
satisfies the RIP. This involves deriving the minimum num-
ber of polynomial evaluation points M that ensures X is
RIP(2S∗, 0.3), where S∗ ≥ ( rσ )

1/s and σ2 , NT
εtr

.



Lemma 1. Let N0 be a prime number and Ntr, {np}Ntrp=1, and
{x̃np}

Ntr
p=1 be selected according to Algorithm 1. Fix N0 > 2,

the polynomial degree R ≥ 2, and parameters ε1 ∈ (0, 1),
ε2 ∈ (0, ε1), and t ∈ (0, 1). Pick the number of evaluation
points M such that N1/(R−ε1)

0 ≤M ≤ N0. Then there exists
a constant c(N0, ε2) such that X satisfies RIP (2S, δ2S) with
probability exceeding 1−N−10 as long as

2S ≤ tc(N0, ε2)δ2SM
(ε1−ε2)/2R−1

(13)

and

M ≥
8S2NTC

2
npmax

(1− t)2δ22S
log 2N0. (14)

Here, Cnpmax
, maxp Cnp is the largest multiplicity in T .

Proof: From Gersgorin’s circle theroem, a matrix X
consisting of unit `2-norm columns satisfies RIP(2S, δ2S) if

‖XHX− INTL‖max ≤
δ2S
2S

, (15)

where ‖·‖max denotes the maximum absolute entry of a matrix,
INTL is the identity matrix, and ‖XHX− INTL‖max denotes
the worst-case coherence of X. We therefore turn our attention
to ‖XHX−INTL‖max. To this end, we define the Gram matrix
G = XHX and focus on its off-diagonal entries G(j1, j2) =
xHj1xj2 , j1, j2 = 1, . . . , NTL, j1 6= j2, where xi denotes the
i-th column of X. Further, in order to simplify analysis, we
reindex the columns of X in terms of an ordered pair (i, k)
such that i = 1, . . . , NT denotes the antenna index and k =
0, . . . , L − 1 denotes the delay index. Using this convention,
we can express the off-diagonal entries of G as

G
(
(i1, k1), (i2, k2)

)
=

1

NT

Ntr∑
p=1

e
j2πnp
N0

(k1−k2)×

NT−1∑
a1=0

NT−1∑
a2=0

e
− j2πNT (a1i1−a2i2)x̃a1np x̃

a2
np , (16)

where x̃anp denotes the a-th element of the training vector

x̃np . Notice that G
(
(i, k), (i, k)

)
= 1. We now rewrite (16)

as G
(
(i1, k1), (i2, k2)

)
= G1 +G2, where

G1 ,
1

NT

Ntr∑
p=1

e
j2πnp
N0

(k1−k2)
NT−1∑
a1=0

e
− j2πNT a1(i1−i2)x̃a1np x̃

a1
np ,

G2 ,
1

NT

Ntr∑
p=1

e
j2πnp
N0

(k1−k2)×

NT−1∑
a1=0

NT−1∑
a2=0
a2 6=a1

e
− j2πNT (a1i1−a2i2)x̃a1np x̃

a2
np . (17)

We now provide upper bounds on |G1| and |G2|. Notice
that G1 = 0 for i1 6= i2, while for i1 = i2 we have

|G1| =
1

M

∣∣∣∣∣
Ntr∑
p=1

Cnpe
j2πnp
N0

(k1−k2)

∣∣∣∣∣ . (18)

To bound (18), we follow the approach taken in [26] and use a
lemma that takes advantage of an inequality provided by Weyl
in [29].

Lemma 2. Let R ≥ 2 and consider the polynomial f(m) =
b1m + · · · + bRm

R such that bR = b
N0

+ θ
N2

0
, where

gcd(b,N0) = 1 and |θ| ≤ 1. Then for any 0 < ε2 < ε1 < 1
and M satisfying M ε1 ≤ N0 ≤MR−ε2 , we have∣∣∣∣∣

M∑
m=1

ej2πf(m)

∣∣∣∣∣ ≤ C(R, ε1, ε2)M1− ε1−ε2
2R−1 , (19)

where C(R, ε1, ε2) is a constant independent of M .

In order to apply Lemma 2 to (18), we set f(m) =
k1−k2
N0

Q(m), then bR = (k1 − k2)αR and since k1, k2 ∈
{0, . . . , L−1} and k1 6= k2, we have gcd(bR, N0) = 1. Hence,

|G1| =
1

M

∣∣∣∣∣
Ntr∑
p=1

e
k1−k2
N0

Q(m)

∣∣∣∣∣ ≤ C(R, ε1, ε2)M (ε2−ε1)/2R−1

.

(20)

Next, since G2 is a random variable, we provide a proba-
bilistic upper bound on |G2| using McDiarmid’s inequality.

Lemma 3 (McDiarmid’s Inequality). Let {xi}Ni=1 be inde-
pendent random variables that take values from set X ⊂ R.
Suppose f : XN → R satisfies

sup
{xi}Ni=1,xi′

|f(x1, . . . , xi, . . . , xN )− f(x1, . . . , xi′ , . . . , xN )|

≤ ci,∀i ∈ 1, . . . , N. (21)

Then, for any ε > 0, we have

P (|f(x1, . . . , xN )− E [f(x1, . . . , xN )]| ≥ ε)

≤ 2 exp(− 2ε2∑N
i=1 c

2
i

). (22)

Notice that since x̃anp ’s, p = 1, . . . , Ntr, a = 1, . . . , NT ,
are i.i.d, we have E(G2) = 0. Further, we have that

sup
{x̃np}

Ntr
p=1,x̃

a′
np

|G2(x̃
0
n1
, . . . , x̃anp , . . . , x̃

NT−1
nNtr

)

−G2(x̃
0
n1
, . . . , x̃a

′

np , . . . , x̃
NT−1
nNtr

)|

=
1

NT

∣∣∣∣∣∣∣∣
NT−1∑
a2=0
a2 6=i

e
− j2πNT (ai1−a2i2)

(
1√
M
− (− 1√

M
)

)
x̃a2np

∣∣∣∣∣∣∣∣
≤

2Cnpmax

M
. (23)

It therefore follows from McDiarmid’s inequality that

P(|G2| ≥ ε) ≤ 2 exp

(
− Mε2

2C2
npmax

NT

)
. (24)

We can finally set ε2 =
2NTC

2
npmax

M log(2N0) in the above
expression to obtain

P (|G2| ≥ ε) ≤ N−10 . (25)



Notice now from (15) that X satisfies RIP(2S, δ2S) as long as

|G1| ≤
δ2S
2S

t and P(|G2| ≥
δ2S
2S

(1− t)) ≤ N−10 , t ∈ (0, 1).

Substituting (20) and (24) in the above expression completes
the proof of the lemma.

Using Lemma 1, we can now state the main theorem of this
paper for reliable channel estimation.

Theorem 1. Suppose Hv comprises the sampled channel
coefficients of an s-compressible multipath channel H and we
are interested in estimating Hv from the noisy observations
Y =

√
εtr
NT

XHv + Z, where Z is AWGN with unit variance.
Pick parameters ε1 ∈ (0, 1), ε2 ∈ (0, ε1), and t ∈ (0, 1).
Suppose the number of polynomial evaluation points in Algo-
rithm 1 satisfies M ≥ max {M1,M2,M3}, where

M1 , N
1/(R−ε1)
0 ,

M2 ,

(
(εtrr

2)1/2s

0.15tc(N0, ε2)N
1/2s
T

) 2R−1

ε1−ε2

, and

M3 ,
8NT (εtrr

2)1/sC2
npmax

0.09(1− t)2N1/s
T

log 2N0. (26)

Then the measurement matrix X satisfies RIP(2S, δ2S) with
S ≥ ( εtrr

2

NT
)1/2s. Further, if we set the parameter λ =√

2(1 + a)(logNRNTL)εtr/NT , then for any fixed a ≥ 0,
the estimator

∀i = 1, . . . , NR, ĥv,i = argmin
hv∈CNTL

‖hv‖1 such that∥∥∥∥√ εtr
NT

XH

(
yi −

√
εtr
NT

Xhv

)∥∥∥∥
∞
≤ λ (27)

satisfies

‖Ĥv −Hv‖22 ≤ O (NR log(NRNTL))

(
NT
εtr

r1/d
)2d/(2d+1)

(28)

with very high probability that exceeds the value 1 −
2max

{(
π(1 + a) logNRNTL · (NRNTL)2a

)−1/2
, N−10

}
.

Here, d , 1/s− 1/2 and Ĥv , [ĥv,1 . . . ĥv,NR ].

Notable implications of this theorem include: (i) a determin-
istic algorithm for the selection of pilot tones, (ii) a sufficient
condition on the number of polynomial evaluation points for
our algorithm to be effective (although the NT factor in (26) is
not favorable), and (iii) the estimation error primarily having a
logarithmic dependence on the number of channel parameters
NRNTL, which is an improvement over traditional channel
estimation techniques. In the next section, we demonstrate the
effectiveness of Algorithm 1 using numerical experiments.

VI. NUMERICAL RESULTS

In this section, we conduct numerical experiments to
evaluate the performance of Algorithm 1. We use Monte
Carlo experiments for random channel, additive noise, and

Fig. 1. A typical channel realization and its estimate using EM-BG-GAMP
for the case of NT = 4 and NR = 1. The left panel depicts the discrete
channel between one transmit and receive antenna, while the right panel shows
the complete multipath discrete channel in vectorized form.

random training sequence realizations. Our realizations of
multipath channels correspond to Np = 6NR

√
NT point scat-

terers with the τi’s uniformly distributed over [0, 12.7µsec],
the (θR,i, θT,i)’s uniformly distributed over [−1/2, 1/2] ×
[−1/2, 1/2], and the βi’s distributed as zero-mean Gaussian
random variables. We consider the case of NT ∈ {1, . . . , 8}
transmit antennas and we work with a bandwidth of W =
25.12 MHz, which results in L = 320. We construct the
sampled channel coefficients according to (4), followed by
normalization that makes each column of the channel matrix
Hv into a unit `2-norm vector. Finally, we consider the case
of N0 = 1049 tones and operate with training signal-to-noise
ratio of 5000NT on a linear scale.

In order to implement the pilot tone selection procedure,
we use R = 2 for the polynomial degree in Algorithm 1. To
obtain the mean square error (MSE), ‖Hv−Ĥv‖22, of channel
estimates as a function of the number of polynomial evaluation
points, we average over 100 Monte Carlo experiments. We
utilize compressed sensing algorithms EM-BG-GAMP [30]
and LASSO (via SPGL1 [31]) for channel reconstruction.

Our first set of experiments correspond to NR = 1 receive
antenna. A typical channel realization with NT = 4 transmit
antennas in this case and its reconstruction using EM-BG-
GAMP is depicted in Fig. 1. In Fig. 2(a), the MSE of channel
estimates with NT = 4 transmit antennas is demonstrated. The
MSE obtained using deterministic pilot tone selection (DPT)
along with random training sequence (RTS) and deterministic,
circularly shifted Alltop sequence (DTS) is compared against
random pilot tone selection (RPT) and equispaced pilot tones
(UPT) with the same number of pilot tones. It is observed
that DPT outperforms UPT and performs as well as RPT.
Moreover, EM-BG-GAMP results in a smaller MSE than the
LASSO. We also show results for both non-prime N0 = 1024
and NR = 4 in this figure to demonstrate effectiveness of
Algorithm 1. Finally, the MSE of channel estimates obtained
using EM-BG-GAMP is plotted in Fig. 2(b) as a function of



(a)

(b)

Fig. 2. Performance summary of deterministic pilot tone selection algorithm.
(a) depicts the performance of proposed algorithm using various reconstruction
techniques and (b) shows the MSE of EM-BG-GAMP as a function of number
of polynomial evaluation points for different number of transmit antennas.

the number of polynomial evaluation points for DPT with RTS
and DTS for different number of transmit antennas.

VII. CONCLUSION

In this paper, we addressed the problem of compressive
MIMO-OFDM channel estimation using a training based
technique involving deterministic selection of pilot tones. Our
proposed method is quite flexible in terms of the choice of
different parameters. We also provided analytical guarantees
for the performance of our method. Finally, although our anal-
ysis is limited to the case of random training sequences, our
numerical results suggested that deterministic sequences with
low autocorrelation can be substituted for similar performance.
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