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Abstract—This paper provides a convergence analysis of a
recent distributed algorithm, termed cloud K-SVD, that solves
the problem of data-adaptive representations for big, distributed
data. It is assumed that a number of geographically-distributed,
interconnected sites have massive local data and they are collab-
oratively learning a sparsifying dictionary underlying these data
using cloud K-SVD. This paper provides a rigorous analysis of
cloud K-SVD that gives insights into its properties as well as
deviations of the dictionaries learned at individual sites from a
centralized solution in terms of different measures of local/global
data and topology of the interconnections.

I. INTRODUCTION

Data representation using dictionary learning has gained a
lot of attention in recent years. Some important contributions
towards solving the dictionary learning problem include [1]–
[3]. But such methods assume data to be present at a cen-
tralized location and are therefore not suited for cases when
data are distributed across multiple locations. On the other
hand, distributed data sets are quite prevalent in today’s
information processing landscape. In order to address the
challenge of dictionary learning from distributed data, [4]–
[7] have recently proposed a few approaches. Among these
approaches is a distributed variant of the efficient K-SVD
algorithm for dictionary learning, termed cloud K-SVD [5].
Computationally, cloud K-SVD has been shown to have many
of the desirable characteristics, such as fast convergence and
small approximation error, of a dictionary learning algorithm
[5]. Our goal in this paper is to provide a convergence analysis
of cloud K-SVD.

In terms of our main contribution, note that cloud K-SVD
relies on the power method for computing dominant singular
vectors during the dictionary update step of K-SVD, while
it uses consensus averaging to perform the power method
in a distributed manner. In [5], we provided a preliminary
analysis of cloud K-SVD that dealt with the convergence of
its distributed power method component. In this paper we build
upon our initial analysis in [5] and show that the cloud K-SVD
dictionaries converge to the centralized K-SVD dictionary
under certain assumptions. The implication of our analysis is
that the differences between cloud K-SVD dictionaries and
the centralized K-SVD dictionary can be arbitrarily small
as long as both algorithms are initialized identically and
appropriate numbers of power method and consensus iterations
are performed in cloud K-SVD. Furthermore, our analysis
guarantees this as long as total number of transmissions by
any given site scales as Ω(log2 Smax), where Smax denotes
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the maximum number of data samples at any one site within
the network.

To the best of our knowledge, this is the first work showing
that dictionaries learned in distributed settings can be arbitrar-
ily close to a centralized dictionary. While related works [4],
[6] provide algorithms for distributed dictionary learning, they
lack convergence guarantees. Other contributions like [7] focus
on learning segments of the dictionary at each site, which
is different from our setup since we are learning a complete
dictionary at each site.

Notation. We use lower-case letters to represent scalars
and vectors, while we use upper-case letters to represent
matrices. Given a vector v, supp(v) returns indices of the
nonzero entries in v, ‖v‖p denotes its `p norm, ‖v‖0 counts
the number of its nonzero entries, and superscript (·)T denotes
the transpose operation. Given a set I, v|I and A|I denote
a subvector and a submatrix obtained by retaining entries of
vector v and columns of matrix A corresponding to the indices
in I, respectively. Given matrices {Ai ∈ Rni×mi}Ni=1, the
operation diag{A1, . . . , AN} returns a block-diagonal matrix
A ∈ R

∑
ni×

∑
mi that has Ai’s on its diagonal. Finally, given

a matrix A, aj and aj,T denote the jth column and the jth

row of A, respectively.

II. PROBLEM FORMULATION

Our focus in this paper is on the convergence behavior of
the cloud K-SVD algorithm [5]. Here, convergence of cloud
K-SVD means that after Td dictionary learning iterations, the
gaps between the dictionaries using cloud K-SVD and the one
learned using centralized K-SVD an be made arbitrarily small.
Our goal in this regard is understanding the gaps between
cloud K-SVD dictionaries and centralized K-SVD dictionary
in terms of various problem parameters, such as the number
of sites and data samples, the topology of interconnections,
and the numbers of consensus and power method iterations.

A. Collaborative dictionary learning using cloud K-SVD

Consider a collection of N geographically-distributed sites
that are interconnected to each other according to a fixed topol-
ogy. Mathematically, we represent this collection and their
interconnections through an undirected graph G = (N , E),
where N = {1, 2, · · · , N} denotes the sites and E denotes
edges in the graph with (i, i) ∈ E and (i, j) ∈ E whenever
there is a connection between site i and site j. The only
assumption we make about the topology of G is that it is
a connected graph. Next, we assume that each site i has
a massive collection of local data, expressed as a matrix
Yi ∈ Rn×Si with Si � n representing the number of data
samples at the ith site. We can express this distributed data as
a single matrix Y =

[
Y1 Y2 . . . YN

]
∈ Rn×S , where

S =
∑N
i=1 Si denotes the total number of data samples



distributed across the N sites. In this setting, the fundamental
objective is for each site to collaboratively learn a dictionary
that underlies the global (distributed) data Y .

Assuming that global data Y is available at a centralized
location, the dictionary learning problem can be expressed as(

D,X
)

= arg min
D,X
‖Y −DX‖2F s.t. ∀s, ‖xs‖0 ≤ T0, (1)

where D ∈ Rn×K with K > n is an overcomplete dictionary
having unit `2-norm columns, X ∈ RK×S corresponds to
representation coefficients of the data having no more than
T0 � n nonzero coefficients per sample, and xs, s = 1, . . . , S
denotes the sth column in X . Unlike classical dictionary learn-
ing, however, we do not have the global data Y available at a
centralized location. Therefore, our goal is to have individual
sites collaboratively learn dictionaries {D̂i}i∈N from global
data Y such that these collaborative dictionaries are close
to a dictionary D that could have been learned from Y in a
centralized fashion.

Cloud K-SVD, given as Algorithm 1, was developed in [5]
to accomplish the goal of collaborative dictionary learning
from distributed data. This algorithm is a distributed variant
of the famous K-SVD algorithm, which consists of two main
steps, sparse coding and dictionary update. The sparse coding
step in cloud K-SVD is performed only for locally available
data at each site, while the dictionary update step is performed
in a distributed manner using distributed power method. This
makes the dictionary update step in cloud K-SVD as the most
important and challenging step. Specifically, we recall from
the description of K-SVD in [2] that dictionary update in-
volves singular value decomposition (SVD) of the error matrix
E

(t)
k =

[
E

(t)
1,k . . . E

(t)
N,k

]
in iteration t, which is available

to K-SVD at one location. Cloud K-SVD, on the other hand,
can only compute Ê(t)

i,k at any site i due to local sparse coding
(cf. Step 5 of Algorithm 1), where Ê(t)

i,k denotes a perturbed
version of the centralized E

(t)
i,k . Next, define an ordered set

ω̃
(t)
i,k = {s : 1 ≤ s ≤ S, x̃

(t)
i,k,T (s) 6= 0}, where x̃

(t)
i,k,T (s)

denotes the sth element of x̃(t)
i,k,T , and an S × |ω̃(t)

i,k| binary
matrix Ω̃

(t)
i,k that has ones at (ω̃

(t)
i,k(s), s) locations and zeros

everywhere else. Then each site i in cloud K-SVD only has
access to Ê(t)

i,k,R = Ê
(t)
i,kΩ̃

(t)
i,k and x̃(t)

i,k,R = x̃
(t)
i,k,T Ω̃

(t)
i,k, whereas

the centralized K-SVD has access to E
(t)
i,k,R = E

(t)
i,kΩ

(t)
i,k and

x
(t)
i,k,R = x

(t)
i,k,TΩ

(t)
i,k. Finally, each site i in cloud K-SVD can

only rely on Ω̃
(t)
i,k, while K-SVD has access to the matrices

Ω
(t)
k = diag(Ω

(t)
1,k, . . . ,Ω

(t)
N,k) and E

(t)
k,R = E

(t)
k Ω

(t)
k . Steps 4–

21 in Algorithm 1 are designed to address these limitations of
distributed dictionary learning; we refer the reader to [8] for
further details on these steps.

B. Main challenge

Even after K-SVD and cloud K-SVD are identically ini-
tialized, D(0) = D̂

(0)
i , we will have D(1) 6= D̂

(1)
i at the

end of iteration 1 due to finite power method and consensus
iterations in cloud K-SVD. This error in D̂(1)

i will then cause
errors in sparse coding (Step 3 of Algorithm 1). Next, it can
be seen from Steps 5–6 of Algorithm 1 that errors in sparse

Algorithm 1: Cloud K-SVD for dictionary learning
Input: Local data Y1, Y2, . . . , YN , problem parameters K
and T0, and doubly-stochastic consensus matrix W .
Initialize: Generate dref ∈ Rn and Dinit ∈ Rn×K
randomly, set t← 0 and D̂(t)

i ← Dinit, i = 1, . . . , N .
1: while stopping rule do
2: t← t+ 1
3: (Sparse Coding) The ith site solves

∀s, x̃(t)
i,s ← arg min

x∈RK
‖yi,s − D̂(t−1)

i x‖22 s.t. ‖x‖0 ≤ T0

4: for k = 1 to K (Dictionary Update) do
5: Ê

(t)
i,k ← Yi−

∑k−1
j=1 d̂

(t)
i,j x̂

(t)
i,j,T −

∑K
j=k+1 d̂

(t−1)
i,j x̃

(t)
i,j,T

6: Ê
(t)
i,k,R ← Ê

(t)
i,kΩ̃

(t)
i,k

7: M̂
(t)
i ← Ê

(t)
i,k,RÊ

(t)T

i,k,R

8: (Initialize Distributed Power Method) Generate
qinit randomly, set tp ← 0 and q̂(tp)

i ← qinit

9: while stopping rule do
10: tp ← tp + 1
11: (Initialize Consensus Averaging) Set tc ← 0 and

z
(tc)
i ← M̂iq̂

(tp−1)
i

12: while stopping rule do
13: tc ← tc + 1
14: z

(tc)
i ←

∑
j∈Ni

wi,jz
(tc−1)
i

15: end while
16: v̂

(tp)
i ← z

(tc)
i /[W tc

1 ]i
17: q̂

(tp)
i ← v̂

(tp)
i /‖v̂(tp)

i ‖2
18: end while
19: d̂

(t)
i,k ← sgn

(
〈dref , q̂(tp)

i 〉
)
q̂

(tp)
i

20: x̂
(t)
i,k,R ← d̂

(t)T

i,k Ê
(t)
i,k,R

21: end for
22: end while
Return: D̂(t)

i , i = 1, 2, . . . , N .

coding and D̂
(1)
i will result in deviation of Ê(2)

i,k,R from the
centralized E

(2)
i,k,R. This means that the updated kth atom in

iteration 2 will have an error due to perturbation of E(2)
i,k,R and

due to errors caused by finite numbers of consensus and power
method iterations. All these errors will keep on accumulating
in the same way for any iteration t > 2. In summary, the main
sources of error in cloud K-SVD are as follows:

1) Error in sparse coding due to perturbed dictionaries at the
start of any iteration t > 1.

2) Error in E
(t)
k,R due to errors in dictionaries from the

previous iteration and errors in sparse codes in the current
iteration. This error in E(t)

k,R will result in an error during
the dictionary update step even if there is no error in
computing the principal eigenvector of Ê(t)

k,RÊ
(t)T

k,R .

3) Error in computing the principal eigenvector of Ê(t)
k,RÊ

(t)T

k,R

due to finite numbers of power method and consensus
iterations.

Our goal in this paper is to analyze how these errors are
accumulating in each iteration and how to control these errors
such that the errors in dictionaries D̂

(t)
i stay below some

threshold after Td dictionary learning iterations.



III. ANALYSIS OF CLOUD K-SVD

Analysis of cloud K-SVD requires an understanding of the
behavior of its major components, which include sparse cod-
ing, dictionary update, and distributed power method within
dictionary update. In addition, one also expects that the
closeness of D̂i’s to the centralized solution will be a function
of certain properties of local/global data. We begin our analysis
of cloud K-SVD by first stating some of these properties in
terms of the centralized K-SVD solution.

A. Preliminaries

We will start by providing algorithmic specification of the
sparse coding steps in both algorithms. While the sparse cod-
ing step as stated in Step 3 of Algorithm 1 has combinatorial
complexity, various low-complexity computational approaches
can be used to solve this step in practice. Our analysis in the
following will be focused on the case when sparse coding in
both cloud K-SVD and centralized K-SVD is carried out using
the lasso [9]. Specifically, we assume sparse coding is carried
out by solving

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖

2
2 + τ‖x‖1 (2)

with the regularization parameter τ > 0 selected in a way that
‖xi,s‖0 ≤ T0 � n. This can be accomplished, for example,
by making use of the least angle regression algorithm [10].
Note that the lasso also has a dual, constrained form, given by

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖

2
2 s.t. ‖x‖1 ≤ η, (3)

and the solutions of (2) and (3) are identical for an appropriate
ητ = η(τ) [11].

We also assume identical centralized and distributed initial-
izations, i.e., D̂(0)

i = D(0), i = 1, . . . , N , where D(t), t ≥ 0,
in the following denotes the centralized K-SVD dictionary
estimate in the tth iteration. Despite identical initialization,
the cloud K-SVD dictionaries get perturbed in each iteration
due to imperfect power method and consensus averaging. In
order to ensure these perturbations do not cause the cloud
K-SVD dictionaries to diverge from the centralized solution
after Td iterations, we need the dictionary estimates returned
by centralized K-SVD in each iteration to satisfy the following
properties.
[P1] Let x(t)

i,s denote the solution of the lasso (i.e., (2)) for
D = D(t−1) and τ = τ (t), t = 1, . . . , Td. Then there
exists some C1 > 0 such that the following holds:

min
t,i,s,j 6∈supp(x

(t)
i,s)

τ (t) −
∣∣〈d(t)

j , yi,s −D(t−1)x
(t)
i,s〉
∣∣ > C1.

For collection
{
τ (t)
}Td

t=1
, we also define the small-

est regularization parameter τmin = min
t
τ (t), and

the largest dual parameter among the (dual) collection{
η

(t)
τ = η(τ (t))

}Td

t=1
as ητ,max = max

t
η

(t)
τ .

[P2] Define ΣT0
=
{
I ⊂ {1, . . . ,K} : |I| = T0

}
. Then

there exists some C ′2 >
C4

1τ
2
min

1936 such that the following
holds, mint=1,...,Td,I∈ΣT0

σT0

(
D

(t−1)
|I

)
≥
√
C ′2, where

σT0
(·) denotes the T th0 (ordered) singular value of a

matrix. In our analysis, we will be using the parameter

C2 =
(√

C ′2 −
C2

1τmin

44

)2

.

[P3] Let λ(t)
1,k > λ

(t)
2,k ≥ . . . λ

(t)
n,k ≥ 0 denote the eigenval-

ues of the centralized “reduced” matrix E
(t)
k,RE

(t)T

k,R , k ∈
{1, . . . ,K}, in the tth iteration, t ∈ {1, . . . , Td}.
Then there exists some C ′3 < 1 such that the fol-

lowing holds, maxt,k
λ
(t)
2,k

λ
(t)
1,k

≤ C ′3. Now define C3 =

max
{

1, 1

mint,k λ
(t)
1,k(1−C′3)

}
, which we will use in our

forthcoming analysis.
Properties P1 and P2 correspond to sufficient conditions

for x(t)
i,s to be a unique solution of (2) [12] and guarantee

that the centralized K-SVD generates a unique collection of
sparse codes in each dictionary learning iteration. Property P3,
on the other hand, ensures that algorithms such as the power
method can be used to compute the dominant eigenvector of
E

(t)
k,RE

(t)T

k,R in each dictionary learning iteration (Steps 8–18 in
Algorithm 1) [13]. In addition to these properties, our final
analytical result for cloud K-SVD will also be a function of a
certain parameter of the centralized error matrices

{
E

(t)
k

}K
k=1

generated by the centralized K-SVD in each iteration. We
define this parameter as follows. Let E(t)

i,k , i = 1, . . . , N ,
denote part of the centralized error matrix E

(t)
k associated

with the data of the ith site in the tth iteration, i.e., E(t)
k =[

E
(t)
1,k E

(t)
2,k · · · E

(t)
N,k

]
, k = 1, . . . ,K, t = 1, . . . , Td.

Then C4 = max
{

1,maxt,i,k ‖E(t)
i,k‖2

}
.

B. Main Result

We are now ready to state the main result of this paper. This
result is given in terms of the ‖·‖2 norm mixing time, Tmix, of
the Markov chain associated with the doubly-stochastic weight
matrix W used for consensus averaging, defined as

Tmix = max
i=1,...,N

inf
t∈N

{
t : ‖eT

iW
t − 1

N 1T‖2 ≤
1

2

}
. (4)

Here, ei ∈ RN denotes the ith column of the identity matrix
IN . In the following, main convergence results for cloud K-
SVD along with brief discussions are presented. For detailed
proofs and discussions we refer the reader to [8].

Theorem 1 (Stability of Cloud K-SVD Dictionaries).
Suppose cloud K-SVD (Algorithm 1) and (centralized) K-SVD
are identically initialized and both of them carry out Td
dictionary learning iterations. In addition, assume cloud
K-SVD carries out Tp power method iterations during
the update of each atom and Tc consensus iterations
during each power method iteration. Finally, assume the
K-SVD algorithm satisfies properties P1–P3. Next, define

α = max
t,k

N∑
i=1

‖Ê(t)
i,k,RÊ

(t)T

i,k,R‖2, β = max
t,tp,k

1∥∥∥Ê(t)
k,RÊ

(t)T
k,R q

(tp)

c,t,k

∥∥∥
2

,

γ = maxt,k

√∑N
i=1 ‖Ê

(t)
i,k,RÊ

(t)T

i,k,R‖2F , ν = maxt,k
λ̂
(t)
2,k

λ̂
(t)
1,k

,

θ̂
(t)
k ∈ [0, π/2] as θ̂

(t)
k = arccos

( ∣∣∣〈u(t)
1,k,q

init
〉∣∣∣

‖u(t)
1,k‖2‖qinit‖2

)
,

µ = max
{

1,maxk,t tan(θ̂
(t)
k )
}

, and ζ =



K
√

2Smax

(
6
√
KT0

τminC2
+ ητ,max

)
, where Smax = max

i
Si, u

(t)
1,k

is the dominant eigenvector of Ê(t)
k,RÊ

(t)T

k,R , λ̂(t)
1,k and λ̂

(t)
2,k are

first and second largest eigenvalues of Ê(t)
k,RÊ

(t)T

k,R , respectively,

and q(tp)
c,t,k denotes the iterates of a centralized power method

initialized with qinit for estimation of the dominant eigenvector
of Ê(t)

k,RÊ
(t)T

k,R . Then, assuming mint,k
∣∣〈u(t)

1,k, q
init〉

∣∣ > 0, and

fixing any ε ∈
(

0,min
{

(10α2β2)−1/3Tp , ( 1−ν
4 )1/3

})
and

δd ∈
(

0,min
{

1√
2
,
C2

1τmin

44
√

2K

})
, we have

max
i=1,...,N
k=1,...,K

∥∥∥d̂(Td)
i,k d̂

(Td)T

i,k − d(Td)
k d

(Td)T

k

∥∥∥
2
≤ δd (5)

as long as the number of power method iterations Tp ≥
2(TdK−2) log(8C3C

2
4N+5)+(Td−1) log(1+ζ)+log(8C3C4µN

√
nδ−1

d )

log[(ν+4ε3)−1]
and the number of consensus iterations Tc =
Ω
(
TpTmix log (2αβε−1) + Tmix log (α−1γ

√
N)
)
.

We now comment on the major implications of Theorem 1.
First, the theorem establishes that the distributed dictionaries
{D̂(Td)

i } can indeed remain arbitrarily close to the central-
ized dictionary D(Td) after Td dictionary learning iterations
(cf. (5)). Second, the theorem shows that this can happen as
long as the number of distributed power method iterations Tp
scale in a certain manner. In particular, Theorem 1 calls for
this scaling to be at least linear in TdK (modulo the logN
multiplication factor), which is the total number of SVDs that
K-SVD needs to perform in Td dictionary learning iterations.
On the other hand, Tp need only scale logarithmically with
Smax, which is significant in the context of big data problems.
Other main problem parameters that affect the scaling of Tp
include T0, n, and δ−1

d , all of which enter the scaling relation
in a logarithmic fashion. Finally, Theorem 1 dictates that the
number of consensus iterations Tc should also scale at least
linearly with TpTmix (modulo some log factors) for the main
result to hold. In summary, Theorem 1 guarantees that the
distributed dictionaries learned by cloud K-SVD can remain
close to the centralized dictionary without requiring excessive
numbers of power method and consensus averaging iterations.

We now provide a brief heuristic understanding of the
roadmap needed to prove Theorem 1. In the first dictionary
learning iteration (t = 1), we have {D̂(t−1)

i ≡ D(t−1)} due
to identical initializations. While this means both K-SVD and
cloud K-SVD result in identical sparse codes for t = 1, the
distributed dictionaries begin to deviate from the centralized
dictionary after this step. The perturbations in {d̂(1)

i,k} happen
due to the finite numbers of power method and consensus
averaging iterations for k = 1, whereas they happen for k > 1
due to this reason as well as due to the earlier perturbations
in {d̂(1)

i,j , x̂
(1)
i,j,T }, j < k. In subsequent dictionary learning

iterations (t > 1), therefore, cloud K-SVD starts with already
perturbed distributed dictionaries {D̂(t−1)

i }. This in turn also
results in deviations of the sparse codes computed by K-
SVD and cloud K-SVD, which then adds another source of
perturbations in {d̂(t)

i,k} during the dictionary update steps. To
summarize, imperfect power method and consensus averaging
in cloud K-SVD introduce errors in the top eigenvector es-

timates of (centralized) E(1)
1,RE

(1)T

1,R at individual sites, which
then accumulate for (k, t) 6= (1, 1) to also cause errors
in estimate Ê

(t)
k,RÊ

(t)T

k,R of the matrix E
(t)
k,RE

(t)T

k,R available to
cloud K-SVD. Collectively, these two sources of errors cause
deviations of the distributed dictionaries from the centralized
dictionary and the proof of Theorem 1 mainly relies on our
ability to control these two sources of errors.

C. Roadmap to Theorem 1

The first main result needed for the proof of Theorem 1
looks at the errors in the estimates of the dominant eigenvector
u1 of an arbitrary symmetric matrix M =

∑N
i=1Mi obtained

at individual sites using imperfect power method and con-
sensus averaging when the Mi’s are distributed across the N
sites (cf. Algorithm 1). The following result effectively helps
us control the errors in cloud K-SVD dictionaries due to Steps
8–18 in Algorithm 1.

Theorem 2 (Stability of Distributed Power Method). Con-
sider any symmetric matrix M =

∑N
i=1Mi with dominant

eigenvector u1 and eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn|.
Suppose each Mi, i = 1, . . . , N , is only available at the
ith site in our network and let q̂i denote an estimate of
u1 obtained at site i after Tp iterations of the distributed
power method (Steps 8–18 in Algorithm 1). Next, define
αp =

∑N
i=1 ‖Mi‖2, βp = maxtp=1,...,Tp

1

‖Mq
(tp)
c ‖2

, and

γp =
√∑N

i=1 ‖Mi‖2F , where q(tp)
c denotes the iterates of a

centralized power method initialized with qinit. Then, fixing
any ε ∈

(
0, (10α2

pβ
2
p)−1/3Tp

)
, we have

max
i=1,...,N

∥∥∥u1u
T
1 − q̂iq̂T

i

∥∥∥
2
≤ tan (θ)

∣∣∣∣λ2

λ1

∣∣∣∣Tp

+ 4ε3Tp , (6)

as long as |〈u1, q
init〉| > 0 and the number of con-

sensus iterations within each iteration of the distributed
power method (Steps 11–15 in Algorithm 1) satisfies Tc =
Ω
(
TpTmix log (2αpβpε

−1) + Tmix log (α−1
p γp

√
N)
)
. Here, θ

denotes the angle between u1 and qinit, defined as θ =
arccos(|〈u1, q

init〉|/(‖u1‖2‖qinit‖2)).

Proof of this theorem can be find in our earlier work [5].
Theorem 2 states that q̂i

Tp−→ ±u1 at an exponential rate at
each site as long as enough consensus iterations are performed
in each iteration of the distributed power method. In the case
of a finite number of distributed power method iterations, (6)
in Theorem 2 tells us that the maximum error in estimates
of the dominant eigenvector is bounded by the sum of two
terms, with the first term due to finite number of power
method iterations and the second term due to finite number
of consensus iterations.

The second main result needed to prove Theorem 1
looks at the errors between individual blocks of the reduced
distributed error matrix Ê(t)

k,R =
[
Ê

(t)
1,k,R, Ê

(t)
2,k,R, · · · , Ê

(t)
N,k,R

]
and the reduced centralized error matrix E

(t)
k,R =[

E
(t)
1,k,R, E

(t)
2,k,R, · · · , E

(t)
N,k,R

]
for k ∈ {1, 2, · · · ,K}

and t ∈ {1, 2, · · · , Td}. This result helps us control the error
in Step 6 of Algorithm 1 and, together with Theorem 2,



characterizes the major sources of errors in cloud K-SVD
in relation to centralized K-SVD. The following theorem
provides a bound on error in E(t)

i,k,R

Theorem 3 (Perturbation in the matrix Ê
(t)
i,k,R). Recall the

definitions of Ω
(t)
k and Ω̃

(t)
i,k from Section II-A. Next, ex-

press Ω
(t)
k = diag{Ω(t)

1,k, · · · ,Ω
(t)
N,k}, where Ω

(t)
i,k corresponds

to the data samples associated with the ith site, and de-
fine B

(t)
i,k,R = Ê

(t)
i,k,R − E

(t)
i,k,R. Finally, let ζ, µ, ν, ε,

and δd be as in Theorem 1, define ε = µνTp + 4ε3Tp ,
and assume ε ≤ δd

8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) .

Then, if we perform Tp power method iterations and Tc =
Ω
(
TpTmix log (2αβε−1)+Tmix log (α−1γ

√
N)
)

consensus it-
erations in cloud K-SVD and assume P1–P3 hold, we have for
i ∈ {1, . . . , N}, t ∈ {1, 2, · · · , Td}, and k ∈ {1, 2, · · · ,K}

‖B(t)
i,k,R‖2 ≤

{
0, for t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w.

Theorem 3 tells us that the error in matrix E
(t)
i,k,R can be

made arbitrarily small through a suitable choice of Tp and ε
as long as all of the assumptions of Theorem 1 are satisfied.
One of the steps in proving Theorem 1 involves proving that
the assumption on ε is satisfied as long as we are performing
power method iterations and consensus iterations as required
by Theorem 1 (see to [8] for complete proof). In the following,
we provide a brief sketch of the proof of Theorem 3 and refer
the reader to [8] for complete details.

We can prove Theorem 3 by induction over dictionary
learning iteration t. But first we need to have a way to bound
‖B(t)

i,k+1,R‖2 using bounds on {‖B(t)
i,j,R‖2}kj=1 and also we

need to have a method to bound ‖B(t+1)
i,1,R ‖2 using bounds on

{‖B(t)
i,j,R‖2}Kj=1. Notice from Algorithm 1 that sparse coding is

always performed before update of the first dictionary atom.
But we do not perform sparse coding before updating any
other dictionary atom. Due to this distinction, we address
the problem of error accumulation in matrix E

(t)
i,k,R for first

dictionary atom (‖B(t+1)
i,1,R ‖2) differently than for any other

dictionary atom ({‖B(t)
i,j,R‖2}Kj=2). Proof of Theorem 3 can

then be divided into three steps.
Bound on ‖B(t)

i,k+1,R‖2: Recall from Steps 5–6 in Al-
gorithm 1 that Ê(t)

i,k,R = YiΩ̃
(t)
i,k −

∑k−1
j=1 d̂

(t)
i,j x̂

(t)
i,j,T Ω̃

(t)
i,k −∑K

j=k+1 d̂
(t−1)
i,j x̃

(t)
i,j,T Ω̃

(t)
i,k. Now, if one assumes that Ω̃

(t)
k =

Ω
(t)
k , which can be argued to be true using results from [14]

and assumptions of Theorem 1, then the error in E
(t)
i,k,R is

due to errors in {x(t)
i,j,T,R}Kj=1 and {d(t)

j }Kj=1. Infact, to bound
‖B(t)

i,k+1,R‖2 we only need to know bounds on errors in d
(t)
i,k

and x
(t)
i,k,T,R. Next, recall from Step 20 in Algorithm 1 that

x̂
(t)
i,k,R = d̂

(t)
i,kÊ

(t)T

i,k,R, which means we only need to know a
bound on d

(t)
k to bound ‖B(t)

i,k+1,R‖2. But the challenge is
to bound error in d

(t)
k from a given bound on ‖B(t)

i,k,R‖2.
This is accomplished by noting that there are two sources of
error in d(t)

k . The first source is the difference in eigenvectors
of Ê(t)

k,RÊ
(t)T

k,R and E
(t)
k,RE

(t)T

k,R . We will bound this difference

using [13, Theorem 8.1.12]. The second source of error in
d

(t)
k is the error in eigenvector computation, which in our

case is due to the distributed power method. It follows from
Theorem 2 and statement of Theorem 3 that this error is
bounded by ε. Combining these two sources of error, we can
bound the error in d(t)

k , which we use to bound ‖B(t)
i,k+1,R‖2.

Bound on ‖B(t+1)
i,1,R ‖2: In order to bound ‖B(t+1)

i,1,R ‖2 when
we know bounds on {‖B(t)

i,j,R‖2}Kj=1, the difference from
previous case is that now we can not write sparse code
{x̂(t+1)

i,j,T }Kj=1 in terms of dictionary atoms {d̂(t)
i,j}Kj=1. There-

fore, in addition to bounding errors in dictionary atoms
{d̂(t)
i,j}Kj=1, we also need to bound errors in sparse codes due

to perturbations in dictionaries after iteration t. Since we
know {‖B(t)

i,k,R‖2}Kj=1, we can use these to bound {d̂(t)
i,j}Kj=1.

Next, using error bounds on {d̂(t)
i,j}Kj=1, we can use [14,

Theorem 4] to bound errors in {x̂(t+1)
i,j,T }Kj=1. Finally, using

these error bounds on {d̂(t)
i,j}Kj=1 and {x̂(t+1)

i,j,T }Kj=1 we can
bound ‖B(t+1)

i,1,R ‖2.
Bound on ‖B(t)

i,k,R‖2, ∀t and k: Next using induction ar-
gument over t we can prove Theorem 3.

IV. CONCLUSION

In this paper, we have provided mathematical analysis of
cloud K-SVD. Our analysis shows that under certain as-
sumptions if we perform enough numbers of power method
and consensus iterations then the cloud K-SVD dictionaries
converge to the centralized K-SVD solution.
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