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Abstract—We carry out a comprehensive study of the resource
costs of distributed averaging consensus in wireless sensor net-
works. In particular, we consider two metrics appropriate to
the wireless medium: total transmit energy and time-bandwidth
product. Most previous approaches, such as gossip algorithms,
suppose a graphical network, which abstracts away crucial fea-
tures of the wireless medium, and measure resource consumption
only in terms of the total number of transmissions required
to achieve consensus. Under a path-loss dominated protocol
interference model, we study the performance of several popular
gossip algorithms, showing that they are nearly order-optimal
with respect to transmit energy but strictly sub-optimal with
respect to time-bandwidth product. We also propose a new
scheme, termed hierarchical averaging, which is tailored to the
wireless medium, and show that in general this approach is
nearly order-optimal with respect to time-bandwidth product
but strictly sub-optimal with respect to transmit energy. For the
special case of free-space propagation, however, the proposed
hierarchical scheme is approximately order-optimal with respect
to both metrics.

I. INTRODUCTION

Consider a wireless sensor network of N nodes, each of
which has a measurement zn ∈ R. In averaging consensus,
each node wishes to compute the average of the measurements:

zave =
1

N

N∑
n=1

zn. (1)

This task, while conceptually simple, serves as a prototype for
more complicated distributed signal processing tasks in sensor
networks. The study of resource-efficient averaging algorithms
is therefore an important research area.

Due to their simplicity, flexibility, and robustness, gossip
algorithms have emerged as a popular approach to consensus.
In gossip, the network is modeled by a graph. Nodes iteratively
pair with neighbors, exchange estimates, and average those
estimates together, eventually converging on the true average.
A large body of excellent work on gossip has been developed,
from the early randomized gossip of [1] to faster schemes such
as path averaging [2] and multi-scale gossip [3]. Gossip is
simple, requiring minimal processing and network knowledge,
and it is robust to link and node failures.

However, the purpose of consensus strategies is typically
to facilitate processing over wireless networks, and wireless
affords possibilities that existing strategies do not fully exploit.
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For example, gossip algorithms are typically constructed over a
fixed connectivity topology. In wireless, however, connectivity
is adjustable dynamically by means of power control. In fact,
one could trivially connect the entire network and achieve
consensus in a single round, albeit at high energy costs.
This suggests both that wireless permits flexibility that may
improve performance, and that we must consider additional
performance metrics—such as transmit power—that encom-
pass more than just the number of transmissions.

A few works have addressed individually the wireless
aspects we consider in this work. The broadcast nature of
wireless is considered in [4], [5]; however, in these works
broadcast does not significantly improve performance over
randomized gossip. Multi-access interference is addressed—
and in fact exploited—in [6], where lattice codes are used
to compute sums of estimates “over the air.” The notion that
network connectivity can be optimized via power allocation is
explored in [7], and in [8] the optimum graphical structure for
consensus is derived.

By contrast, in this work we endeavor to address com-
prehensively the implications of the wireless medium on
consensus. Accordingly, we study consensus using metrics
more appropriate to the wireless medium: the total transmit
energy and the time-bandwidth product required to achieve
consensus. We first study the performance of gossip algo-
rithms, observing that they are strictly suboptimal with respect
to the required time-bandwidth product. We then present a
new averaging algorithm, termed hierarchical gossip, which
exploits the flexibility of wireless. Hierarchical gossip is nearly
order optimal in terms of the required time-bandwidth product,
and under free-space propagation it is also nearly order optimal
in total transmit energy.

In Section II we detail the wireless model under consid-
eration. In Section III we examine existing gossip algorithms
with respect to the proposed metrics. In Section IV we present
hierarchical averaging and prove scaling laws on its resource
requirements. In Section V we present simulation results, and
finally we conclude in Section VI. Proofs are omitted in
Sections II and III due to space constraints. For details, as
well as results not discussed herein, we direct the reader to
the journal version of this work [9].

II. SYSTEM MODEL

Each node n has a physical location x(n), which we take to
be randomly and uniformly distributed across the unit square.
We assume path-loss dominated propagation environment and



calculate the channel gains between any two nodes m,n as

hmn = ‖x(m)− x(n)‖−α/2 , (2)

where α ≥ 2 is the path-loss exponent. We assume slotted
discrete time. At each slot t, each node n transmits at power
Pn(t). We assume a simple transmission model: a signal
arrives at a node if the receive signal-to-noise ratio is above
an arbitrary threshold γ, but no interference is generated
otherwise. Let the neighborhood of n be the nodes whose
transmissions arrive at n at time t:

Nn(t) = {m : Pm(t)h2
mn ≥ γ}. (3)

In order to manage multiple-access, we suppose that
maxn |Nn(t)| time-frequency resources are required for each
time slot t.

Each node n maintains an estimate zn(t) of the average,
where zn(0) = zn. After the transmission at time slot t, each
node updates its estimates by computing a linear combination
of its old estimate and the estimates of its neighbors at time
t:

zn(t+ 1) =
∑

m∈Nn(t)

amn(t)zm(t), (4)

for some collection of coefficients amn(t). Note that the coef-
ficient weights may vary with t along with the neighborhood
Nn(t).

The ε-averaging time, denoted Tε, is the number of time
slots required to achieve consensus to within a specified
tolerance:

Tε = sup
z(0)∈Rn

inf

{
t : Pr

(
‖z(t)− zave1‖
‖z(0)‖

≥ ε
)
≤ ε
}
, (5)

where z(t) is the vector of estimates zn(t). The scaling
law of Tε is the primary focus of study for most gossip
algorithms. However, it provides only a partial measure of
resource consumption in wireless networks, so we consider
other resources metrics.

An averaging algorithm requiring Tε time slots and having
power allocation Pn(t) requires a total transmit energy of

Eε(N) =

Tε∑
t=1

N∑
n=1

Pn(t), (6)

and a required time-bandwidth product of

Bε(N) =

Tε∑
t=1

max
n
|Nn(t)|, (7)

In the sequel, we will require a lemma, proven in [10], about
the approximate number of nodes in a particular region of the
network.

Lemma 1 (Ozgur-Leveque-Tse, [10]): Let A ⊂ [0, 1] ×
[0, 1] be a region inside the unit square having area |A|, and
let C = {n : rn ∈ A} be the nodes lying in A. Then, for any
δ > 0,

(1− δ)|A|N ≤ |C| ≤ (1 + δ)|A|N, (8)

with probability greater than 1 − 1/|A|e−Γ(δ)|A|N , where
Γ(δ) > 0 and is independent of N and |A|.

We can derive an asymptotic lower bound on the resources
required by any averaging algorithm.

Theorem 1: For any distributed averaging algorithm over a
random network of size N , the total transmit energy E(N) and
time-bandwidth product B(N) scale1, with high probability,
as

Eε(N) = Ω(N1−α2 ) (9)
Bε(N) = Ω(1). (10)

III. GOSSIP ALGORITHMS

Nodes in gossip algorithms achieve consensus by means
of pairwise interactions; nodes pair up, exchange current
estimates, and form new estimates until the network converges.
Under randomized gossip [1], nodes choose partners randomly
and compute pairwise averages of estimates at each round.
Randomized gossip is somewhat inefficient, requiring Θ(N2)
total transmissions in Θ(N) sequential rounds. Using these
facts we can derive the performance with respect to our
performance metrics.

Theorem 2: For randomized gossip over a random network
of size N , the total transmit energy and time-bandwidth
product scale, with high probability, as

Eε(N) = Θ(N2−α2 log1+α
2 (N)) (11)

Bε(N) = Θ(N log(N)). (12)

Path averaging [11] is a more sophisticated gossip algo-
rithm. Instead of exchanging estimates with neighbors, nodes
select a geographically distant partner and exchange estimates
via multi-hop routing. Furthermore, routing nodes contribute
their estimates “along the way”, allowing the entire route to
average their estimates together. Path averaging requires only
Θ(N log(N)) transmissions and is nearly order optimal in
total transmit energy. However, this approach is strictly sub-
optimal with respect to the required time-bandwidth product.

Theorem 3: For path averaging over a random network of
size N , the total transmit energy and time-bandwidth product
scale, with high probability, as

Eε(N) = Θ(N1−α2 log1+α
2 (N)) (13)

Bε(N) = Ω(N
1
2 ). (14)

IV. HIERARCHICAL AVERAGING

Our proposed hierarchical averaging is similar to the multi-
scale gossip of [3] in that we perform a recursive, geographical
partition of the network into a hierarchy of clusters. At the
highest level of the hierarchy the entire network is a single
cluster, at the second-to-highest level the network is partitioned
geographically into four equal-sized square clusters, and so on
for approximately log(N) layers of hierarchy. The partitioning
is depicted in Figure 1.

1We use the notation f(x) = Ω(x) to imply f(x) ≥ cg(x), f(x) =
O(g(x)) to imply f(x) ≤ cg(x), and f(x) = Θ(g(x)) to imply cg(x) ≤
f(x) ≤ dg(x), all for arbitrary constants c and d and for large x.



A. Hierarchical Partitioning

We partition the network into T sub-network layers, one
for each round of consensus, as depicted in Figure 1. At
the top layer, which corresponds to the final round t = T
of consensus, there is a single cell. At the next-highest level
t = T − 1, we divide the network into four equal-area square
cells. Continuing, we recursively divide each cell into four
smaller cells until the lowest layer t = 1, which corresponds
to the first round of consensus. At each level t there are 4T−t

cells, formally defined as

Cjk(t) = {n : r ∈ [(j−1)2t−T , j2t−T )×[(k−1)2t−T , k2t−T )},
(15)

where 1 ≤ j, k ≤ 2T−t index the geographical location of the
cell.

Let C(n, t) denote the unique cell at layer t containing node
n. Using the Pythagorean theorem, we can easily bound the
maximum distance between any two nodes:

M(t) =
√

2 · 4
t−T
2 = Θ(4

t−T
2 ), (16)

where the maximum is achieved when two nodes lie on
opposite corners of the cell.

We take T = dlog4(N1−κ)e, where κ > 0 is a constant
smaller than unity.

B. Algorithm Description

Here we lay out the details of hierarchical averaging. We
suppose that each node n knows the following information
about the network: the total number of nodes N , its own
location rn, and the number of layers T .

First, at time slot t = 1 each node broadcasts its initial
estimate zn(0) to each member of its cluster C(n, t). In order
to ensure that n ∈ Nm(t) for every m ∈ C(n, 1), each node
transmits at power

Pn(1) = γ max
m∈C(n,1)

hαnm ≤ γM(1)α = O(N (κ−1)α/2). (17)

Each node n takes a weighted average of the estimates in its
cluster:

zn(1) =
1

41−TN

∑
m∈C(n,1)

zm(0). (18)

We use the approximate normalization factor 1/41−TN in-
stead of the exact factor 1/|C(n, 1)| so that nodes at higher
levels of the hierarchy need not know the cardinality of the
cells. As we shall see, this approximation introduces no error
into the final estimate.

After time slot t = 1, each node in each cluster Cjk(1) has
the same estimate, which we denote by zCjk(1)(1). At each
subsequent time slot 2 ≤ t ≤ T , a single representative node
in Cjk(t−1) is chosen arbitrarily to transmit zCjk(t−1)(t−1) to
its parent cluster at layer t. In order for its transmission to be
received by every node in the parent cluster, the representative
node n must transmit at power satisfying

Pn(t) = γ max
m∈C(n,t)

hαnm ≤ γM(t)α (19)

= O(4
(t−T )α

2 ). (20)

After receiving estimates from the other sub-clusters, each
node updates its estimate by taking the sum:

zn(t) =
1

4

∑
C(n,t−1)⊂C(n,t)

zC(n,t−1)

=
1

4t−TN

∑
m∈C(n,t)

zm(0),

where the second equality follows straightforwardly by in-
duction. At time t, the identical estimate at each cluster is
a weighted average of the measurements from within that
cluster.

Consensus is achieved at round T , where the four sub-
clusters at level t = T − 1 broadcast their estimates to the
entire network. Evaluating (21) for t = T , we observe that
hierarchical averaging achieves perfect consensus; there is no
need for a tolerance parameter ε. This somewhat surprising
result is the consequence of combining the flexibility of
wireless, which allows us to adjust the network connectivity
at will, with the simplifying assumption of infinite-rate links.
In the next section we will revisit this assumption.

Theorem 4: For hierarchical averaging over a random net-
work of size N , the total transmit energy E(N) and time-
bandwidth product B(N) scale, with high probability, as

Eε(N) = Θ(Nκ) (21)
Bε(N) = Θ(Nκ), (22)

for path-loss exponents 2 ≤ α < 4, and for any κ > 0.
Proof: We derive the bound on Bε(N) by examin-

ing the cardinality of the neighborhoods for each node. At
time slot t = 1, by (17) each node transmits at power
Pn(1) = O(N (κ−1)α/2). The neighborhood size of each node
therefore scales as the number of nodes in a circle of radius
O(Nκ−1). By Lemma 1, this number is |Nn(1)| = O(Nκ)
with probability approaching 1 as N →∞.

For rounds 2 ≤ t ≤ T , since only one node per cluster
transmits, we need to bound the number of clusters in range
of each node. We chose the transmit powers such that the
clusters transmit to each node in a circle of area πM2(t) =
O(4tN1−κ). By construction, each cluster C(n, t) covers an
area of O(4tN1−κ). Therefore, the number of clusters that
can fit into the circle is constant, so we have B(t) = O(1).
Summing over all rounds, we get

Bε(N) = O(Nκ) +

T∑
t=2

O(1) = O(Nκ). (23)

Finally, we derive the bounds on Eε. Substituting (17) and
(20) into the definition of Eε, we obtain

Eε(N) =

T∑
t=1

N∑
n=1

Pn(t) (24)

= O(N1+(κ−1)α/2) +

T∑
t=2

O(4T−t4(t−T )α/2), (25)

where the second term in (25) follows from the fact that only
one node from each of the 4T−t clusters transmits at each
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Fig. 1. Hierarchical partition of the network. Each square cell is divided into four smaller cells, which are each divided into four smaller cells, and so on.

round. Continuing, we get

Eε(N) = O(N1−α/2+κα/2) + 4T (1−α/2)
T∑
t=2

4(α/2−1)t (26)

= O(N1−α/2+κα/2) +O(4T (1−α/2)4T (α/2−1)) (27)

= O(N1−α/2+κα/2 +O(1) (28)
= O(Nκ), (29)

where we have employed the finite geometric sum identity.

V. NUMERICAL RESULTS

We examine the empirical performance of the several con-
sensus algorithms presented. First we choose γ = 10dB,
α = 2, ε = 10−4, and κ = 0. We let N run from 10 to 1000,
averaging performance over 20 random initialization for each
value of N . In Figure 3 we display the average transmit energy
Eε and the time-bandwidth product Bε for both hierarchical
averaging and path-averaging.

The simulations correspond to the theoretical results proven.
With respect to the time-bandwidth product, hierarchical aver-
aging performs best, the required number of sub-channel uses
growing slowly and nearly on part with the constant lower
bound. For path-averaging, on the other hand, the required
sub-channel uses grows relatively quickly in N . With respect
to transmit energy, the two algorithms perform similarly, the
energy demands growing slowly in N . However, hierarchi-
cal averaging requires less energy on an absolute scale. As
expected, randomized gossip performs worst with respect to
both metrics.

Keeping the other parameters constant, we run another batch
of simulations for α = 4 and plot the results in Figure 3.
Again hierarchical averaging performs best with respect to
time-bandwidth product. With respect to total transmit energy,
on the other hand, the relative performance depends on N .
Path averaging achieves a better scaling law than hierarchical
averaging, so for large N the energy required is smaller. For
small N , however, hierarchical averaging requires less power
on an absolute scale. Again randomized gossip performs worst.
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Fig. 2. Transmit energy Eε and time-bandwidth product Bε for a variety of
consensus algorithms.

VI. CONCLUSION

Theorems 1-4 substantiate the claims made in Section I.
For α > 2, no scheme is order optimal in both metrics: Path
averaging and multiscale gossip are nearly order-optimal in
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Fig. 3. Transmit energy Eε and time-bandwidth product Bε for a variety of
consensus algorithms.

transmit energy, while hierarchical averaging is nearly order-
optimal in time-bandwidth product. For α = 2, however, hi-
erarchical averaging achieves the lower bound in both metrics
to within an arbitrarily small exponent. In the journal version
[9], we present a cooperative version of hierarchical averaging
which achieves better performance. We also explore the effects
of quantization on consensus over the wireless medium.
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