
Cloud K-SVD: Computing data-adaptive
representations in the cloud

Haroon Raja and Waheed U. Bajwa
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854

Emails: haroon.raja@rutgers.edu, waheed.bajwa@rutgers.edu

Abstract—This paper studies the problem of data-adaptive rep-
resentations for big, distributed data. It is assumed that a number
of geographically-distributed, interconnected sites have massive
local data and they are interested in collaboratively learning a
low-dimensional geometric structure underlying these data. In
contrast to some of the previous works on subspace representa-
tions, this paper focuses on the geometric structure of a union of
subspaces (UoS). Specifically, it proposes a distributed algorithm,
termed as cloud K-SVD, for learning a UoS structure underlying
distributed data of interest. Cloud K-SVD accomplishes the goal
of collaborative data-adaptive representations without requiring
communication of individual data samples between different sites.
The paper also provides a partial analysis of cloud K-SVD that
gives insights into its convergence properties and deviations from
a centralized solution in terms of properties of local data and
topology of interconnections. Finally, it numerically illustrates
the efficacy of cloud K-SVD.

I. INTRODUCTION

We are witnessing a new era of information processing.
Two defining characteristics of this era are big data and
distributed data. First, ever-falling prices of semiconductor
devices, consumer electronics, storage media, communications
bandwidth, etc., are pushing individuals, corporations, and
governments toward generation of massive quantities of data.
Second, globalization, mobility, ubiquitous connectivity, and
other extraneous factors are causing an increasing reliance on
interconnected sets of geographically-distributed data collec-
tions for inference and decision making. The confluence of
these two characteristics is inevitable, which will create both
new challenges and opportunities. In this paper, we focus on
one such challenge in the “big, distributed data” world of the
future: collaborative learning of compact data representations,
suitable for a multitude of information processing tasks, using
interconnected sets of geographically-distributed big data.

A. Background

Modern information processing is based on the axiom that
while real-world data may live in high-dimensional ambi-
ent spaces, relevant information within them almost always
lies near low-dimensional geometric structures. In particu-
lar, knowledge of the (low-dimensional) geometric structure
underlying data of interest is central to the success of a
multitude of information processing tasks. But this knowledge
is unavailable to us in an overwhelmingly large number of
applications and a great deal of work has been done in the past
to learn geometric structure of data from the data themselves.
However, much of that work, often studied under rubrics such

as principal component analysis (PCA) [1], generalized PCA
(GPCA) [2], hybrid linear modeling (HLM) [3], and dictionary
learning [4], [5], has been focused on methods in which the
entire data are assumed available at a centralized location. In
recent years, there has been some effort to extend these works
to distributed settings; see, e.g., [6]–[11]. The setting studied
in some of these works is that data is partitioned horizontally,
with each distributed entity responsible for some dimensions
of the data [6], [9]. Some of the other works in this direction
focus on learning under the assumption of data lying near
(linear) subspaces [7], [8], require extensive communications
among the distributed entities [10], and ignore some of the
technical details associated with processing among distributed
entities having interconnections described by graphs of arbi-
trary topologies [7], [8], [10], [11].

In this paper, we are interested in a setting in which a
number of geographically-distributed sites have massive local
data and these sites are interested in collaboratively learning
a geometric structure underlying their data by communicating
among themselves over public and/or private networks. The
key constraints in this problem, which we term data-adaptive
representations in the cloud, that distinguish it from some of
the prior related works are that (i) sites cannot communicate
“raw” data among themselves and (ii) interconnections among
sites cannot be described by a complete graph. Both these
constraints are reflective of the future of big, distributed data
in the world. In particular, the former constraint is justified be-
cause of the size of local data compilations as well as privacy
concerns in the modern age. Similarly, the latter constraint is
justified because linking geographically-distributed sites into
a complete graph is cost prohibitive.

B. Our Contributions

One of the contributions of this paper is formulation of
a distributed method, which we term as cloud K-SVD, that
enables data-adaptive representations in the cloud. In contrast
to works that assume a linear geometric structure for data
[6]–[9], cloud K-SVD is based on the premise that data lie
near a union of low-dimensional subspaces. The union-of-
subspaces (UoS) model is a nonlinear generalization of the
subspace model [12] and has received widespread acceptance
in the community lately. The task of learning the UoS under-
lying data of interest from data themselves is often termed
dictionary learning in the literature [4], [5]; in particular,
dictionary learning—when compared to linear data-adaptive

representations such as the PCA and the linear discriminant
analysis [13]—has been shown to be highly effective for infor-
mation processing tasks such as denoising [14], compression
[4], object recognition [15], and inpainting [16]. Cloud K-
SVD, as the name implies, is a distributed variant of the
popular dictionary learning algorithm K-SVD [5] and relies
on a classical iterative eigenvector algorithm [17, Ch. 8] and
consensus averaging [18] for collaborative dictionary learning.

In addition, we also provide a partial analysis of cloud K-
SVD that gives insights into its convergence properties and
deviations from the centralized solution in terms of properties
of local data and topology of interconnections. Finally, we
carry out numerical experiments to demonstrate both the
efficacy of cloud K-SVD and the usefulness of collaborative
dictionary learning as opposed to local dictionary learning.

C. Relationship to Previous Work

Some of the earliest works in distributed information pro-
cessing date back nearly three decades, such as distributed
Kalman filtering [19] and consensus [20]. Since then a number
of distributed methods have been proposed for myriad infor-
mation processing tasks. Some recent examples of this that do
not involve a centralized fusion center include methods for dis-
tributed classification [21]–[23], distributed linear regression
[24], and distributed estimation [25]. However, relatively little
attention has been paid to the problem of distributed learning
of the geometric structure of data in a data-adaptive manner.
Most notable exceptions to this include [7]–[11]. While our
work as well as [7]–[11] rely on consensus averaging for
computing the underlying geometric structure, we are explicit
in our formulation that perfect consensus under arbitrary
topologies cannot be achieved. In contrast, developments in
[7]–[11] are carried out under the assumption of infinite-
precision consensus averaging. Further, [7], [8] assume a
subspace model for data, while [10] advocates the use of
consensus averaging for computing sample covariance—an
approach that requires extensive communications among the
distributed entities.

To the best of our knowledge, the work presented in here is
the first one to investigate dictionary learning in a distributed
setting. The basis for this work is the centralized dictionary
learning algorithm of K-SVD [5], which involves computing
the largest left- and right-singular vectors of certain matrices
for a total of K times in each iteration of the algorithm. At the
heart of cloud K-SVD then is a way of carrying out this step
within the algorithm in a distributed manner. We accomplish
this through the use of consensus averaging coupled with
the classical power method for computing eigenvectors of a
matrix. Superficially, this makes our approach appear similar
to the ones taken in [7], [26] for computing eigenvectors of
a matrix in a distributed manner using the power method.
However, as noted earlier, we do not assume perfect consensus
during iterations of the power method, which leaves open the
question of convergence of the distributed variant of the power
method—an issue that does not arise in [7], [26]. In fact, one
of our main contributions is analytically characterizing the

convergence behavior of this distributed step within the cloud
K-SVD algorithm. The nature of this analysis is reminiscent
of the one carried out in [27] in the context of convergence
behavior of distributed eigenanalysis of a network using a
power method-like iterative algorithm. However, there are
differences in the analysis of [27] and our work because of
the exact place where consensus averaging is carried out in
the two works, which is dictated by the distinct nature of the
two applications.

D. Notation and Organization

We use lower-case letters to represent scalars and vectors,
while we use upper-case letters to represent matrices. Su-
perscript (·)T denotes the transpose operation, ‖ · ‖0 counts
the number of nonzero entries in a vector, ‖v‖p denotes the
usual `p norm of vector v, while ‖A‖F and ‖A‖2 denote the
Frobenius norm and the operator norm of matrix A. Finally,
given a matrix A, aj and aj,T denote the jth column and the
jth row of A, respectively.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of data-adaptive representations in
the cloud under the UoS model. In Section III, we describe the
cloud K-SVD algorithm. In Section IV, we provide prelimi-
nary analysis of some aspects of the cloud K-SVD algorithm.
Finally, we provide some numerical results in Section V and
concluding remarks in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider a collection of N geographically-
distributed sites that are interconnected to each other according
to a fixed topology. Here, we use “site” in the broadest
possible sense of the term, with a site corresponding to a single
computational system (e.g., sensor, drone, smartphone, tablet,
server, database), a collection of co-located computational
systems (e.g., data center, computer cluster, robot swarm),
etc. Mathematically, we represent this collection and the
interconnections through an undirected graph G = (N , E),
where N = {1, 2, · · · , N} denotes the sites and E denotes
edges in the graph with (i, i) ∈ E , while (i, j) ∈ E whenever
there is a connection between site i and site j. The only
assumption we make about the topology of G is that it is
a connected graph.

Next, we assume that each site i has a massive collection
of local data, expressed as a matrix Yi ∈ Rn×Si with Si � n
representing the number of data samples at the ith site. We can
express all of this distributed data into a single matrix Y =[
Y1 Y2 . . . YN

]
∈ Rn×S , where S =

∑N
i=1 Si denotes

the total number of data samples distributed across the N sites;
see Fig. 1 for a schematic representation of this. In this setting,
the fundamental objective is for each site to collaboratively
learn a low-dimensional geometric structure that underlies
the global (distributed) data Y . The basic premises behind
collaborative structure learning of global data, as opposed to
local structure learning of local data, are manifold. First, since
the number of global samples is much larger than the number
of local samples, we expect that collaborative learning for data

Fig. 1. A schematic representing data Y distributed across N sites.

representations will outperform local learning. Second, local
learning will be strictly suboptimal for some sites in cases
where sampling density, noise level, fraction of outliers, etc.,
are not uniform across all sites. Collaborative learning, on the
other hand, evens out such nonuniformities within local data.

The fundamental assumption in this paper is that the low-
dimensional geometric structure underlying the global (and lo-
cal) data corresponds to a union of T0-dimensional subspaces
in Rn, where T0 � n. One possible means of learning such
a geometric structure is studied under the moniker dictionary
learning, which learns an overcomplete dictionary D such that
each data sample is well approximated by no more than T0
columns (i.e., atoms) of D [4], [5]. Specifically, assuming that
the global data Y is available at a centralized location, the
problem of dictionary learning can be expressed as(
D,X

)
= arg min

D,X
‖Y −DX‖2F s.t. ‖xs‖0 ≤ T0 ∀s, (1)

where D ∈ Rn×K is an overcomplete dictionary having unit-
norm columns, X ∈ RK×S corresponds to representation
coefficients of the data having no more than T0 nonzero
coefficients per sample, and xs denotes the sth column in
the coefficient matrix X . The problem of dictionary learning,
as expressed in (1), is non-convex in

(
D,X

)
, although it is

convex in D alone. One of the most popular approaches to
dictionary learning therefore involves alternate minimization
in which one alternates between solving (1) for D using a
fixed X and then solving (1) for X using a fixed D [5], [28].

Unlike the classical literature on dictionary learning, how-
ever, we do not have the global data Y available at a cen-
tralized location. In particular, data aggregation either at a
centralized location or at any one of the individual sites is
impractical due to communications and storage costs of big
data. Instead, our goal is to have individual sites collabora-
tively learn dictionaries {D̂i}i∈N such that the performance
of these collaborative dictionaries on global data Y is close
to the performance of a dictionary D that could have been
learned from Y in a centralized fashion. In addition, we are
interested in accomplishing this goal without ever exchanging
individual samples between sites because of privacy concerns.
In the following, we present a distributed variant of a popular
dictionary learning algorithm that accomplishes this goal.

III. PROPOSED ALGORITHM

A number of methods have been proposed for dictionary
learning in the past. In this section, we focus on the well-

studied K-SVD algorithm [5] as the basis for distributed
dictionary learning. We have chosen to work with K-SVD
because of its iterative nature and its reliance on the SVD,
both of which enable its exploitation for distributed purposes.
In the following, we first provide a brief overview of the K-
SVD algorithm, followed by our proposed algorithm—termed
cloud K-SVD—for distributed dictionary learning.

A. Dictionary Learning Using K-SVD

The K-SVD algorithm initializes with a random dictionary
D and solves (1) by iterating between two stages: a sparse
coding stage and a dictionary update stage [5]. Specifically,
for a fixed estimate of the dictionary D, the sparse coding
stage involves solving for X as follows:

∀j, xj = arg min
xj

‖yj −Dxj‖22 s.t. ‖xj‖0 ≤ T0. (2)

Here, xj is the jth column of X . Note that although sparse
coding, as stated in (2), has combinatorial complexity, it can be
easily solved by either convexifying (2) [29] or using greedy
pursuit algorithms [30].

After the sparse-coding stage, K-SVD fixes X and moves
to the dictionary update stage. The main novelty in K-SVD
lies in the manner in which it carries out dictionary update.
Specifically, it iterates through the K atoms of D, solving for
the kth atom as follows:

dk = arg min
dk∈Rn

∥∥∥∥∥∥
Y − K∑

j=1,j 6=k

djxj,T

− dkxk,T
∥∥∥∥∥∥
2

F

= arg min
dk∈Rn

‖Ek − dkxk,T ‖2F . (3)

Here, Ek is the representation error for sample data Y using all
atoms of D except the kth atom. Next, K-SVD, as proposed in
[5], defines an ordered set ωk = {i : 1 ≤ i ≤ K,xk,T (i) 6= 0}
and an S×|ωk| binary matrix Ωk that has ones in (ωk(i), i)th

entry and zero everywhere else. It is then easy to see from (3)
and these definitions that

dk = arg min
dk
‖Ek,R − dkxk,R‖2F , (4)

where Ek,R = EkΩk and xk,R = xk,TΩk.
Solving (4) is equivalent to finding the best rank-1 approx-

imation of Ek,R, given by the Eckart–Young theorem as:

dkxk,R = σ1u1v
T
1 , (5)

where u1 and v1 correspond to the largest left- and right-
singular vectors of Ek,R, while σ1 denotes the largest singular
value of Ek,R. It then follows that the kth atom of the
dictionary can simply be set equal to dk = u1. In K-SVD,
it is further advocated that the kth row of the “reduced”
coefficient matrix, xk,R, should be simultaneously updated to
xk,R = σ1v

T
1 .

The dictionary update stage in K-SVD involves K such
applications of the Eckart–Young theorem to update the K
atoms of D and the K “reduced” rows of X . The algorithm
then moves to the sparse coding stage and continues alter-
nating between the two stages till a stopping criterion (e.g.,

a prescribed representation error) is reached. We conclude
our discussion of the K-SVD algorithm by noting that it is
guaranteed to converge to a local minimum [5].

B. Distributed Dictionary Learning Using Cloud K-SVD

In this section, we propose a distributed dictionary learning
algorithm based on the K-SVD method. The key to distribut-
ing K-SVD is understanding ways in which both the sparse
coding and the dictionary update stages can be distributed
across the N sites. To this end, we assume distributed dictio-
nary learning is in iteration t+1 and each site in this iteration
has a local estimate D̂(t)

i of the desired dictionary. In order
for the sparse coding stage to proceed, we propose that each
site computes the representation coefficients of its local data
without collaborating with other sites by locally solving

∀s, xs,i = arg min
xs,i

‖Yi − D̂(t)
i xs,i‖2F s.t. ‖xs,i‖0 ≤ T0, (6)

where {xs,i}Si
i=1 is the coefficient vector for the sth sample

at site i. Note that this “local” sparse coding for distributed
dictionary learning greatly simplifies the sparse coding stage
and is justified as long as the local dictionary estimates D̂(t)

i

remain reasonably close to each other.
The next challenge in distributed dictionary learning based

on the K-SVD algorithm arises during the dictionary update
stage. Recall from the previous section that the dictionary
update stage involves computing the largest left- and right-
singular vectors of the error matrix Ek,R = EkΩk for
k = 1, . . . ,K. However, unless the local dictionary estimates
D̂

(t)
i happen to be identical, we end up with N such error

matrices in a distributed setting due to N different local
dictionary estimates. In order to resolve this, we propose to
use the following definition of the error matrix in a distributed
setting:1 Ek,R :=

[
E1,k,R E2,k,R . . . EN,k,R

]
, where

Ei,k,R := YiΩi,k −
∑
j 6=k

d̂i,jxi,j,TΩi,k. (7)

Here, xi,j,T is the jth row of coefficient matrix Xi available at
site i, Ωi,k is similar to Ωk defined for K-SVD except that it is
defined for only local data at site i, and d̂i,j is the estimate of
dictionary’s jth atom after t iterations of dictionary learning.

Next, in keeping with the development in the centralized K-
SVD algorithm, we propose that each of the N sites updates
the kth atom of its respective local dictionary and the kth

row of its respective “reduced” coefficient matrix, xi,k,R :=
xi,k,TΩi,k by collaboratively computing the dominant left- and
right-singular vectors of the distributed error matrix Ek,R. In
fact, it turns out that we need only worry about the dominant
left-singular vector, u1, of Ek,R in this case. Indeed, since
uT
1Ek,R = σ1v1 with v1 being the dominant right-singular

vector of Ek,R, each site can update the kth row of its
respective “reduced” coefficient matrix by setting d̂i,k = u1
and setting xi,k,R = d̂T

i,kEi,k,R. Now define M = Ek,RE
T
k,R

and notice that u1 corresponds to the dominant eigenvector of

1We are dropping the iteration count t in the following to simplify notation.

M . Further, we can express this matrix M as M :=
∑N
i=1Mi,

where each Mi = Ei,k,RE
T
i,k,R is a matrix that is readily

computable at each local site. Our goal now is computing
the dominant eigenvector of M =

∑N
i=1Mi in a distributed

manner at each site. In order for this, we make use of
distributed power method, which has been invoked previously
in [7], [8], [27] and which corresponds to a distributed variant
of the classical power method for eigenanalysis [17].

1) Distributed Power Method: Power method is an iterative
method for computing eigenvectors of a matrix. It is simple
to implement and, assuming that the largest eigenvalue λ1
is strictly greater than the second-largest eigenvalue λ2, it
converges to the subspace spanned by the dominant eigen-
vector at an exponential rate. In this paper, we are interested
in a distributed variant of the power method to compute the
dominant eigenvector of M =

∑N
i=1Mi, where the Mi’s are

distributed across N sites. To this end, we proceed as follows.
First, all sites initialize to the same (unit-norm) estimate

of the eigenvector q̂(0)i = qinit.2 Next, assuming that the
sites are carrying out iteration tm of the distributed power
method, each site computes Miq̂

(tm−1)
i locally, where q̂(tm−1)i

denotes an estimate of the dominant eigenvector of M at
the ith site after tm − 1 iterations. In the next step, the
sites collaboratively attempt to compute an approximation
v̂
(tm)
i of

∑
iMiq̂

(tm−1)
i at each site. In the final step of

the tthm iteration of the distributed power method, each site
normalizes its estimate of the dominant eigenvector of M
locally, q̂(tm)

i := v̂
(tm)
i [r̂

(tm)
i]−1, where r̂(tm)

i := ‖v̂(tm)
i ‖2.

It is clear from the preceding discussion that the key in
the distributed power method is the ability of the sites to
collaboratively compute an approximation of

∑
iMiq̂

(tm−1)
i

in each iteration. In order for this, we make use of the pop-
ular consensus averaging method [31]. To perform consensus
averaging, we first design a doubly-stochastic weight matrix
W that adheres to the topology of the underlying graph G.
In particular, we have that wi,j = 0 whenever (i, j) 6∈ E . We
refer the reader to [31]–[33] for designing appropriate weight
matrices in a distributed manner. Next, assuming that we are
in the tthm iteration of the distributed power method, define
z
(0)
i := Miq̂

(tm−1)
i and Z(0)T

:=
[
z
(0)
1 z

(0)
2 . . . z

(0)
N

]
.

Further, let Ni := {j : (i, j) ∈ E} be the neighborhood of site
i. Consensus works by having each site carry out the following
updates through communications with its neighbors:

z
(tc)
i =

∑
j∈Ni

wi,jz
(tc−1)
j , (8)

where tc denotes an index for consensus iterations. Note that
the dynamics of the overall system in this case evolve as

Z(tc) = W tcZ(0). (9)

It then follows that Z(tc)
i,T

tc−→ 1TZ(0)/N , where Z(tc)
i,T denotes

the ith row of Z(tc) and 1 ∈ RN denotes a (column) vector of

2This can be accomplished, for example, through the use of random number
generators initialized with the same seed.

all ones [31]. This in particular implies that each site achieves
perfect consensus averaging as tc →∞ and obtains

Z
(∞)
i,T

T
=

1

N

N∑
j=1

z
(0)
j . (10)

In practice, we can not perform infinite consensus itera-
tions within each iteration of the distributed power method.
We therefore make use of the modification of the standard
consensus averaging proposed in [27] and define v̂

(tm)
i :=

Z
(tc)
i,T

T
/[W tce1]i, where e1 :=

[
1 0 . . . 0

]T
and [·]i

denotes the ith entry of a vector. In particular, we will have
an error εi,c within v̂(tm)

i at each site for any finite number of
consensus iterations performed, i.e.,

v̂
(tm)
i := Z

(tc)
i,T

T
/[W tce1]i =

N∑
j=1

Mj q̂
(tm−1)
j + εi,c. (11)

After finishing consensus iterations, each site i in iteration
tm has vector v̂(tm)

i that is normalized to get an estimate of
the eigenvector of M at site. Finally, we carry out enough
iterations of the distributed power method at each site that
the error between successive estimates of the eigenvector falls
below a prescribed threshold. We have now motivated and
described all the pieces of the proposed algorithm and are
ready to state the full distributed dictionary learning algorithm,
termed cloud K-SVD, which is detailed in Algorithm 1.

Remark 1. During each iteration of the cloud K-SVD algo-
rithm, each site exchanges only an n-dimensional vector with
its neighbor sites and the total number of such exchanges
for each site is given by KTdTmTc, where Td denotes the
number of dictionary updates, Tm denotes the number of
power method iterations, and Tc denotes the number of
consensus iterations. The most important thing to note here
in this regard is that the amount of data exchanges among the
distributed sites is independent of the number of data samples
available at each site, making cloud K-SVD a particularly
useful algorithm for big data problems.

Remark 2. A careful reading of Algorithm 1 reveals that
normalization by [W tce1]i in Step 16 is redundant due to the
normalization in Step 18. We retain the current form of Step 16
however to facilitate the forthcoming convergence analysis.

IV. CONVERGENCE ANALYSIS

In this section, we are interested in understanding whether
cloud K-SVD results in dictionaries {D̂i} that are close
in some sense to the centralized solution, given that power
method and consensus averaging cannot be performed for
an infinite number of iterations in practice. A positive an-
swer to this is dependent on the convergence behavior of
individual steps involved in cloud K-SVD. There are three
main steps in cloud K-SVD: sparse coding, dictionary update,
and the distributed power method used to compute dominant
singular vectors of truncated error matrices as part of the
dictionary update. In this paper, we make a partial progress

Algorithm 1: Cloud K-SVD
1: Input: Local data, Y1, . . . , YN , and weight matrix W
2: Initialize: Set t← 0 and D̂(t)

i ← D, i = 1, 2, . . . , N ,
for a randomly generated dictionary D

3: while stopping rule do
4: t← t+ 1
5: (Sparse Coding) The ith site solves ∀s = 1, . . . , Si,

xs,i = arg min
xs,i

‖ys,i − D̂(t)
i xs,i‖22 s.t. ‖xs,i‖0 ≤ T0.

6: for k = 1 to K (Dictionary Update) do
7: Mi ← Ei,k,REi,k,R

T

8: Initialize Power Method: Set tm ← 0 and
q̂
(tm)
i ← qinit, i = 1, 2, . . . , N , for a randomly

generated vector qinit with ‖qinit‖2 = 1
9: while stopping rule do

10: tm ← tm + 1
11: Initialize Consensus: Set tc ← 0 and

z
(tc)
i ←Miq̂

(tm−1)
i , i = 1, 2, . . . , N

12: while stopping rule do
13: tc ← tc + 1
14: z

(tc)
i =

∑
j∈Ni

wi,jz
(tc−1)
j

15: end while
16: v̂

(tm)
i ← z

(tc)
i /[W tce1]i

17: r̂
(tm)
i ←

√
v̂
(tm)T

i v̂
(tm)
i

18: q̂
(tm)
i ← v̂

(tm)
i [r̂

(tm)
i]−1

19: end while
20: d̂

(t)
i,k ← q̂

(tm)
i

21: xi,k,R ← d̂
(t)T
i,k Ei,k,R

22: end for
23: end while
24: Return D̂

(t)
i , i = 1, 2, . . . , N

toward convergence analysis of cloud K-SVD by providing a
convergence analysis of the distributed power method within
cloud K-SVD. Extension of this initial analysis to convergence
behavior of the entire algorithm will be focus of future work.

Convergence behavior of distributed power method pro-
posed in Algorithm 1 is dependent on errors introduced due
to two iterative procedures: power method and consensus
averaging. The main analytical contribution of this paper is
demonstrating that both these errors are well behaved as long
as enough consensus iterations are performed within each
power method iteration. The following theorem summarizes
this analytical contribution.

Theorem 1. Consider the symmetric matrix M =
∑N
i=1Mi

with eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn|, and define

α :=
∑N
i=1 ‖Mi‖2 and γ =

√∑N
i=1 ‖Mi‖2F . Let q denote

the principal eigenvector of M , q̂i denote an estimate of q
obtained at site i using the distributed power method (Steps
8–19 in Algorithm 1), and τmix denote the mixing time of a
Markov chain associated with the weight matrix W . Suppose
that the distributed power method is performed for t iterations

and assume that if a centralized power method were also
initialized with q(0)c = qinit then maxtm=1,...,t

1

‖Mq
(tm)
c ‖2

≤ β.

Then, as long as |〈q, qinit〉| > 0, ε ∈
(

0, (10α2β2)−1/3t
)

, and
consensus averaging within each iteration of the distributed
power method (Steps 11–15 in Algorithm 1) is performed for
O
(
t · τmix · log

(
2αβε−1

)
+ τmix log

(
γ
√
N
α

))
iterations, we

have that

∀i,
∥∥∥qqT − q̂iq̂T

i

∥∥∥
2
≤ c

∣∣∣∣λ2λ1
∣∣∣∣t + 4ε3t, (12)

where c is a positive numerical constant.

Theorem 1 states that q̂i
t−→ ±q ∀i at an exponential rate. In

particular, the first term in (12) is due to errors in the power
method, while the second term in there is due to errors in
consensus averaging. In order to prove this theorem, we need
a lemma that states that if the errors between the estimates
provided by the distributed power method and the estimate
provided by the centralized power method are bounded at the
start of an iteration then these errors remain bounded at the end
of that iteration. In order to state and prove such a lemma, we
need a result from the literature on consensus averaging that
specifies approximation errors in vector consensus averaging
as a function of the number of iterations. The following
theorem is adapted from [27, Theorem 5] in this regard.

Theorem 2. [27] Let v(tc)i be the n × 1 vector held by site
i after tc consensus iterations, v :=

∑N
j=1 v

(0)
j be the desired

vector, and z :=
∑N
j=1 |v

(0)
j | be a vector whose entries are

the sum of absolute values of the initial vectors v(0)i . Then,
for any δ > 0, we have after tc = O(τmix log δ−1) consensus

iterations that
∥∥ v

(tc)
i

[W tce1]i
− v
∥∥
2
≤ δ‖z‖2 ∀i.

Lemma 1. Let q denote the output of centralized power
method and q̂i denote the output of the distributed power
method at ith site after tm iterations. Similarly, let q′ and
q̂′i denote the outputs of centralized and distributed power
methods after (tm + 1) ≤ t iterations, respectively. Fix
an ε ∈ (0, 1), define δ := α

γ
√
N

(
ε

2αβ

)3t
, and assume that

∀i, ‖q − q̂i‖2 + δγ
√
N

α ≤ 1
2αβ2(2α+δγ

√
N)

. Then, assuming
O(τmix log δ−1) consensus iterations, we have that

∀i, ‖q′ − q̂′i‖2 ≤ (2αβ)3

(
max

i=1,...,N
‖q − q̂i‖2 +

δγ
√
N

α

)
.

Proof: Fix an i ∈ {1, . . . , N} and define v := Mq, r :=
‖v‖2, v̂i := Mq̂i, and r̂i := ‖v̂i‖2. Next, note that q′ − q̂′i =
v(r−1− r̂−1i) + (v− v̂i)r̂−1i . Using the triangle inequality, we
therefore obtain

‖q′ − q̂′i‖2 ≤ ‖v‖2|r−1 − r̂−1i |+ ‖v − v̂i‖2r̂
−1
i . (13)

We now need to bound ‖v‖2, |r−1 − r̂−1i |, ‖v − v̂i‖2, and
r̂−1i . To this end, we define v̂ :=

∑N
i=1Miq̂i and write v̂i =

v̂ + εi,c, where εi,c is the consensus error. It then follows
that v − v̂i =

[∑N
i=1Mi(q − q̂i)

]
− εi,c. It can further be

shown using Theorem 2 and some algebraic manipulations
that ‖εi,c‖2 ≤ δγ

√
N . We therefore obtain

‖v − v̂i‖2 ≤
N∑
i=1

‖Mi‖2‖q − q̂i‖2 + δγ
√
N. (14)

Next, notice that |r−1 − r̂−1i | = |r− r̂i|r−1r̂
−1
i and further

it is straightforward to show that |r− r̂i| ≤ r−1|r̂2i −r2|. Now,

|r̂2i − r2| = |v̂T
i v̂i − vTv| = |v̂T

i v̂i − vTv − v̂T
i v + v̂T

i v|
≤ ‖v̂i − v‖2(‖v̂i‖2 + ‖v‖2). (15)

Since v̂i = v̂+ εi,c, it can be shown that ‖v̂i‖2 ≤ α+ δγ
√
N .

In addition, it can also be shown that ‖v‖2 ≤ α. It then follows
from (14) and the above discussion that

|r̂2i − r2| ≤ (2α+ δγ
√
N)

(
N∑
i=1

‖Mi‖2‖q − q̂i‖2 + δγ
√
N

)
≤ (2α+ δγ

√
N)
(
αmax

i
‖q − q̂i‖2 + δγ

√
N
)
. (16)

We can now use this inequality to upperbound |r−1− r̂−1i | as

|r−1 − r̂−1i |
≤ r̂−1i β2(2α+ δγ

√
N)(αmax

i
‖q − q̂i‖2 + δγ

√
N). (17)

The only remaining quantity we need to bound is r̂−1i . To
this end, notice that |r − r̂i| ≥ (r−1)−1 − (r̂−1i)−1. Since
|r − r̂i| ≤ r−1|r̂2i − r2|, we obtain from (15) and (16) that

(r−1)−1 − (r̂−1i)−1

≤ αr−1(2α+ δγ
√
N)

(
max
i
‖q − q̂i‖2 +

δγ
√
N

α

)
. (18)

It then follows from the lemma’s assumption along with some
algebraic manipulations that r̂−1i ≤ 2β. Finally, plugging the
bounds on r̂−1i , |r−1 − r̂−1i |, ‖v‖2, and ‖v− v̂i‖2 in (13), we
obtain

‖q′ − q̂′i‖2
≤ 2αβ3

(
αmax

i
‖q − q̂i‖2 + δγ

√
N
)

(2α+ δγ
√
N)

+ 2β
(
αmax

i
‖q − q̂i‖2 + δγ

√
N
)

=

(
4α3β3 + 2α3β3 δγ

√
N

α
+ 2αβ

)
×(

max
i
‖q − q̂i‖2 +

δγ
√
N

α

)
. (19)

Finally, δγ
√
N

α ≤
(
ε
2

)3t
< 1 since (i) δ = α

γ
√
N

(
ε

2αβ

)3t
, (ii)

ε < 1, and (iii) αr−1 ≥ 1, which implies αβ ≥ 1. Plugging
this into the above expression and noting that αβ ≤ α3β3, we
obtain the claimed result.

Lemma 1 provides an understanding of the error accumu-
lation in the distributed power method. While the factor of
(2αβ)3 in the lemma might seem discouraging, the fact that
the distributed power method starts with a zero error keeps

the total error in control. We now formally argue this in the
proof of Theorem 1 below.

Proof of Theorem 1: Fix an i ∈ {1, . . . , N}, define qc as
the estimate of q obtained using the centralized power method
that is initialized with the same qinit as the distributed power
method, and notice that∥∥∥qqT − q̂iq̂T

i

∥∥∥
2
≤ ‖qqT − qcq

T
c ‖2 + ‖qcq

T
c − q̂iq̂T

i ‖2. (20)

The convergence rate of the centralized power method is well
studied and can be expressed as [17]

‖qqT − qcq
T
c ‖2 ≤ c

∣∣∣∣λ2λ1
∣∣∣∣t .

In order to bound ‖qcq
T
c−q̂iq̂T

i ‖2, we make use of Lemma 1.
In order to invoke this lemma, we first need to show that the
assumption of the lemma holds for all iterations tm ≤ (t−1).
We start with tm = 0 for this purpose and note that q(0)c =

q̂
(0)
i = qinit, which implies

‖q(0)c − q̂(0)i ‖2 +
δγ
√
N

α
≤
(ε

2

)3t
. (21)

Further, under the assumptions of the theorem, it can be shown
through elementary algebra that

(
ε
2

)3t ≤ 1
2αβ2(2α+δγ

√
N)

.
We now invoke mathematical induction and claim that the
assumption in the lemma is satisfied for all tm ≤ m. Then
we obtain from a recursive application of the statement of the
lemma that for tm = (m+ 1), we have

‖q(m+1)
c − q̂(m+1)

i ‖2 +
δγ
√
N

α

≤ δγ
√
N

α

m∑
i=0

(2αβ)
3i

(a)

≤ 2 · δγ
√
N

α
(2αβ)3m

= 2 · ε3t (2αβ)3m

(2αβ)3t

(b)

≤ 1

2αβ2(2α+ δγ
√
N)

, (22)

where (a) follows from the geometric sum and the fact that
(2αβ)3 > 2, while (b) follows from the theorem assumptions
and the fact that m < t.

We have now proved that the assumption of Lemma 1 holds
for all tm ≤ (t − 1). In order to compute ‖qcq

T
c − q̂iq̂

T
i ‖2,

therefore, we can recursively apply the result of this lemma
up to the tth iteration to obtain

‖qc − q̂i‖2 ≤
δγ
√
N

α

t∑
i=0

(2αβ)3i
(c)

≤ 2ε3t, (23)

where (c) follows from the same arguments as in (22). The
proof of the theorem now follows by noting the fact that
‖qcq

T
c − q̂iq̂T

i ‖2 ≤ (‖qc‖2 + ‖q̂i‖2)‖qc − q̂i‖2 ≤ 4ε3t.

V. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments using
synthetic data to demonstrate the effectiveness of the cloud
K-SVD algorithm. The numerical experiments correspond to
a total of 100 sites, with each site having 500 samples in
R20 within its local data and interconnections between the

sites modeled through an Erdős–Rényi random graph with
parameter p = 0.5. In order to generate data at sites, we first
generate a dictionary D ∈ R20×50 with columns uniformly
distributed on the unit sphere in R20, then randomly select
a 45-column subdictionary of D for each site, and finally
generate samples for that site using a linear combination of
T0 = 3 randomly selected atoms of the subdictionary. The
data samples are normalized to have unit `2 norms and finally
white Gaussian noise with variance σ2 = 0.01 is added to
the data samples. In order to carry out distributed consensus
averaging, we generate a weight matrix W according to the
local-degree weights method described in [31, Sec. 4.2].

The first set of experiments that we perform demonstrate
the effectiveness of collaboratively learning a dictionary us-
ing cloud K-SVD, as opposed to each site learning a lo-
cal dictionary from its local data using the canonical K-
SVD algorithm (referred to as local K-SVD in the follow-
ing). In Fig. 2, we plot representation errors, defined as
1
nS

∑N
i=1

∑Si

j=1 ‖yi,j −Dxi,j‖2, of three dictionary learning
methods, namely, centralized (canonical) K-SVD, cloud K-
SVD, and local K-SVD, as a function of the number of
dictionary learning iterations. It can be seen from this figure,
which corresponds to an average of 100 Monte-Carlo trials,
that cloud K-SVD performs much better than local K-SVD
and that its performance comes very close to the centralized
K-SVD algorithm. In particular, the error for local K-SVD is
∼ 0.06 after 50 iterations, while it is ∼ 0.03 for cloud K-SVD,
which is within 0.01 of the error of centralized K-SVD.

The second set of experiments that we perform illustrate
the convergence behavior of the distributed power method
within cloud K-SVD (Steps 8–19 in Algorithm 1) as a
function of the number of consensus iterations. The results
of these experiments, which are reported in Fig. 3, correspond
to five different values of consensus iterations (3, 4, 5, 10,
15) within each iteration of the distributed power method.
Specifically, denote by q(tm) the principal eigenvector of the
matrix M in Algorithm 1 computed using Matlab and denote
by q̂

(tm)
1 an estimate of q(tm) obtained at site 1 using the

distributed power method of Algorithm 1 in iteration tm.
Then Fig. 3 plots ‖q(tm)q(tm)T− q̂(tm)

1 q̂
(tm)T
1 ‖2 averaged over

all distributed power method iterations, dictionary learning
iterations, and 100 Monte-Carlo trials as a function of the
number of distributed power method iterations. It can be seen
from this figure that the distributed power method hits an
error floor with increasing distributed power method iterations,
where the floor is fundamentally determined by the number of
consensus iterations, as predicted by Theorem 1.

VI. CONCLUSION

In this paper, we have proposed a new dictionary learning
algorithm, termed cloud K-SVD, that facilitates collaborative
learning of a dictionary that best approximates massive data
distributed across geographical regions. The efficacy of the
proposed algorithm is demonstrated through extensive simula-
tions, while a partial analysis of the convergency behavior of
the proposed algorithm is also carried out. In the future, we

0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dictionary Learning Iterations

R
ep

re
se

nt
at

io
n

E
rr

or

Centralized K−SVD
Cloud K−SVD
Local K−SVD

Fig. 2. Representation errors as a function of the number of dictionary
learning iterations for centralized K-SVD, cloud K-SVD, and local K-SVD.

0 5 10 15 20 25
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Power Method Iterations

E
rr

or

3 Consensus Iterations
4 Consensus Iterations
5 Consensus Iterations
10 Consensus Iterations
15 Consensus Iterations

Fig. 3. Convergence behavior of the distributed power method as a function
of varying number of consensus averaging iterations.

will analyze the convergence behavior of the entire algorithm
and will apply it to real-world, big-data problems.

ACKNOWLEDGEMENT

The authors would like to thank Tong Wu for his careful
reading of the manuscript and many helpful suggestions.

REFERENCES

[1] H. Hotelling, “Analysis of a complex of statistical variables into principal
components,” J. Edu. Psych., vol. 6, no. 24, pp. 417–441, Sep. 1933.

[2] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component
analysis (GPCA),” IEEE Trans. Pattern Anal. Mach. Intel., vol. 27,
no. 12, pp. 1945–1959, Dec. 2005.

[3] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid linear modeling
via local best-fit flats,” Intl. J. Computer Vision, vol. 100, no. 3, pp.
217–240, Dec. 2012.

[4] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and
T. J. Sejnowski, “Dictionary learning algorithms for sparse representa-
tion,” Neural Computation, vol. 15, no. 2, pp. 349–396, Feb. 2003.

[5] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Processing, vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[6] M. Gastpar, P.-L. Dragotti, and M. Vetterli, “The distributed Karhunen–
Loève transform,” IEEE Trans. Inform. Theory, vol. 52, no. 12, pp.
5177–5196, Dec. 2006.

[7] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized estimation
of the sample covariance,” in Proc. IEEE 42nd Asilomar Conference on
Signals, Systems and Computers. IEEE, 2008, pp. 1722–1726.

[8] S. V. Macua, P. Belanovic, and S. Zazo, “Consensus-based distributed
principal component analysis in wireless sensor networks,” in Proc.
IEEE Eleventh International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC 2010), 2010, pp. 1–5.

[9] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace
estimation in wireless sensor networks,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 4, pp. 725–738, 2011.

[10] R. Tron and R. Vidal, “Distributed computer vision algorithms through
distributed averaging,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2011), 2011, pp. 57–63.

[11] S. Yoon and V. Pavlovic, “Distributed Probabilistic Learning for Camera
Networks with Missing Data,” in Neural Information Processing Systems
(NIPS), 2012.

[12] Y. Lu and M. Do, “A theory for sampling signals from a union of
subspaces,” IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2334–
2345, Jun. 2008.

[13] D. L. Swets and J. Weng, “Using discriminant eigenfeatures for image
retrieval,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 18, no. 8, pp.
831–836, Aug. 1996.

[14] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, 2006.

[15] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. Pattern Anal. Mach. Intel., vol. 34, no. 4, pp. 791–804, Apr. 2012.

[16] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proc. ACM of the 26th Annual International
Conference on Machine Learning, 2009, pp. 689–696.

[17] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 2012.

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coopera-
tion in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp.
215–233, Jan. 2007.

[19] J. Speyer, “Computation and transmission requirements for a decentral-
ized linear-quadratic-Gaussian control problem,” IEEE Trans. Automat.
Control, vol. 24, no. 2, pp. 266–269, Apr. 1979.

[20] J. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement
in distributed decision problems,” IEEE Trans. Autom. Control, vol. 29,
no. 1, pp. 42–50, Jan. 1984.

[21] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” The Journal of Machine Learning
Research, vol. 99, pp. 1663–1707, 2010.

[22] E. Kokiopoulou and P. Frossard, “Distributed classification of multiple
observation sets by consensus,” IEEE Trans. Signal Process., vol. 59,
no. 1, pp. 104–114, 2011.

[23] S. Lee and A. Nedić, “Distributed random projection algorithm for
convex optimization,” IEEE J. Select. Topics Signal Processing, vol. 7,
no. 2, pp. 221–229, Apr. 2013.

[24] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp.
5262–5276, 2010.

[25] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus
strategies for distributed estimation over adaptive networks,” IEEE
Trans. Signal Processing, vol. 60, no. 12, pp. 6217–6234, Dec. 2012.

[26] M. E. Yildiz, F. Ciaramello, and A. Scaglione, “Distributed distance
estimation for manifold learning and dimensionality reduction,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing, (ICASSP 2009). IEEE, 2009, pp. 3353–3356.

[27] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” Journal of Computer and System Sciences, vol. 74, no. 1, pp.
70–83, 2008.

[28] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression:
Theory and design,” Signal Processing, vol. 80, no. 10, pp. 2121–2140,
2000.

[29] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM journal on scientific computing, vol. 20, no. 1,
pp. 33–61, 1998.

[30] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[31] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[32] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,” SIAM Journal on Control and Optimization,
vol. 48, no. 1, pp. 33–55, 2009.

[33] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, 2004.

