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Abstract—This paper considers a distributed network of
through-the-wall radars for accurate indoor scene reconstruction
in the presence of multipath propagation. A sparsity based
method is proposed for eliminating ghost targets under imperfect
knowledge of interior wall locations. Instead of aggregating and
processing the observations at a central fusion station, joint scene
reconstruction and estimation of interior wall locations is carried
out in a distributed manner across the network. More specifically,
an alternating minimization approach is utilized to solve the
associated non-convex optimization problem, wherein the sparse
scene is reconstructed using the recently proposed modified
distributed orthogonal matching pursuit algorithm while the wall
location estimates are obtained with a novel distributed particle
swarm optimization algorithm (D-PSO) proposed in this paper.
Existing literature on averaging consensus is leveraged to derive
the D-PSO algorithm. The efficacy of proposed approach is
demonstrated using numerical simulation.

I. INTRODUCTION

With significant advances in through-the-wall radar imaging
(TWRI) technology over the last decade, one of the remaining
challenges is dealing effectively with the high amount of mul-
tipath in indoor environments [1], [2]. A variety of multipath
exploitation approaches, both under conventional and sparse
reconstruction frameworks, have been recently proposed in
the literature [3]-[10]. However, these methods require prior
exact knowledge of the interior layout of the building be-
ing interrogated to eliminate ghost targets (accumulation of
unwanted energy at incorrect target locations) and provide
enhanced image quality. In practice, this information may not
be available in advance.

Inaccuracies in knowledge of the interior building layout
and the room geometry can lead to severe impairments in the
effectiveness of multipath exploitation approaches. In [11], a
TWRI radar network comprising several man-portable units,
deployed in either a co-located or distributed configuration,
were considered. A multipath signal model, with the unknown
wall locations as parameters, was developed and employed to
jointly perform sparsity-based image reconstruction and wall
location estimation. An alternating minimization approach was
used to solve the joint optimization problem, wherein group
sparse reconstruction was employed for scene recovery and
Particle Swarm Optimization (PSO) algorithm [12], [13] was
shown to work well for determining the wall locations. For the
distributed setting, the method proposed in [11] required that

the measurements be first aggregated at a centralized location.
For a large number of radar units, transmitting data to a central
processing center may not be feasible. In such settings, a
method that can learn wall locations and localize the targets
without aggregating all the data at a centralized location is
highly desirable.

In this paper, we consider a distributed configuration of
multiple radar units to image stationary indoor scenes in the
presence of wall location inaccuracies. The use of a distributed
radar network is emerging as an effective and flexible alter-
native to single-site radar systems in TWRI applications. We
focus on solving the joint optimization problem for estimation
of wall locations and sparse image reconstruction via alternat-
ing minimization in a distributed manner, without requiring
a central processing station. For the scene recovery step,
we employ a distributed variant of the Orthogonal Matching
Pursuit (OMP) algorithm, called MDOMP, which was recently
proposed in [14].

In order to solve the optimization problem for estimation
of wall locations in distributed settings, we employ consensus
averaging [15] to develop a distributed variant of the PSO
algorithm. There have been previous attempts at developing
distributed versions of PSO [16]-[19]. A master-slave archi-
tecture is employed in [16]; each node is responsible for
computing the objective function for a subset of particles,
which are then aggregated at the master node to update the
particles. A peer-to-peer algorithm for PSO is proposed in
[17], where each node is capable of computing the objective
function locally and is responsible for updating a subset of
particles. However, all of the aforementioned PSO variants are
not distributed in the true sense, since they require centralized
control to operate. Further, these algorithms assume each
node to be capable of computing the objective function at
any particle value. The proposed algorithm eliminates these
shortcomings of the aforementioned methods.

The paper is organized as follows. In Section II, the signal
model and the problem formulation are presented for the
distributed radar network. The alternating minimization based
approach is discussed in Section III, where the proposed
distributed variant of the PSO is described in detail. Sup-
porting simulation results are provided in Section IV, while
conclusions are drawn in Section V.



II. PROBLEM FORMULATION
A. Signal Model

Consider S radar units, distributed at known positions either
along the front wall or surrounding the building being inter-
rogated. Each radar unit is equipped with M transmitters and
N receivers, where both M and N are assumed to be small.
An ‘across-units’ mode of operation is considered, wherein
transmission-reception occurs across multiple radar units. That
is, each transmitted pulse is received simultaneously by all
receivers from all units. It is assumed that the individual
radar units can transmit and receive without interference from
others and each radar can associate the received signal with
a specific transmitter. These objectives can be achieved either
by using orthogonal waveforms or through sequential use of
the transmitters. In the latter case, the transmitted signals
become orthogonal by virtue of time-multiplexing. In this
paper, we assume that the transmitter-receiver association is
accomplished by activating the transmitters sequentially.

Let s; and s be the indices of the transmitting and receiving
radar units, respectively, where s; = 0,1,...,5 — 1, and
sy = 0,1,...,5 — 1. The scene of interest is divided into
P grid points, which define the target space. Because of the
deployment of the radar units in a distributed fashion, the
target radar cross section (RCS) changes across the units.
Let 0,'% be the complex reflectivity associated with grid
point p corresponding to the transmitting unit s; and receiving
unit sz, with 0;'% = 0 representing the absence of a
target. Neglecting multipath contributions, the baseband signal
recorded at receiver n = 0,1, ..., N —1 of the soth radar unit,
with transmitter m = 0,1,..., M — 1 of the sjth radar unit
active, can be expressed as,
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Here, s(t) is the transmitted wideband pulse in complex
baseband, f. is the carrier frequency, 7;. is the pulse repetition
interval, and 7,17°2 is the propagation delay from transmitter
m of unit s; to the grid point p and back to the receiver n
of unit so. We sample z3152(¢) at or above the Nyquist rate
to obtain a signal vector z;!°2 of length Nr. Stacking signal
vectors corresponding to the M transmitters and N receivers,
we obtain the M N Np x 1 measurement vector z, s,, which,
using (1), can be expressed as
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where o-£112 = [o5'*%, 071, .. sgsi]T, the superscript

‘(0)’ indicates direct path propagatlon, [] ’ denotes matrix
transpose, and, for ¢ = 0,..., Ny — 1, the elements of the

dictionary matrix ¥, € (CMNNTXP are given by,
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We assume that the target multipath is generated due to sec-
ondary reflections at one or more interior walls. Parameterizing
the interior wall locations as w € R? and employing geometric
optics to model R — 1 additive multipath contributions in the
received signal, we obtain the signal model under multipath
propagation for the sjth transmitting unit and soth receiving
unit as
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where \Ilgl)s2 is defined according to (3) with 77152 replaced

prrm
by the propoagation delay 7ihz'") between transmitter m,
grid point p, and receiver n along the rth multipath [7].
Note that the change in the target RCS across the R — 1

multipath signals is captured in the model by 0'£ 12, which is

the target reflectivity vector corresponding to the rth multipath.
Further, note that the multipath time delays ﬂ,}if,’( "oy o=
1,...,R — 1, depend on the wall locations and, therefore,

the dlctlonary matrices {\Ilsls2 R 11 are all functions of w.
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model in (4) as

, we can rewrite the signal
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Here, n denotes the system noise vector.

B. Centralized Problem Formulation

In case of centralized processing, the S? measurement
vectors, {Zs,s,,81 = 0,...,5 — 1,80 = ,S — 1},
corresponding to the ‘across-units’ operation of the S radar
units, are communicated to a fusion center where the scene
reconstruction is performed. Under distributed deployment,
the radar units are widely separated and the targets’ aspect
angles may vary considerably across the units. As such, a
coherent combination of the various measurements is not
feasible. Therefore, the S? measurements can be collectively
represented as
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Given the measurements z in (6), the aim is to determine the
wall locations w as well as reconstruct the scene reflectivity
vector . Since the same physical scene is observed via all
paths by the various radar units, the scene reflectivity vector
exhibits a group sparse structure [11]. As such, the scene
recovery and wall location estimation can be posed as the
following optimization problem:
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The optimization problem in (8) is non-convex as the matrix
A(W) has a nonlinear dependence on the wall locations. An
iterative approach is proposed in [11], which solves (8) by
alternating between optimization over ¢ and w.

C. Distributed Problem Formulation

The focus of this work is on wall location estimation and
scene reconstruction, i.e., solving (8), in a distributed manner
across the S radar units, with each radar unit having access
to only a subset of the measurements z. Substituting A(w),
z, and o from (7) in (8), we can express the optimization
problem as
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Under the alternating minimization framework, the objective
function in (10) for a fixed w is convex in &. A variety of
sparsity based methods exist for determining ¢ in a decentral-

ized setting [14], [20]-[23]. On the other hand, for a fixed &,
the objective function is just the first term in (10). That is,
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Clearly, the expression in the brackets in (11) is the objective
function at radar unit so, and as such, it permits solution of
the optimization problem in a distributed manner.

III. PROPOSED APPROACH

We solve (10) by alternating minimization over variables w
and &. Since the measurements are available at spatially dis-
tributed sites, we need to employ a method that solves for both
w and & in distributed settings. For distributed optimization
over &, we use Modified Distributed OMP (MDOMP) method
proposed in [14]. For the non-convex optimization problem
with respect to w, we develop a distributed variant of the
PSO algorithm. In the following, we first provide an overview
of the working of the conventional PSO algorithm, followed
by a brief review of consensus averaging, which is utilized
to develop the distributed version of PSO. Then, we present
the proposed distributed PSO (D-PSO) algorithm and briefly
describe MDOMP.

A. Overview of Particle Swarm Optimization

In order to optimize an objective function f (x), PSO is
initialized with @ particles at positions {q;}% 721, which are
points in the domain of f(x). We define the variable Amin, ;>
which contains the value of q; corresponding to the obtained
minimum value of the objective function thus far for the
particle j. In each iteration of PSO, we compute the value

of the objective function for each particle {qj} “_, and update
the variables {Qmin, j} . Then we update the variable g,;,,
which is the particle value at which we have observed the
minimum value of objective function so far. That is,

f(a).
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Finally, we update the particle velocity v; and particle value
q;, where the velocity v; provides the displacement of the
particle q; in the domain of objective function f(x). The
velocity update is based on the particle’s current value qj,
minimum value at the particle quin,;, and the minimum value
across all particles g,i,. The velocity update equation for
centralized PSO is the same as for distributed PSO, which
is given in Step 20 of Algorithm 1.

B. Consensus Averaging

For some scalar values {xi}fz_ol that are distributed across
S radar units, consensus averaging provides an iterative
method for computing the average (1/.5) Zf;ol z;. Connec-
tivity among these distributed radar units can be represented
by a graph G = (N, €), where N' = {0,1,...,5 — 1} is
the set of nodes (radar units in the underlying application) in
a network and & are the edges defining the interconnection
among the nodes i.e., (i,4) € £ and (i,j) € £ when node 4
can communicate with node j. From graph G, we generate a
doubly stochastic matrix W' such that its (¢, j)th entry, W, ;,
satisfies the condition

>0 , (i,5) €€,
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We initialize consensus averaging by x(©) = [zg,... 25 1]

and the update at iteration ¢, of consensus averaging is given
by,

x(te) — Wx(te=1) (12)

Previous work on consensus averaging [15], [24] shows that
if W is doubly stochastic then as ¢, — oo, each element of
x(*e) approaches the mean of the values in x(%).

C. Distributed Particle Swarm Optimization

We develop a distributed variant of the PSO algorithm
(D-PSO), whose pseudocode is provided in Algorithm 1.
Similar to the convent10nal PSO, we start by initializing
with @ particles {q52 J} °_, at the soth node/radar unit. We
assume that each radar unit has the same initial values for
the particles'. The first step towards updating the value of a
particle consists of computing the objective function (10) at
the current value of the particle. In the distributed case, each
radar unit can only compute a part of the objective function, as
specified in Step 3 of Algorithm 1. Using consensus averaging,
we compute the complete value of the objective function, as
delineated in Steps 4-8 of Algorithm 1. Next, in Steps 9—
12, we update the minimum objective value achieved by the

'One way of achieving this is by initializing particles randomly with the
same seed at each node.



Algorithm 1: Distributed Particle Swarm Optimization
algorithm (D-PSO).
Input: Local data {Zgo,...,25—15—1}, 0; computed
using MDOMP, and doubly-stochastic matrix W.
Initialize: Generate partlcles with positions {q32) j}

and velocities {v } -, randomly at each site ss.
hmi”ajﬁz < 00, bmzn,SQ —o0.t+ 0.

1: while stopping rule do

22 forj=1,...,Q do

3: Calculate at each radar upit So:
hs, < Zfl;lo |Zs, 5, — Wsy 50 (qgtz),])o'm s 3

4: (Inititalize Consensus Averaging) Set t. < 0 and
BO  [hg...hs 1]

5 while stoppmg rule do

6 W) e n, Wi Bl

7: te+—tc+1

8 end while

9: if h52 < hmin,j}\sz then

10: hmzn 3,52 — h52

11: Amin,j,se < qii),j

12: end if

13:  end for
14 kg, < argming{Amin js, }
15: if hmin,k' < bnli/n/,‘g2 then

59552
16: bmin,52 <~ hmin,ksz,SQ

17: min,sq — {qmin,kSQ,SQ}
18:  end if

190 forj=1,...,Q do

20: Fdate veloc1ty

sz jtec 1U0,1)(Amin,j,s5 — qgtj)) +

Sz 2J
CQU(O’ 1)(gn11n qi?ﬂ)
21: Update positions: q((g;j — q(;;) it vg? i
22:  end for
23 t+t+1

24: end while
Return: {qs2 j}

particle g, ;. We repeat Steps 3—12 for all ) particles at the
radar unit s3. The velocity v,, ; and particle values q, ; are
updated as detailed in Steps 20-21 of Algorithm 1. Note that
in Step 20, 4(0, 1) is a random number chosen from a uniform
distribution over the interval [0, 1].

D. MDOMP for Distributed Sparse Scene Recovery

MDOMP has been proposed in [14] for sparse scene re-
covery in case of a distributed network of through-the-wall
radar units. MDOMP is a distributed version of the OMP
algorithm [25]. At every radar unit, a communication step
is performed in each iteration, wherein the unit shares its
correlation vector, obtained using the local measurements only,
with all other radar units. Each unit then adds all correlation
vectors, selects the index corresponding to the largest element
in the correlation vector sum, and updates its set of indices.
The remaining part of the algorithm is similar to OMP.

IV. SIMULATION RESULTS

For simulations, we consider a square room with four walls,
each of length 4 m. We deploy S = 3 and .S = 5 radar units,
uniformly distributed over an extent of 2 m in crossrange, at a
standoff distance of 3 m from the front wall. Each radar unit
is equipped with M =1 transmitter and N = 3 receivers. As
already explained in Section II-A, we use time-multiplexing,
i.e., at any given time instant, only one radar unit transmits and
all units receive the reflections. For each transmission, we use
a Gaussian pulse with 50% relative bandwidth, modulating a
sinusoid of carrier frequency f. = 2 GHz. The received signal
at each radar unit is sampled at the Nyquist rate and Ny = 150
samples are collected over the interval of interest. In addition
to the direct signal, we assume two multipath contributions
arising from the side walls, i.e., R = 3. Multipath returns are
assumed to be attenuated by 6 dB as compared to the direct
path signal. Further, the received signals are assumed to be
corrupted by complex circular Gaussian noise, resulting in a
signal-to-noise ratio (SNR) of 20 dB.

The region of interest covers the room interior and is divided
into 64 x 64 pixels in crossrange and downrange. We perform
35 Monte Carlo trials for each configuration, ie., S = 3
and S = 5 radar units. Four point targets are assumed to be
located within the room at distinct locations; the crossrange
and downrange coordinates of the target locations are varied
from one trial to the next. In each trial, we randomly select
the initial position estimate of the left wall from the interval
[—2.5, —1.5] m, while that for the right wall is chosen from
the interval [1.5,2.5] m. Table I lists the mean values and
the variances of the location estimates of the two side walls
obtained using the proposed D-PSO algorithm. We can see that
for both cases i.e., S = 3 and S = 5, we obtain comparable
estimates of the wall locations. The reconstructed scene for
one of the trials corresponding to the S = 5 radar units
configuration is depicted in Fig. 1.

Further, we evaluate the performance of the D-PSO algo-
rithm in terms of the detection rate. We define detection rate
as the ratio of the number of targets detected correctly to
the total number of targets present in the scene. Again, for
each case, we perform 35 Monte Carlo trials. For the case of
S = 3 radar units, D-PSO achieved, on average, a detection
rate of 91.87%, whereas the detection rate for the S =
radar units configuration was determined to be 91.43%. This
demonstrates that the performance of the D-PSO algorithm
does not change significantly with variations in the number of
radar units employed.

V. CONCLUSION

In this paper, we have proposed a distributed variant of
the particle swarm optimization algorithm for wall position
estimation in an alternating minimization approach to sparsity-
based multipath exploitation. Sparse through-the-wall scene
reconstruction is carried out using the MDOMP algorithm.
The proposed approach permits learning of wall locations and
localizing the indoor targets in a distributed fashion across a
radar network without the need for a centralized processing
center. Simulation results are provided which validate the
performance of the proposed scheme.



TABLE I
2-COORDINATES OF THE TRUE WALL LOCATIONS AND THE ESTIMATED VALUES USING D-PSO FOR S = 3 AND S = 5 RADAR UNITS.

Wall Location | Mean Estimated Location (S = 3)

Variance (S = 3)

Mean Estimated Location (S = 5) | Variance (S = 5)

Left wall -2 -1.9902

0.0018 -1.987 0.0025

Right wall 2 2.0005

0.0039 2 0.0055

Fig.

Downrange [m]
(9] (o))

IN
®

2 1 0 1 2
Crossrange [m]

1. Scene reconstruction using D-PSO and MDOMP algorithms.The true

target locations are indicated by red circles.
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