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ABSTRACT

Most of the research on dictionary learning has focused on developing algorithms under the assumption that data
is available at a centralized location. But often the data is not available at a centralized location due to practical
constraints like data aggregation costs, privacy concerns, etc. Using centralized dictionary learning algorithms
may not be the optimal choice in such settings. This motivates the design of dictionary learning algorithms that
consider distributed nature of data as one of the problem variables. Just like centralized settings, distributed
dictionary learning problem can be posed in more than one way depending on the problem setup. Most notable
distinguishing features are the online versus batch nature of data and the representative versus discriminative
nature of the dictionaries. In this paper, several distributed dictionary learning algorithms that are designed to
tackle different problem setups are reviewed. One of these algorithms is cloud K-SVD, which solves the dictionary
learning problem for batch data in distributed settings. One distinguishing feature of cloud K-SVD is that it
has been shown to converge to its centralized counterpart, namely, the K-SVD solution. On the other hand, no
such guarantees are provided for other distributed dictionary learning algorithms. Convergence of cloud K-SVD
to the centralized K-SVD solution means problems that are solvable by K-SVD in centralized settings can now
be solved in distributed settings with similar performance. Finally, cloud K-SVD is used as an example to show
the advantages that are attainable by deploying distributed dictionary algorithms for real world distributed
datasets.

1. INTRODUCTION

Two main themes we can observe in data generated these days are: (i) there is massive amount of data and (ii)
data are distributed across networked nodes/sites/agents∗. Examples of such sources include datacenters, large-
scale sensor networks, surveillance cameras, medical data in hospitals, etc. For solving information processing
tasks like estimation, prediction, detection, etc., we require a model that can represent the observed data with
high accuracy. Our focus in this paper is on learning a good model from observed, distributed data. Traditionally,
subspace-based methods like principal component analysis have been used successfully for learning the model
from observed data. Union-of-subspaces (UoS) model is a generalization of subspace model and has been shown
to perform better for many information processing tasks (e.g., information processing tasks1,2). Data-adaptive
methods for learning a UoS model from data of interest have been studied under the rubric of dictionary learning
in literature.3–5

The goal in dictionary learning is to learn a dictionary D ∈ Rn×K from a set of training data {yi}Si=1 such
that each data sample can be represented by a few columns/atoms of D. More precisely, the goal is to find a
dictionary such that we can represent any sample using no more than T0 columns of D, where T0 � n < K.
Dictionary learning has found applications in image processing,1,2 hyperspectral imaging,6 etc., and efforts have
been made towards solving dictionary learning problems in an efficient manner; some examples of this include
[3], [4], [7], [2], and [8].

Most of the work on dictionary learning assumes availability of training data at a centralized location.3,4

Recently, contributions have been made towards solving the dictionary learning problem when data is distributed
across a network of sites.9–16 Distributed dictionary learning algorithms proposed in [9–13] deal with the case
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∗In the distributed processing literature, distributed entities with data are known with different names like node, site,

agent, etc. In the following, we will use ‘site’ to refer to the entity with data.



Figure 1. Batch data distributed across different sites in the network.

of batch data. Similar to [5] in centralized dictionary learning, [9] and [13] solve distributed dictionary learning
problem by solving the underlying optimization program using gradient descent. On the other hand, [9] uses
the diffusion-based strategy17 to perform distributed optimization, while [13] proposes EXTRA-AO algorithm
that extends the distributed optimization method called EXTRA,18 which is a consensus-based19 algorithm.
Furthermore, [13] provides analysis that shows that EXTRA-AO algorithm converges to a stationary point of
the optimization program. It is also shown empirically in [13] that under certain conditions, the algorithm
proposed in [9] will not converge. Next, [12] and [11] also solve the distributed dictionary learning problem for
batch data settings by providing distributed implementations of the centralized K-SVD algorithm.3 While both
the methods perform sparse coding steps locally at each site, they differ in the way they perform the dictionary
update step in a distributed way. Specifically, [11] uses distributed version of power method20 to perform the
dictionary update step, while [12] uses ADMM-based distributed optimization approach21 to achieve the goal.
Due to this difference in the two approaches, [11] is able to provide convergence analysis , while no such guarantees
are provided in [12].

Algorithms proposed in [14–16] solve the distributed dictionary learning problem for online settings. The
authors in [15] pose dictionary learning problem as a recursive least squares problem and use D-RLS22 algorithm
to solve the resulting optimization problem. On the other hand, [16] learns a discriminative dictionary for online
settings in a distributed manner using a variant of the Arrow-Hurwicz saddle point algorithm.23 Finally, [14]
learns only a segment of dictionary at each site in online settings.

To summarize, this paper reviews the algorithms developed to solve the dictionary learning problem when
data is available only at different distributed sites. In the following we will first formally define the distributed
dictionary learning problem for different settings in Section 2, distributed dictionary learning algorithms are
reviewed in Section 3, and a detailed discussion of the cloud K-SVD11 algorithm is provided in Section 4.

Notation. We use lower-case letters to represent scalars and vectors, while we use upper-case letters to
represent matrices. Given a vector v, supp(v) returns indices of the nonzero entries in v, ‖v‖p denotes its `p
norm, ‖v‖0 counts the number of its nonzero entries, and superscript (·)T denotes the transpose operation. We
use 1 to denote a vector of all 1’s. We define W to be a doubly stochastic matrix, i.e., 1TW = 1

T and W1 = 1.
Given a set I, v|I and A|I denote a subvector and a submatrix obtained by retaining entries of vector v and
columns of matrix A corresponding to the indices in I, respectively. Given matrices {Ai ∈ Rni×mi}Ni=1, the
operation diag{A1, . . . , AN} returns a block-diagonal matrix A ∈ R

∑
ni×

∑
mi that has Ai’s on its diagonal.

Finally, given a matrix A, aj and aj,T denote the jth column and the jth row of A, respectively.

2. PROBLEM FORMULATION

Consider a dataset Y ∈ Rn×S , where S is the total number of samples in the dataset and n is the dimensionality
of each sample. Now consider that dataset Y is distributed across a number of geographically distributed and
interconnected nodes/sites and any site i has only access to the local samples Yi ∈ Rn×Si as shown in Figure 1.
Here Si is the number of samples at site i. Mathematically, we can represent the communication topology of these
interconnected sites by an undirected graph G = (N , E). Here, N = {1, . . . , N} is the set of sites in the network
and E is the set of edges in G, where (i, i) ∈ E and (i, j) ∈ E whenever site i can communicate directly with



site j. Next we highlight different settings considered for data acquisition at any site i in distributed dictionary
literature. Specifically, the following three cases have been considered for distributed dictionary learning.

1. In [9–13], batch data settings are assumed, i.e., complete batch data Yi is available at any site i before
start of the dictionary learning algorithm.

2. In [15] and [16], streaming data setup is considered and it is assumed that in each iteration t of dictionary

learning, we observe a new data sample y
(t)
i at each site i.

3. In [24] and [14], an online setup is once again assumed with the difference from [15] and [16] being that in

each dictionary learning iteration t, a new sample y
(t)
I is observed at some subset of sites NI ⊆ N .

In all three of these cases, the goal of distributed dictionary learning is to learn a dictionary D ∈ Rn×K at
each site such that each sample in Y can be represented using a few columns (called atoms in dictionary
learning literature) of D. We can pose this distributed dictionary learning problem as an optimization program.
Depending on the problem setup and the sparse coding method used in the dictionary learning formulation, the
form of optimization program varies in different cases. In the following, we provide a general description of these
optimization programs.

2.1 Constrained optimization for batch data

In the case of a centralized dataset available in a batch setting, dictionary learning can be posed as the following
optimization problem with a constraint on `0-norms of representation vectors:(

D,X
)

= arg min
D,X
‖Y −DX‖2F s.t. ∀s, ‖xs‖0 ≤ T0. (1)

This problem can be efficiently solved using the K-SVD algorithm.3 In the case of distributed data, we can write
(1) as follows:

(
D, {X}Ni=1

)
= arg min

D,{Xi}Ni=1

N∑
i=1

‖Yi −DXi‖2F s.t. ∀i, s, ‖xi,s‖0 ≤ T0. (2)

Methods proposed in [11] and [12] solve this optimization problem by developing distributed variants of the
K-SVD algorithm.

2.2 Unconstrained optimization for batch data

The dictionary learning problem in the case of a centralized, batch dataset can also be solved as an unconstrained
optimization problem as [5]: (

D,X
)

= arg min
D,X

1

2

(
‖Y −DX‖2F + λ‖X‖1

)
. (3)

Distributed variants of the dictionary learning problem posed in (3) have been solved in [9] and [13]. Specifically,
[13] poses this problem as the following unconstrained optimization problem:

(
D, {X}Ni=1

)
= arg min

D,{Xi}Ni=1

1

2

N∑
i=1

(
‖Yi −DXi‖2F + λ‖Xi‖1

)
+

K∑
k=1

γk‖dk‖22. (4)

Here, dk is the kth atom of dictionary D, the regularization term in (4) promotes sparsity in coefficients X, while
the second regularization term ensures the columns, dk, of dictionary are bounded. Further, the optimization
problem solved in [9] has the same form as (4), with the exception of the last regularization term (regularization
of dk).



2.3 Online optimization for dictionary learning

In the case of streaming data, [4] provides a solution to the dictionary learning problem. Defining the convex set

D := {D ∈ Rn×Ks.t. ∀j = i, . . . ,K, dTj dj ≤ 1},

[4] solves the following optimization problem in iteration t:

(D(t), X) = arg min
D∈D,{x(m)}tm=1

1

t

t∑
m=1

(
1

2
‖y(m) −Dx(m)‖22 + λ‖x(m)‖1

)
. (5)

In the case of distributed, streaming data, [14–16] solve a similar online problem for distributed online data as
follows:

(D(t), X) = arg min
D∈D,{x(m)}tm=1

1

t

N∑
i=1

t∑
m=1

(
1

2
‖y(m)
i −Dx(m)

i ‖22 + λ‖x(m)
i ‖1

)
. (6)

More details on how [14–16] solve (6) are provided in Section 3. It is important to point out here that al-
though [14–16] solve the distributed dictionary learning problem for streaming data, the underlying dictionary
learning problems they solve are different. In [15], the problem that is solved is more closely related to the one
solved in [4] for the centralized setup, i.e., learning a dictionary for data representation. On the other hand, the
goal in [16] is to learn a discriminative dictionary for classification purposes. It is therefore more closely related
to the dictionary learning problem solved in [7] for the centralized setup involving streaming data. Finally, [14]
differs from all the other distributed dictionary learning approaches since its goal is to learn only a portion of
dictionary at any given site i, in contrast to learning a common dictionary at all sites.

3. ALGORITHMS FOR DISTRIBUTED DICTIONARY LEARNING

Recall that formulation of the distributed dictionary learning problem depends on the choice of sparse coding
algorithm, underlying information processing task (i.e., representation or classification), and dataset properties
(i.e., batch or online settings). Table 1 lists the works that have studied the distributed dictionary learning prob-
lem under these different settings. Notice also from different formulations of the dictionary learning problem as
an optimization problem in Section 2 that the dictionary learning objective function is not convex in dictionary
D and coefficients X simultaneously. Nonetheless, the objective function is convex in both the variables sepa-
rately. Due to this reason, centralized as well as distributed algorithms employ alternate optimization (AO) to
solve the problem. Another common theme in distributed dictionary learning algorithms, with the exception of
[14], is that sites perform sparse coding locally without any interactions with other sites. The reason [14] differs
from the other algorithms is because it learns a part of the dictionary at each site, as opposed to learning a full,
common dictionary at each site. In the following, we review the solutions provided by the different works listed
in Table 1 for different settings.

3.1 Batch distributed data

We first review the implementation details of distributed dictionary learning algorithms proposed for batch data
that is distributed across different sites.

3.1.1 Dictionary learning using diffusion adaptation

In [9] a solution is provided for the optimization problem given in (4). The sparse coding step in [9] is solved locally
at each site i using the basis pursuit algorithm [25, p. 161]. For distributed implementation of the dictionary
update step, [9] uses the diffusion adapt-then-combine (ATC) strategy [17, Chap. 7, p. 459]. Specifically, the
distributed dictionary update step at site i and iteration t of dictionary learning is given by following equations:

ψ
(t)
i = D

(t−1)
i + αi

(
Yi −D(t−1)

i X
(t)
i

)
X

(t)T

i , and

D
(t)
i =

∑
l∈Ni

wi,lψ
(t)
l . (7)



Common dictionary at sites Partial/segments of a dictionary at each site
Batch Settings [9–13] –
Online Settings [15], [16] [24], [14]

Table 1. Different possible setups for dictionary learning problem and their proposed solutions.

Here, αi <
2

‖X(t)
i ‖F

is the step size, Ni is the neighborhood of site i (i.e., set of sites with which i can communicate

directly) and wi is the ith row of a doubly stochastic matrix W, which is defined based on the interconnection
among sites in the network (i.e., wi,j = 0 if sites i and j are not connected and wi,j > 0 otherwise). Numerical
simulations in [9] show the efficacy of the proposed algorithm by recovering a dictionary from synthetic image
patches and showing that the recovered dictionary resembles the dictionary learned using the centralized version
of algorithm.

3.1.2 Dictionary learning using consensus based optimization

The work in [13] provides another solution to the optimization problem given in (4), which is termed EXTRA-
AO. In [13], the sparse coding step is performed locally using proximal method in [26]. Next, [13] uses the

EXTRA18 algorithm to update dictionary in a distributed manner. For step size α > 0 and fi(D
(t−1)
i , X

(t−1)
i ) =

‖Yi −D(t−1)
i X

(t−1)
i ‖2F , dictionary update in iteration t of EXTRA-AO algorithm is given by

D
(t)
i =


∑
j∈Ni

wi,jD
(t−1)
j − α∇Dfi(D(t−1)

i , X
(t−1)
i ), t = 1,

D
(t−1)
i +

∑
j∈Ni

wi,jD
(t−1)
j − α∇Dfi(D(t−1)

i , X
(t−1)
i )−

∑
j∈Ni

w̄i,jD
(t−2)
j + α∇Dfi(D(t−2)

i , X
(t−2)
i ), if t > 1.

(8)

Here, α > 0 is the step size, ∇Dfi is the gradient of local function fi with respect to D, w̄i,j is the (i, j)th entry
of matrix W̄ , which is defined as W̄ = (W + I)/2 for a doubly stochastic matrix W . Furthermore, [13] provides

convergence analysis and shows that as t→∞, D
(t)
i and X

(t)
i converge to the stationary point of the objective

function in (4) [13, Proposition 1].

3.1.3 Distribued K-SVD

Like centralized K-SVD,3 the distributed dictionary learning algorithms proposed in [11] and [12] use orthogonal
matching pursuit (OMP)27 for the sparse coding stage. Since both the algorithms are learning a complete
dictionary at each site i, we can perform sparse coding locally at each site. For dictionary update, K-SVD
updates one dictionary atom at a time. In order to update one atom at a time, K-SVD solves the optimization
problem in (1) by fixing K − 1 atoms of the dictionary and optimizing over the remaining atom. For dictionary
atom k, (1) can be rewritten as

(d
(t)
i,k, x

(t)
i,k,T ) = arg min

dk,xk,T

N∑
i=1

∥∥∥∥∥∥
Yi − K∑

j=1,j 6=k

d
(t)
i,jx

(t)
i,j,T

− d(t)
i,kx

(t)
i,k,T

∥∥∥∥∥∥
2

F

. (9)

Cloud K-SVD11 solves this problem using a distributed variant of power method,20,28 which is a numerical
method for computing the dominant eigenvector of a matrix. In contrast, [12] solves the objective function (9)
using ADMM21 for distributed optimization of (9). Due to the difference in methodology, [11] is able to prove the
convergence of the cloud K-SVD solution to the centralized K-SVD solution, while no such analysis is provided
by [12]. More details on cloud K-SVD algorithm will be provided in Section 4.

3.2 Online distributed data

The distributed dictionary learning problem for online settings is solved in [15] and [16]. In [15], dictionary
learning is carried out for the representation problem, while the goal in [16] is to learn a discriminative dictionary
for solving the classification problem.



3.2.1 Distributed online dictionary learning for data representation

In [15], (6) is recast to solve for one row of the dictionary at a time using the D-RLS algorithm.22 In iteration

Td of dictionary learning, for updating jth row d
(Td)
i,j,T of dictionary D

(Td)
i at site i, [15] solves the following

optimization problem:

d
(Td)
i,j,T = arg min

di∈RK

1

Td

N∑
i=1

Td∑
t=1

ζTd−t 1

2
|y(t)
i,j − d

T
i x

(t)
i |

2 s.t. di = dl, ∀l ∈ Ni. (10)

Here, ζ ∈ (0, 1] is the forgetting factor. This problem is solved in [15] using D-RLS22 algorithm, which uses
ADMM21 to solve the distributed optimization problem. Specifically, in iteration Td of dictionary learning, [15]
computes the following two quantities:

Φ
(Td)
i = ζΦ

(Td−1)
i + x

(Td)
i x

(Td)T

i ,

p
(Td)
i,j = ζp

(Td−1)
i,j + y

(Td)
i,j x

(Td)
i . (11)

In each dictionary learning iteration t, [15] performs R iterations of the RLS algorithm.22 We can write La-
grangian function of the optimization problem (10) using Lagrange multiplier v. In iteration r of RLS at site i,
for all the neighboring nodes l ∈ Ni, the Lagrangian multipliers are updated as:

v
(Td,r)
i,l,j = v

(Td,r−1)
i,l,j +

c

2
(d

(Td,r−1)
i,j,T − d(Td,r−1)

l,j,T ). (12)

Using (11) and (12), the update for row j of dictionary is given by

d
(Td,r)
i,j,T = Φ

(Td)−1

i p
(Td)
i,j +

c

2
Φ(Td)−1

|Ni|d(Td,r−1)
i,j,T +

∑
l∈Ni\{i}

d
(Td,r−1)
l,j,T

− 1

2
Φ

(Td)−1

i

∑
l∈Ni

(v
(Td,r)
i,l,j − v(Td,r)

l,i,j ). (13)

In order to establish the efficacy of the proposed approach, [15] provides numerical simulations using synthetic
data.

3.2.2 Distributed online dictionary learning for data classification

For classification problem let variable z denotes the classifier and label u
(t)
i at site i in dictionary learning iteration

t, [16] solves the following optimization problem

{
D

(Td)
i , z

(Td)
i

}N
i=1

= arg min
Di∈D,zi∈Z

1

Td

Td∑
t=1

N∑
i=1

hi(Di, zi; (y
(t)
i , u

(t)
i )) s.t. Di = Dl, zi = zl, l ∈ Ni. (14)

Here, h is logistic loss, defined as

h(Di, zi; (y
(t)
i , u

(t)
i )) :=

1

1 + exp (−u(t)
i zTi x

(t)
i (Di; y

(t)
i ))

, (15)

where, x
(t)
i (Di; y

(t)
i ) is the sparse code of sample y

(t)
i using dictionary Di. We can write Lagrangian function

of the optimization problem (14) using Lagrange multipliers Λ and ν. For some step size εt > 0 chosen as
O(1/t), [16, Algorithm 1] provides following update for the primal variables

D
(t+1)
i = D

(t)
i − εt(∇Di

hi(D
(t)
i , z

(t)
i ; (y

(t)
i , u

(t)
i ))) +

∑
l∈Ni

(Λ
(t)
i,l − Λ

(t)
l,i ), and

z
(t+1)
i = z

(t)
i − εt(∇zihi(D

(t)
i , z

(t)
i ; (y

(t)
i , u

(t)
i ))) +

∑
l∈Ni

(ν
(t)
i,l − ν

(t)
l,i ). (16)



The dual variables are updated as16

Λ
(t+1)
i,l = Λ

(t)
i,l + εt(D

(t+1)
i −D(t+1)

l ), and

ν
(t+1)
i,l = ν

(t)
i,l + εt(z

(t+1)
i − z(t+1)

l ). (17)

Convergence analysis provided in [16] shows that the proposed method asymptotically achieves, in expectation,
the first order stationary conditions for the primal variables (i.e., gradient of Lagrangian with respect to primal
variables D and z will be zero). Furthermore, feasibility conditions are shown to be satisfied in expectation
asymptotically (i.e., gradient of Lagrangian with respect to dual variables Λ and ν will be zero). Finally, [16]
provides simulations on real world data to prove the usefulness of proposed method.

3.3 Learning a partial dictionary

All the algorithms we have studied so far were learning the complete dictionary D at each site i in the network.
In contrast, [14] learns only a segment of a dictionary at each site, i.e., D is distributed across the network such
that D = [D1 · · ·DN ], where Di is the segment of dictionary at site i. Another difference in the setup considered

in [14] is that every new data point y
(t)
I is only observed by some set of sites, i.e., NI ∈ N . In contrast, other

methods assume every site i observes a unique data point y
(t)
i at time t. Due to these difference in the problem

setup, the optimization problem (6) looks different for this scenario. Specifically, the problem is different in
following two aspects:

1. In all the other methods, since each site has access to the full dictionary after each dictionary update step,
each site is able to carry out sparse coding locally. In the case of partial dictionary learning, each site only
has access to a segment of dictionary, because of which we need to perform the sparse coding step in a
distributed manner.

2. For the case of complete dictionary learning, one can write the objective function as a ‘sum-of-costs’ (cf.
Sections 2.1, 2.2, and 2.3), while in the case of partial dictionary learning, we are dealing with the case of
‘cost-of-sum’.

In terms of the details, the objective function for sparse coding step in [14] is given as follows:

{x∗}i∈N = arg min
{xi}i∈N

f(y
(t)
I −

N∑
i=1

Dixi) +

N∑
i=1

hxi(xi). (18)

Here, hxi
(.) is a regularization term which is given as hxi

(xi) = ‖xi‖1 for sparse coding problem (formulations
for some other problems are given in [14, Table. I]). Since (18) is not amenable to distributed computations in
its present form, [14] considers the dual form of (18). The dual problem for (18) at site i is given by

Ji(ν; y
(t)
I ) =


−νTy

(t)
I

|NI | + 1
N f
∗(ν) + h∗xi

(DT
i ), i ∈ NI ,

1
N f
∗(ν) + h∗xi

(DT
i ν), i /∈ NI .

(19)

Here, f∗ and h∗xi
are conjugate functions of f and hxi , respectively. Next, in any iteration t the objective is to

learn a dual variable ν(t) that minimizes the dual problem across all the sites, i.e.,

ν(t) = arg min
ν

N∑
i=1

Ji(ν; y
(t)
I ) s.t. ν ∈ Vf . (20)

Where Vf is the domain of f(.). This distributed optimization problem is solved in [14] using the diffusion

strategy.17 By performing enough diffusion iterations for each sample y
(t)
I , each site i converges to an estimate



ν
(t)
i that is close to the optimal value ν(t). Once we have an estimate for ν(t), and if f and hxi

are strongly
convex, we can compute primal values as follows:

x
(t)
i = arg max

xi

(DT
i ν

(t)
i )Txi − hxi

(xi). (21)

Now using an estimate of the sparse code x
(t)
i at site i, we can update dictionary Di locally as follows:

D
(t)
i = ΠDi

(proxµi.hDi
(D

(t−1)
i + µiν

(t)
i x

(t)T

i )), (22)

where, proxµi.hDi
(.) is the proximal operator and is defined as,

proxµi.hDi
(x) := arg min

u

(
µihDi

(u) +
1

2
‖u− x‖22

)
.

Finally, the effectiveness of the algorithm in [14] is shown by performing simulations over real world datasets.

4. CLOUD K-SVD

In Section 3, we briefly reviewed the algorithms proposed for distributed dictionary learning. Among these
methods, cloud K-SVD11 is the only method that has been shown to converge to one of the centralized algorithms
(K-SVD3). Over the past few years, usefulness of K-SVD to different data processing tasks has been studied
extensively. Since cloud K-SVD converges to the same dictionary as the centralized K-SVD (see Section 4.2), it
can be used to solve similar problems in distributed settings. In this section we provide a detailed description of
the cloud K-SVD algorithm for distributed dictionary learning in batch data settings.

4.1 Algorithm

Cloud K-SVD solves the dictionary learning problem posed in (2) by means of alternating minimization, i.e.,
fixing one variable at a time and optimizing over the other variable. We initialize cloud K-SVD with same

dictionary Dinit at each site. In iteration t of cloud K-SVD, we first fix dictionary D
(t)
i and update sparse

code X
(t)
i . It is clear from (4) that we can compute sparse code x

(t)
i,s for each sample yi,s at site i if we know

the dictionary at site i. Next we fix X
(t)
i and update dictionary D

(t)
i . In order to update dictionary, we do

need access to complete dataset and also the coefficients corresponding to all the samples. Since we cannot
aggregate data at a centralized location, we need to develop an algorithm to perform dictionary update step

in a distributed manner. Cloud K-SVD updates dictionary D
(t)
i by updating one dictionary atom at a time.

Furthermore, in addition to updating dk, K-SVD3 proposes simultaneously updating coefficients corresponding
to atom dk, denoted by xk,T . Here, xk,T is a row vector comprising kth row of matrix X. For updating dictionary
atom di,k and coefficients, xi,k,T we can rewrite (2) as follows:

(d
(t)
i,k, x

(t)
i,k,T ) = arg min

dk,xk,T

N∑
i=1

‖Yi −
K∑

j=1,j 6=k

d
(t)
i,jx

(t)
i,j,T︸ ︷︷ ︸

E
(t)
i,k

−d(t)
i,kx

(t)
i,k,T ‖

2
F . (23)

In order to simplify computations, K-SVD3 further defines an ordered set ω
(t)
k = {s : 1 ≤ s ≤ S, x

(t)
k,T (s) 6= 0},

where x
(t)
k,T (s) denotes the sth element of x

(t)
k,T , and an S × |ω(t)

k | binary matrix Ω
(t)
k that has ones in (ω

(t)
k (s), s)

locations and zeros everywhere else. For distributed setup we define Ω
(t)
i,k such that Ω

(t)
k = diag{Ω(t)

1,k, . . . ,Ω
(t)
N,k}.

Then, defining E
(t)
i,k,R = E

(t)
i,kΩ

(t)
i,k and x

(t)
i,k,T,R = x

(t)
i,k,TΩ

(t)
i,k, we can rewrite (23) as



(d
(t)
i,k, x

(t)
i,k,R) = arg min

dk,xi,k,T

N∑
i=1

‖Ei,kΩ
(t)
i,k − dkxi,k,TΩ

(t)
i,k‖

2
F

= arg min
dk,xk,T

N∑
i=1

‖E(t)
i,k,R − dkxi,k,T,R‖

2
F . (24)

Solving this equation is equivalent to finding the best rank-one approximation of E
(t)
k,R := [E

(t)
1,k,R, . . . , E

(t)
N,k,R],

which is given by the Eckart-Young theorem as d
(t)
i,kx

(t)
k,R = σ1u1v

T
1 , where u1 and v1 denote the largest left-

and right-singular vectors of E
(t)
k,R, respectively, while σ1 denotes the largest singular value of E

(t)
k,R. Since the

dominant left singular vector of E
(t)
k,R is actually the principal eigenvector of E

(t)
k,RE

(t)T

k,R :=
∑N
i=1E

(t)
i,k,RE

(t)T

i,k,R, we

can use distributed power method20 to compute d
(t)
i,k as shown in Steps 7–18 of Algorithm 1. The distributed power

method used to compute d
(t)
i,k in Algorithm 1 relies on consensus averaging to obtain an estimate of eigenvector

at each site i (Steps 10–14 in Algorithm 1). Consensus averaging works under the assumption that we have a
connected graph G. Based on the topology of G, we define a doubly stochastic matrix W (i.e., 1TW = 1

T and
W1 = 1). More specifically, matrix W is designed such that, (i, j)th-entry of W , wi,j > 0 if sites i and j are
connected and wi,j = 0 if the sites are not connected. Using this matrix W , each site computes weighted sum
of values of its neighboring sites in each iteration of consensus algorithm as shown in Step 13 of Algorithm 1.

Once we learn d
(t)
i,k, we can compute x

(t)
i,k,R, the segment of x

(t)
k,R at site i, using x

(t)
i,k,R = d

(t)T

i,k E
(t)
i,k,R (Step 18 in

Algorithm 1). We keep on repeating this process until a stopping criterion is reached.

4.2 Convergence results

In this section we discuss convergence behavior of cloud K-SVD algorithm. Since in practice we cannot perform
infinite consensus iterations and power method iterations, this will result in numerical errors in the dictionary

update part (Steps 4–18 in Algorithm 1). Due to these errors it is not clear whether dictionaries, D
(t)
i , learned

using cloud K-SVD will be close to the dictionary learned using centralized K-SVD. Results in [11] show that
under some assumptions on centralized K-SVD and network connectivity, if we perform enough consensus iter-
ations Tc and power method iterations Tp, the difference between the outer-product of columns of dictionaries

returned by cloud K-SVD {D(t)
i } and the centralized dictionary D(t) is small in `2-norm. In the following we

will summarize the convergence results proved in [11].

4.2.1 Algorithmic assumptions

[A1] (Lasso for sparse coding) For the purposes of analysis, [11] assumes both cloud K-SVD and centralized
K-SVD use the lasso29 method for computing sparse codes (Step 3 in Algorithm 1). Specifically, it is
assumed sparse coding is carried out by solving

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖

2
2 + τ‖x‖1 (25)

with the regularization parameter τ > 0 selected in a way that ‖xi,s‖0 ≤ T0 � n. This can be accomplished,
for example, by making use of the least angle regression algorithm.30 It is important to note here that
while [11] uses lasso for the purpose of analysis, other methods like orthogonal matching pursuit (OMP)
can be used for sparse coding step and similar kind of analysis can be performed for these methods as well.

[A2] (Network connectivity) We assume that the set of nodes N form a connected network, i.e., any node in the
network can reach any other node.

[A3] (Identical initialization) Cloud K-SVD and centralized K-SVD are identically initialized, i.e., D
(0)
i =

D(0), i = 1, . . . , N , where D(t), t ≥ 0, in the following denotes the centralized K-SVD dictionary estimate
in the tth iteration.



Algorithm 1: Cloud K-SVD for distributed dictionary learning using batch data

Input: Local data Y1, Y2, . . . , YN , problem parameters K and T0, and doubly-stochastic matrix W .

Initialize: Generate dref ∈ Rn and Dinit ∈ Rn×K randomly, set t← 0 and D
(t)
i ← Dinit, i = 1, . . . , N .

1: while stopping rule do
2: t← t+ 1
3: (Sparse Coding) The ith site solves ∀s, x(t)

i,s ← arg min
x∈RK

‖yi,s −D(t−1)
i x‖22 s.t. ‖x‖0 ≤ T0

4: for k = 1 to K (Dictionary Update) do

5: E
(t)
i,k,R ← YiΩ

(t)
i,k −

∑k−1
j=1 d

(t)
i,jx

(t)
i,j,TΩ

(t)
i,k −

∑K
j=k+1 d

(t−1)
i,j x

(t)
i,j,TΩ

(t)
i,k

6: Mi ← E
(t)
i,k,REi,k,R

(t)T

7: (Initialize Distributed Power Method) Generate qinit randomly, set tp ← 0 and q̂
(tp)
i ← qinit

8: while stopping rule do
9: tp ← tp + 1

10: (Initialize Consensus Averaging) Set tc ← 0 and z
(tc)
i ←Miq̂

(tp−1)
i

11: while stopping rule do
12: tc ← tc + 1
13: z

(tc)
i ←

∑
j∈Ni

wi,jz
(tc−1)
i

14: end while
15: v̂

(tp)
i ← z

(tc)
i /[W tc

1 ]i

16: q̂
(tp)
i ← v̂

(tp)
i /‖v̂(tp)

i ‖2
17: end while
18: d

(t)
i,k ← sgn

(
〈dref , q̂(tp)

i 〉
)
q̂

(tp)
i

19: x
(t)
i,k,R ← d

(t)T

i,k E
(t)
i,k,R

20: end for
21: end while

Return: D
(t)
i , i = 1, 2, . . . , N .

4.2.2 Properties of the K-SVD solution

In addition to Assumptions A1–A3, we also assume that the K-SVD solution satisfies the properties mentioned
below.

[P1] Let x
(t)
i,s denote the solution of the lasso (i.e., (25)) for D = D(t−1) and τ = τ (t), t = 1, . . . , Td. Then there

exists some C1 > 0 such that the following holds:

min
t,i,s,j 6∈supp(x

(t)
i,s)

τ (t) −
∣∣〈d(t)

j , yi,s −D(t−1)x
(t)
i,s〉
∣∣ > C1.

[P2] Define ΣT0
=
{
I ⊂ {1, . . . ,K} : |I| = T0

}
. Then there exists some C2 >

C4
1τ

2
min

1936 such that the following
holds:

min
t=1,...,Td,I∈ΣT0

σT0

(
D

(t−1)
|I

)
≥
√
C2,

where σT0
(·) denotes the T th0 (ordered) singular value of a matrix.

[P3] Let λ
(t)
1,k > λ

(t)
2,k ≥ . . . λ

(t)
n,k ≥ 0 denote the eigenvalues of the centralized “reduced” matrix E

(t)
k,RE

(t)T

k,R , k ∈
{1, . . . ,K}, in the tth iteration, t ∈ {1, . . . , Td}. Then there exists some C3 < 1 such that the following
holds:

max
t,k

λ
(t)
2,k

λ
(t)
1,k

≤ C3.
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Figure 2. Representation errors for dictionaries learned using centralized K-SVD, cloud K-SVD, and local K-SVD. Here,
local K-SVD means we are applying K-SVD only for data that is available at any given site locally.

Properties P1 and P2 correspond to sufficient conditions for x
(t)
i,s to be a unique solution of (25)31 and

guarantee that the centralized K-SVD generates a unique collection of sparse codes in each iteration. Property
P3, on the other hand, ensures that algorithms such as the power method can be used to compute the dominant

eigenvector of E
(t)
k,RE

(t)T

k,R in each dictionary learning iteration.28 In particular, P3 is a statement about the

worst-case spectral gap of E
(t)
k,RE

(t)T

k,R .

4.2.3 Main result

The main result for cloud K-SVD is given in terms of the ‖ · ‖2 norm mixing time, Tmix, of the Markov chain
associated with the doubly-stochastic weight matrix W , defined as

Tmix = max
i=1,...,N

inf
t∈N

{
t : ‖eTiW t − 1

N 1T‖2 ≤
1

2

}
. (26)

Here, ei ∈ RN denotes the ith column of the identity matrix IN . Note that Tmix can be upper bounded in terms
of inverse of the absolute spectral gap of W , defined as 1− |λ2(W )| with λ2(W ) denoting the second largest (in
modulus) eigenvalue of W .32 As a general rule, better-connected networks can be made to have smaller mixing
times compared to sparsely connected networks [32, Chap. 15],[ 33].

Theorem 4.1 (Stability of cloud K-SVD Dictionaries). Under assumptions A1–A3 and assuming
that K-SVD algorithm satisfies properties P1–P3, suppose we perform Tp = Ω(TdK log(N) + Td log(KST0) +
log(nNδ−1

d )) power method iterations and Tc = Ω
(
TpTmix + Tmix logN

)
consensus iterations. Then at the end

of Td dictionary learning iterations, we will have

max
i=1,...,N
k=1,...,K

∥∥∥d(Td)
i,k d

(Td)T

i,k − d(Td)
k d

(Td)T

k

∥∥∥
2
≤ δd. (27)

This result shows that we need to perform consensus iterations whose number scale linearly with that of power
method iteration Tp and mixing time of graph Tmix, while this scaling is logarithmic in the number of nodes.
Another important point to note here is that the number of power method iterations needed in this case scale
only logarithmically with the number of samples S, which is a desirable thing in the context of big data problems.

4.3 Numerical results

In this section we provide numerical results to demonstrate the efficacy of cloud K-SVD for distributed data
processing tasks. In our first example we will use synthetic data to establish effectiveness of cloud K-SVD for data
representation problems. Our second example uses cloud K-SVD to solve a classification problem for MNIST
dataset.34
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Figure 3. Classification for MNIST dataset using centralized K-SVD, cloud K-SVD, and local K-SVD.

4.3.1 Representation error for synthetic data

Our first experiment deals with the data representation problem and demonstrates the effectiveness of collabora-
tively learning a dictionary using cloud K-SVD, as opposed to each site learning a local dictionary from its local
data using the canonical K-SVD algorithm (referred to as local K-SVD in the following). The experimental setup
consists of a total of N = 100 sites, with each site i having local data Yi ∈ R20×500, i.e., at each site i we have
Si = 500 local samples of dimension n = 20. Interconnections between the sites are randomly generated using
an Erdős–Rényi graph with parameter p = 0.5. In order to generate synthetic data at individual sites, we first
generate a dictionary with K = 50 atoms, D ∈ R20×50, with columns uniformly distributed on the unit sphere in
R20. Next, we randomly select a 45-column subdictionary of D for each site and then generate samples for that
site using a linear combination of T0 = 3 randomly selected atoms of this subdictionary, followed by addition
of white Gaussian noise with variance σ2 = 0.01. All data samples in our experiments are also normalized to
have unit `2 norms. Sparse coding in these experiments is performed using an implementation of OMP provided
in [35]. Finally, in order to carry out distributed consensus averaging, a doubly-stochastic weight matrix W is
generated according to the local-degree weights method described in [19, Sec. 4.2].

We also carry out experiments to demonstrate variations in cloud K-SVD results when we change the num-
ber of power method iterations (Tp). In Figure 2, we plot average representation error, which is defined as
1
nS

∑N
i=1

∑Si

j=1 ‖yi,j −Dxi,j‖2, as a function of the number of dictionary learning iterations for three dictionary
learning methods, namely, centralized (canonical) K-SVD, cloud K-SVD, and local K-SVD. It can be seen from
this figure, which corresponds to an average of 100 Monte-Carlo trials, that cloud K-SVD and centralized K-SVD
have similar performance and both of them perform better than local K-SVD. In particular, the local K-SVD
error is ≈ 0.06 after 40 dictionary learning iterations (i.e., Td = 40), while it is ≈ 0.03 for cloud K-SVD and cen-
tralized K-SVD. Notice that changes in the number of power method iterations induce relatively minor changes
in the representation error of cloud K-SVD.

4.3.2 Classification of MNIST dataset

For evaluation of cloud K-SVD on real dataset, we perform classification of digits {0, 3, 5, 8, 9} from MNIST
dataset.34 We use 6000 samples for each digit, where 5000 samples are used for training and remaining 1000
for testing. The data are five-times randomly split into training and test samples. For cloud K-SVD, Erdős–
Rényi graph with parameter p = 0.5 is used to generate a network with 10 sites and data is equally distributed
among them. Before performing dictionary learning, data is down sampled from R784 to R256. Next, a separate
dictionary is learned for each digit using centralized K-SVD, cloud K-SVD, and local K-SVD. Each dictionary has
dimensions R256×400, i.e., K = 400, and sparsity level of T0 = 10 is used. Minimum residue-based rule [6, Sec.II-
A] is used for classification, more details on which are given below.



Let {Dc}5c=1 be the set of dictionaries for 5 classes and let D =
[
D1 D2 D3 D4 D5

]
∈ R256×2000 be

the complete dictionary. For any test sample ys, we perform sparse coding using D with sparsity constraint of
T0 = 10 to get coefficients xs ∈ R2000. Then we partition xs into five segment {xs,c}5c=1, where xs,c are the
coefficients corresponding to dictionary Dc of class c. Next we define residue for class c as

rc = ‖ys −Dcxs,c‖2. (28)

Finally, the detected class is given by c∗ = arg minc rc. Performance of each method (centralized, cloud, and
local K-SVD) is measured in terms of average detection rate on the test samples, defined as

Rc =
Number of samples in class c detected correctly

Total number of samples of class c
, (29)

with results given in Figure 3. We see that centralized and cloud K-SVD have comparable performance. But in
the case of local K-SVD, classification rate deteriorates considerably. The bars in local K-SVD show the highest
and lowest detection rates achieved among the 10 sites, which highlights the variation in effectiveness of models
learned across different sites when using only the local data.

5. CONCLUSION

In this paper we reviewed existing methods for solving dictionary learning problem in a distributed setup. These
methods target different problem setups that arise in practical situations. Specifically, (i) streaming and batch
data settings, (ii) learnig dictionary for representation and classification tasks, and (iii) learning a full common
dictionary versus partial dictionary at sites were examined. Furthermore, we provided detailed description of
the cloud K-SVD solution for learning distributed dictionary in batch data settings. We also provided the
convergence results and numerical simulations to show the efficacy of cloud K-SVD.
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