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Abstract—We present an approach to gossip algorithms tai-
lored to the practical considerations of wireless communications.
Traditional gossip algorithms operate via the pairwise exchange
of estimates, which fails to capture the broadcast and superpo-
sition nature of the wireless medium. Adapting the virtual full-
duplex framework of Guo and Zhang, we construct a communi-
cations scheme in which each node can broadcast its estimate
to its neighbors while simultaneously receiving its neighbors’
estimates. This full-duplex scheme gives rise to group gossip, a
more flexible family of gossip algorithms built on multilateral,
rather than pairwise, exchanges. Our approach obviates the need
for orthogonalization or medium access; only local information
and synchronization are necessary. Additionally, group gossip
has better convergence properties than does randomized gossip.
Group gossip permits a tighter bound on the convergence speed
than randomized gossip, and in general the upper bound on the
convergence time is at most one-third that of randomized gossip.

I. INTRODUCTION

Gossip algorithms are a class of consensus techniques
designed to address the distributed averaging problem. In
distributed averaging, a group of nodes—often taken to be
members of a wireless sensor network—posses individual real
scalars. Each node desires to compute, via interactions with
neighboring nodes, the average of those scalars. Although a
conceptually simple problem, averaging is a prototype for a
variety of distributed tasks. Averaging can easily be adapted
to the distributed computation of arbitrary linear projections,
and it can even be extended to detection and filtering over
networks [1], [2]. Efficient averaging algorithms are therefore
of considerable interest.

Averaging and gossip have been studied under various
guises. An early work is that of Tsitsiklis, who studied aver-
aging in the context of distributed estimation [3]. Boyd et al.
inaugurated recent interest by introducing randomized gossip
algorithms in which nodes randomly pair up with a neighbor
node and bilaterally average their current estimates [4]. Since
then several variations on gossip have been proposed. In geo-
graphic gossip [5], nodes pair up with geographically distant
nodes, carrying out the exchange of estimates via greedy
routing; this approach accelerates convergence compared to
randomized gossip. This approach can be improved further by
the introduction of path averaging, in which nodes routing
between an exchanging pair average their values “along the

Matthew Nokleby and Behnaam Aazhang are with Rice University,
Houston TX (email: {nokleby, aaz}@rice.edu). Waheed U. Bajwa is with
Rutgers University, Piscataway, NJ (email: waheed.bajwa@rutgers.edu).
Robert Calderbank is with Duke University, Durham, NC (email:
robert.calderbank@duke.edu).

way” [6]. More recent approaches to gossip involve Markov-
chain lifting [7] and gossip with memory [8].

Although gossip algorithms are often intended to function
in wireless sensor networks, they usually are defined over
graphs which abstract away the wireless medium. Therefore
they tend not to address the challenges incident to wireless
communications. In many gossip algorithms, for example, it
is assumed that pairwise exchanges happen arbitrarily quickly,
thus eliminating the possibility of interference. In practice,
interference avoidance techniques such as orthogonal multiple
access (CDMA, OFDMA, etc.) or medium access (CSMA) are
required to ensure reliable communications. However, orthog-
onalization frequently leaves wireless resources underutilized,
while CSMA introduces considerable overhead and leaves the
network susceptible to the hidden node problem.

Furthermore, gossip algorithms rarely take into consider-
ation the broadcast and superposition nature of the wireless
medium. Several approaches consider each aspect individually.
Nazer et al. [9] proposed a lattice-coding approach to gossip
in which a node simultaneously computes the average of
its neighbors’ values. Aysal et al. [10] proposed a gossip
algorithm in which a single node broadcasts its estimate to all
its neighbors; however, this approach has slower convergence
than pairwise gossip. Finally, Ustebay et al. [11] proposed an
“eavesdropping” gossip in which nodes overhear other nodes’
pairwise exchanges in order to improve neighbor selection.
As far as we are aware, however, no existing gossip algorithm
addresses broadcast and superposition simultaneously.

In this paper we present an approach to gossip that addresses
the challenges and exploits the advantages of the wireless
medium. Our approach is based on the virtual full-duplex
model presented in [12], [13]. At each round of gossip,
each node simultaneously broadcasts its current estimate to
its neighbors; through appropriate code design and sparse
recovery techniques each node reliably decodes each of its
neighbors’ messages simultaneously. This approach requires
only coarse timing synchronization and knowledge of neigh-
bors’ codebooks, and it permits in-network communication
without the need for costly overhead or the drawbacks of
hidden terminals.

Our framework also allows us to take full advantage of the
broadcast and superposition properties of wireless. Since each
node simultaneously hears from all of its neighbors, it can
incorporate all of their estimates into its update. We term such
a scheme group gossip, which induces a deterministic linear
dynamics similar to that studied in [14]. The deterministic
nature of the dynamics allows us to derive a tighter character-
ization of the averaging time than that of randomized gossip.



Furthermore, for any randomized gossip algorithm, we can
construct an equivalent group gossip algorithm for which the
upper bound on the averaging time is one-third of that of the
randomized algorithm.

In Section II we present the full-duplex framework that
enables our approach. In Section III we present group gossip
and bound its convergence time, showing that the upper bound
for group gossip is always lower than that of randomized
gossip. In Section IV we study the performance of group
gossip, presenting an method for finding the fastest gossip al-
gorithm and studying convergence speeds over several network
topologies. In Section V we validate our theoretical claims
with numerical results. Finally, we conclude in Section VI.

II. FULL-DUPLEX MESSAGE EXCHANGE

In order to take advantage of the broadcast and superpo-
sition nature of wireless, we desire a gossip algorithm in
which a node can simultaneously broadcast its estimate to
its neighbors and receive estimates from its neighbors, as
depicted in Figure 1. Such a communications modality is full
duplex in nature, which in practice is problematic due to self-
interference: a node’s transmit signal strength is so high that
it is impossible to discern incoming signals. However, it is
shown in [13] that a combination of on-off signaling and
sparse recovery techniques is sufficient to establish virtual
full-duplex communications among a group of transceivers.
We adapt this approach to enable a multilateral exchange of
messages suitable for gossip.

Fig. 1. Full-duplex message exchange. Each node broadcasts its message to
its neighbors while simultaneously receiving its neighbors’ messages.

We assume a graphical model of the wireless network. Let
V = {1, 2, · · · , N} be the set of nodes in the network, and
let E be the set of edges connecting pairs of nodes that
are sufficiently close together. Then the network topology is
characterized by the graph G = (V,E). We further assume
that time is slotted and synchronized into message passing
rounds t > 0, each containing M > 0 symbol intervals. At
round t, each node i ∈ V encodes an l-bit message mi[t] into
an M -length codeword xi[t].

Each node has a codebook expressed as an M × 2l matrix
Si. Each codeword symbol sijk is randomly generated i.i.d.

over a ternary alphabet:

Pr(sijk = s) =

{
q, for s = 0
1−q
2 , for s = ±1

.

At round t, the codeword transmitted by node i can be written
as

xi[t] = Siemi[t], (1)

where ek is the 2l-length vector containing a one in the kth
slot.

Each node receives a noisy superposition of its neighbors’
codewords. Let

N (i) = {j ∈ V : (i, j) ∈ E}

denote the neighborhood of node i ∈ V . At the tth round,
the signal arriving at node i is the noisy superposition of its
neighbors’ codewords:

yi[t] =
√
γ
∑

j∈N (i)

xj [t] + ni[t] =
√
γRimi[t] + ni[t] (2)

where γ is the common1 signal-to-noise ratio, ni[t] is unit-
variance white Gaussian noise, Ri is the M×|N (i)|2l matrix
containing the codebooks of all the users in N (i), and mi[t]
is a |N (i)|2l-length vector containing ones to indicate which
codewords were sent.

Although the signal yi[t] arrives at node i, recall that it
cannot discern symbols that arrive while a non-zero symbol
is transmitted. Node i therefore obtains only those elements
of yi[t] for which xi[t] is zero. Let ỹi[t] denote this Mi[t]-
length vector, where Mi[t] ∼ B(q,M) follows a binomial
distribution. Similarly, let R̃i[t] denote the Mi[t] × |N (i)2l|
matrix of codewords as received at node i during block t,
and let ni[t] be the equivalent noise. Now we can rewrite the
equivalent received vector as

ỹi[t] =
√
γR̃i[t]mi[t] + ñi[t]. (3)

Equation (3) defines a sparse recovery problem. Given Mi[t]
measurements, node i needs to recover the support of an
|N (i)|-sparse vector having ambient dimension 2l|N (i)|. As
established in the compressed sensing literature [15], this
recovery is successful with high probability so long as the
measurement matrix satisfies the restricted isometry property
(RIP) of degree |N (i)|. In the following theorem we establish
a codeword length sufficient to satisfy the RIP with high
probability.

Theorem 1: Let Φi[t] =
√

1
(1−q)Mi[t]

R̃i[t], be the equiva-
lent codebook normalized to have columns with unit expected
norm, and let D = maxi∈V |N (i)| be the maximum neighbor-
hood size. Choose q = 1/2. Then each Φi[t] simultaneously
satisfies the RIP of order |N (i)| with high probability provided
M = Ω(max{Dl, log(N)}).2

1We use a common SNR for simplicity only; our approach easily accom-
modates the more practical scenario in which signals arrive at different SNRs.

2Throughout this paper we use the following notations: f(n) = O(g(n))
implies f(n) ≤ kg(n), f(n) = Ω(g(n)) implies f(n) ≥ kg(n), and
f(n) = Θ(g(n)) implies f(n) = O(g(n)) and f(n) = Ω(g(n)), all for
constant k and sufficiently large n.



Proof: With q = 1/2, it is straightforward to verify
that each entry of Φi[t] is strictly sub-Gaussian with variance
1/Mi[t]. It is shown in [16] that, provided

Mi[t] ≥ κ|N (i)| log

(
2l|N (i)|
|Ni|

)
= κ log(2)|N (i)|l, (4)

where κ is an arbitrary constant, an Mi[t] × 2l|N (i)| matrix
drawn i.i.d. from a strictly sub-Gaussian distribution with
variance 1/Mi[t] fails to satisfy the RIP of order |Ni[t] with
probability O(exp(−M)).

Next we ensure that (4) holds with high probability for the
specified codeword length. We require

M ≥ d3κ log(2)|N (i)|le = Ω(|N (i)|l). (5)

Recall that Mi[t] ∼ B(q,M) follows a binomial distribution.
Then, using the Chernoff bound, we can bound the probability
that the number of measurements is insufficient:

Pr(Mi[t] < 3M) ≤ exp

(
−1

2(1− q)

(
(3M(1− q)−M)2

M

))
= O(exp(−M)).

Taking the maximum of (5) over all neighborhoods N (i), we
require M ≥ Ω(Dl). Then, the probability that any single
Φi[t] fails to satisfy the RIP is O(exp(−M)).

To ensure that all matrices Φi[t] simultaneously satisfy the
RIP, we take the union bound. There are N users, and each
user has a sensing matrix for each of its 2l codewords, so
the probability that any one matrix fails to satisfy the RIP is
O(N2l exp(−M)), which simplifies to O(N exp(−M)) since
M grows at least linearly in l. Therefore, we impose the final
condition

M = Ω(log(N)) (6)

to ensure that the probability of any measurement matrix
failing to satisfy the RIP goes to zero. Combining (5) and
(6) yields the claim.

Given a codebook of sufficient length, the sparse reconstruc-
tion problem expressed by (3) is therefore well-posed. It can be
efficiently solved by established techniques such as CoSaMP
[17] or subspace pursuit [18]. In [13] a graphical recovery
algorithm is presented; for our simulations in Section V we
use this method.

The method proposed here enables multilateral message
exchange without the need for scheduling or medium access.
So long as each node knows its neighbors’ codebooks, inter-
ference is naturally managed by the coding process itself. Thus
there is no overhead associated with contention resolution nor
issues with hidden terminals.

Note that the random codes here are not the only way
to enable full-duplex message exchange. Deterministic codes
have been constructed for random access [19] and for virtual
full-duplex systems [20]. Using similar methods, we can
construct deterministic codes suitable for gossip.

III. GROUP GOSSIP

Using the full-duplex framework presented in the preceding
section, we describe group gossip. In gossip, each node is

initialized with a real number, which we collect into the N -
length vector z[0]. The aim of a gossip algorithm is for each
node to compute the average of these initial values through
the exchange of local messages3:

zave =
1

N
1T z[0], (7)

where 1 is the vector of ones and (·)T denotes the matrix trans-
pose. At each round t, the nodes’ estimates are represented by
the N -length vector z[t].

As a point of comparison, we briefly review the synchronous
randomized gossip described in [4]. Randomized gossip is car-
ried out by repeated pairwise interactions: at round t each node
pairs up with a neighboring node, exchanges current estimates
of the average, and forms a new estimate by averaging with
the incoming estimate. These pairwise interactions induce a
linear dynamics on the estimates:

z[t+ 1] = W[t]z[t], (8)

where W[t] is a doubly-stochastic matrix corresponding to the
pairwise exchanges carried out at round t. The mixing matrix
W[t] is chosen randomly and independently each round,
according to a distribution indicated by a matrix P ∈ Rn×n,
which is any symmetric, doubly-stochastic matrix satisfying
(i, j) /∈ E =⇒ Pij = 0. Given mild conditions on P, the
dynamics is guaranteed to converge on the average with high
probability.

In [4], the speed of convergence is characterized in terms
of the eigenvalues of P. Define the ε-averaging time as
the number of gossip rounds necessary for the dynamics to
converge on consensus with high probability and small error:

T (P, ε) = sup
z(0)∈Rn

inf

{
t : Pr

(
‖z(t)− zave1‖
‖z(0)‖

≥ ε
)
≤ ε
}
.

(9)
In [4, Theorem 4] it is shown that

log(ε−1)

2 log(1/2(1 + λ2(P))−1)
≤ T (P, ε) ≤ 3 log(ε−1)

log(1/2(1 + λ2(P))−1)
,

(10)
where λ2(·) is the second-largest eigenvalue of a matrix.

Randomized gossip is easily implemented on the framework
presented in Section II: at round t, after decoding the messages
associated with its neighbors’ estimates, each node averages
with the estimate of its partner.

However, our framework permits an approach to gossip
more flexible than randomized gossip. Since each node de-
codes all its neighbors’ estimates, it can take any combination
of these in updating its estimate. In particular, we have each
node compute a convex combination of its estimate with those
in its neighborhood. We term this gossip algorithm group
gossip, since nodes participate in multilateral exchanges of
estimates.

Since each node decodes messages from each of its neigh-
bors, there is no need to randomly choose among them. Nodes

3Since messages come from a finite codebook, message exchange entails
quantization in practice. For now we ignore this issue, deferring the discussion
until Section V.



therefore update their averages according to a deterministic
dynamics:

z[t+ 1] = Wz[t], (11)

where W is any doubly-stochastic matrix satisfying
(i, j) /∈ E, i 6= j =⇒ Wij = 0. We require W to be
doubly-stochastic to ensure convergence on the average. Since
W is row stochastic, W1 = 1, and consensus is a fixed point
of the dynamics. Since W is column stochastic, 1TW = 1T ,
meaning that sums are preserved at each iteration. Thus
the only possible fixed point is zave1. Similar deterministic
averaging was studied in [14]; here we make explicit analytical
comparisons with randomized gossip.

Using similar methods as in the case of randomized gossip,
we can derive bounds on the averaging time that depend on
the spectral properties of W. Since the gossip dynamics are
deterministic, we must alter slightly our definition of averaging
time. Therefore, we define non-probabilistic definition of the
averaging time, which for any 0 < ε ≤ 1 is equivalent to the
original definition from (9). Let the deterministic ε-averaging
time be simply the number of rounds required to converge, in
normalized euclidean error, to within ε of consensus:

Td(W, ε) = sup
z(0)∈Rn

inf

{
t :
‖z(t)− zave1‖
‖z(0)‖

≤ ε
}
. (12)

In carrying out asymptotic analysis on gossip algorithms, it is
common to take ε = 1/N . In later sections we will often refer
to the 1/N -averaging time Td(W, 1/N).

As with randomized gossip, we can derive a spectral
characterization of the averaging time in the case where W
is positive semi-definite. However, since the dynamics are
deterministic, we obtain both a better upper bound as well
as a tighter overall characterization, with the bounds differing
only by an additive constant.

Theorem 2: In the group gossip algorithm defined by pos-
itive semi-definite mixing matrix W, the deterministic ε-
averaging time is bounded above and below by

log(ε−1)− log(
√

2)

log(λ2(W)−1)
≤ Td(W, ε) ≤ log(ε−1)

log(λ2(W)−1)
. (13)

Proof: First we prove the upper bound. Let

r[t] = z[t] − zave1 (14)

denote the error at round t. Since consensus is a fixed point
of the dynamics, we have

r[t+ 1] = Wz[t]− zave1 = Wr[t].

The squared error at round t is therefore

rT [t]r[t] = rT [t− 1]WTWr[t− 1] (15)

≤ λ2(WTW) ‖r[t− 1]‖2 (16)

≤ λt2(WTW) ‖r[0]‖2 (17)

= λ2t2 (W) ‖r[0]‖2 , (18)

where (16) follows from the fact that r[t−1] is by construction
orthogonal to the dominant eigenvector 1, and (17) follows
from repeatedly applying (16). We also note that

rT [t]r[t] = zT [t]z[t]− nz2ave ≤ zT [t]z[t].

Therefore, the normalized euclidean error is bounded by

‖r[t]‖2

‖z[0]‖2
≤ λ2t2 (W) ‖r[0]‖2

‖r[0]‖2
= λ2t2 (W).

Thus convergence to within an error of ε is guaranteed by

λ2t2 (W) ≤ ε2

⇐⇒ t log(λ2(W)) ≤ log(ε)

⇐⇒ t ≥ log(ε−1)

log(λ−12 (W))
.

To prove the lower bound, we choose a particular initial-
ization z[0]. Since W is doubly stochastic and positive semi-
definite it has spectral radius ρ(W) = 1. We therefore have
eigenvalues 1 = λ1(W) ≥ λ2(W) ≥ · · · ≥ λN (W) ≥ 0,
each having orthonormal eigenvectors 1√

N
1,u2, · · · ,uN . We

choose the unit-norm initialization

z[0] =
1√
2

(
1√
N

1− u2

)
,

which results in the error vector

r[0] = − 1√
2
u2.

Since the error vector by construction lies in the eigenspace
of the second-largest eigenvalue, (18) holds with equality, so
we get

rT [t]r[t]

zT[0]z[0]
=
λ2t2 (W)

2
.

Thus we are guaranteed not to have achieved convergence so
long as

λ2t2 (W) ≥ ε2

⇐⇒ t ≤ log((
√

2ε)−1)

log(λ−12 (W))

⇐⇒ t ≤ log(ε−1)− log(
√

2)

log(λ−12 (W))
.

Thus for any t below the lower bound, there exists an
initialization z[0] such that the dynamics will not yet have
converged to within the specified error.
An important consequence of this theorem is that we can make
an explicit comparison between group gossip and randomized
gossip. For any randomized gossip algorithm described by
P, we can instantiate an equivalent group gossip algorithm
W = 1/2(I + P) having an averaging time approximately
one-third that of the randomized gossip.

IV. PERFORMANCE

In this section we examine the performance of group gossip.
First we present an algorithm for finding the fastest mixing
matrix W for an arbitrary network. Then we examine a few
important network topologies and prove bounds on the fastest
possible averaging time.



A. Optimal mixing matrix

For any network described by the graph G = (V,E), we
want to find the group gossip algorithm having the smallest ε-
averaging time. By Theorem 2, minimizing the second-largest
eigenvalue λ2(WTW) is a rather accurate surrogate for
minimizing the averaging time. This problem is equivalent to
minimizing the second-largest singular value, denoted σ2(W),
which is a convex, albeit non-smooth problem. Formally, the
problem is stated as

min
W∈RN×N

σ2(W)

subject to W1 = 1

1TW = 1T

wij = 0, if (i, j) /∈ E, i 6= j

wij ≥ 0,

where the constraints are imposed by the network topology
and the need for a doubly-stochastic mixing matrix. Since this
problem is convex, it can be solved efficiently using a wide
variety of techniques. We present a subgradient projection
method which provably converges on a global minimizer.
Recall that a subgradient [21] of a function f(W) is a matrix
G such that, for any feasible W̃, we have

f(W̃) ≥ f(W) + 〈G,W̃ −W〉
= f(W) + tr(GT (W̃ −W)),

where tr(·) is the matrix trace, and we have used the usual
definition of the matrix inner product. Let

W = UΣVT

be the singular value decomposition of W, where U =
[u1 · · ·uN ] and V = [v1 · · ·vN ]. Then, it can be shown [22]
that

G = u2v
T
2

is a subgradient of σ2(W).
The subgradient projection method consists of two alternat-

ing steps: stepping in the direction of the subgradient, followed
by projecting the result onto the feasible space. We initialize
the algorithm with any feasible W0. Then, at iteration k, we
take the step:

W′
k = Wk − αkGk,

where we choose αk = 1/
√
k as the stepsize and Gk is the

subgradient at iteration k. Of course, taking the gradient step
will not in general result in a feasible matrix, so we must then
project the result onto the set of feasible matrices. Projection
gives rise to the optimization problem

min
W∈RN×N

‖W −W′
k‖F

subject to W1 = 1

1TW = 1T

wij = 0, if (i, j) /∈ E, i 6= j

wij ≥ 0,

where ‖·‖F is the Frobenius norm. Unfortunately we cannot
project onto the set of doubly-stochastic, network-conforming
matrices in closed form. However, we can project individually
onto the set of row-stochastic and column-stochastic matrices
that conform to the network in closed form. Alternatively
projecting onto each of these sets, we can efficiently find the
minimum-norm projection onto the set of feasible matrices.
For brevity’s sake we omit the details, but it is straightforward
to show via the Karush-Kuhn-Tucker conditions that the
projection onto the space of graph-conforming row stochastic
matrices is given by

w∗ij =

{
0, for i 6= j and (i, j) /∈ E
max{wij − λi, 0}, otherwise

,

where each λi is chosen to ensure that row i sums to unity.
Similarly, the minimum-norm projection onto the set of graph-
conforming column stochastic matrices is

w∗ij =

{
0, for i 6= j and (i, j) /∈ E
max{wij − λj , 0}, otherwise

,

where each λj is chosen to ensure that column j sums to unity.
By alternatively projecting onto the set of graph-conforming
row- and column-stochastic matrices, we converge on the
projection onto the set satisfying all the constraints.

After stepping in the direction of the subgradient, we project
onto the feasible space:

Wk+1 = proj{W′
k},

where proj{·} denotes the minimum-norm projection just
established.

Subgradient algorithms lack concrete convergence criteria,
so while the proposed algorithm is guaranteed to converge on
a global optimum, it is difficult to guarantee that the solution is
within a certain distance of such an optimum. In practice we
must terminate eventually; lacking non-arbitrary criteria, we
somewhat arbitrarily terminate after 1000 iterations or when
‖Wk+1 −Wk‖F < 10−6.

B. Fully-connected graph

Here we look at convergence properties on the fully-
connected graph, in which the edge set is E = {(i, j) ∈
V × V : i 6= j}. In this case the connectivity constraints are
trivial, and finding optimal mixing matrices is straightforward
without resorting to the subgradient method proposed above.

Averaging over this topology is fast for both randomized
and deterministic gossip. For randomized gossip, it is easy
to see that the optimum strategy is for each node to pair
up uniformly with the other nodes in the network. In [4]
it is shown that this strategy converges in ε-averaging time
T (P, ε) = Θ(log(ε−1)). Even as the network size becomes
large, the averaging time remains constant so long as the re-
quired precision ε remains fixed. However, the 1/N -averaging
time is T (P, 1/N) = Θ(log(N)), which grows without
bound.

With group gossip, we can do better. Since the connectivity
constraints are trivial, we can choose any doubly-stochastic



mixing matrix. The optimal choice is obviously

W =
1

N
11T .

Regardless of the initialization z[0], we always have z[1] =
zave1, so we achieve exact consensus after a single round of
gossip. Thus we have Td(W, ε) = Td(W, 1/N) = 1 In this
case, the flexibility of group gossip affords a log(N) speedup
in averaging time.

C. Randomized Geometric Graph

In the special case of the fully-connected network, group
gossip offers an improvement in the scaling law of the 1/N -
averaging time. In general this is not true, as we will see in
the case of the randomized geometric graph (RGG).

The RGG with N nodes and radius r, denoted G(N, r), is
constructed by randomly and uniformly distributing N nodes
over the unit square and connecting with an edge any two
nodes whose Euclidean distance is less than r. The RGG is a
model for wireless networks with practical connectivity, and
it presents a more challenging problem for gossip algorithms.

For randomized gossip, it is shown in [4] that the opti-
mum gossip algorithm has an ε-averaging time T (W̄, ε) =

Θ( log(ε−1)
r2 ). By Theorem 2 we can expect at least a factor-of-

three improvement in averaging time. However, since group
gossip also allows us to select from a larger family of
mixing matrices W, we might wonder whether or not further
improvements are possible. However, the following theorem
shows that they are not.

Theorem 3: For the RGG Gr(N, r), the deterministic ε-
averaging time of the fastest group gossip algorithm is

Td(W, ε) = Θ

(
log(ε−1)

r2

)
,

which is the same as for randomized gossip.
To prove Theorem 3, we first need a lemma.

Lemma 1: For the RGG G(N, r), let W ∈ SG(N,r), where
SG(N,r) is the set of doubly-stochastic matrices conforming to
the graph G(N, r). Then, WTW ∈ S′G(N,2r), where S′G(N,2r)

is the set of symmetric doubly-stochastic matrices conforming
to the graph G(N, 2r).

Proof: Obviously WTW is symmetric and doubly-
stochastic; we need only to prove that it conforms to the graph
G(N, 2r). To show this, we rewrite W as

W = [w1w2 · · ·wN ].

Then, WTW is just the matrix of inner products:

WTW = [wT
i wj ].

Since wij is non-zero only if i and j are neighbors or if i = j,
wi and wj are orthogonal unless nodes i and j have neighbors
in common. On the RGG, nodes have no neighbors in common
if the distance between them is greater than 2r. Thus WTW
must conform to G(N, 2r). (We hasten to note that S′G(N,2r)

is not exhaustive; in general there are matrices in S′G(N,2r)

that do not correspond to any feasible WTW.)
Using Lemma 1 we can prove Theorem 3.

Proof: We start by observing that, by Theorem 2

Td(W, ε) = O(T (W, ε))

for any mixing matrix feasible for randomized gossip. By [4,
Theorem 9] there exists a feasible mixing matrix W such that
T (W, ε) = O

(
log(ε−1)

r2

)
. Thus

Td(W, ε) = O

(
log(ε−1)

r2

)
. (19)

Using arguments similar to that of [4, Theorem 7], we can
show that

Td(W, ε) = Ω(Tmix(WTW, ε)),

where Tmix(P, ε) is the ε-mixing time of the Markov chain
described by transition matrix P. By Lemma 1,

Tmix(WTW, ε) = Ω(Tmix(W, ε)) (20)

for any symmetric, stochastic W conforming to the graph
G(N, 2r). It is shown in [4] that the fastest-mixing symmetric,
stochastic Markov chain over G(N, 2r) has mixing time lower-
bounded by

Tmix(W, ε) = Ω

(
log(ε−1)

(2r)2

)
= Ω

(
log(ε−1)

r2

)
. (21)

Combining (19), (20), and (21), we obtain the desired result.

In the RGG we usually take r = Θ(
√

log(N)/N), which
guarantees with high probability that the resulting graph is
connected [23]. In that case, and taking ε = 1/N , we get

Td(W, 1/N) = Θ(N),

for the fastest group gossip algorithm. Group gossip, then,
cannot speed up the order of the convergence time for the
RGG. However, as we will see in the next section, group
gossip still provides a considerable speedup that manifests
itself in practice.

V. NUMERICAL RESULTS

In this section we examine the practical performance of
group gossip by presenting simulation results. We consider
the fully-connected and RGG networks, with network sizes
varying from N = 10 to N = 100. We assume a common
SNR of γ = 10dB. We construct the codebooks to have length
M = 5Dl, where l = 16 bits. For these values the probability
of detection error is low but non-negligible.

Until now we have ignored quantization. Since each mes-
sage contains a finite number of bits, the estimates must
be quantized before transmission, meaning that each node
cannot precisely compute the linear updates as dictated by
gossip. Quantization disturbs the convergence properties of
gossip; in general the quantized dynamics do not converge
on the average, and there even exist fixed points that do not
correspond to consensus. In [24] an algorithm for quantized
gossip is presented, but it does not extend easily to group
gossip.



Therefore, in our simulations the nodes simply carry out
gossip while rounding to the nearest quantized value. We
initialize each algorithm with a vector

z[0] ∈ {0, 2−l, · · · , (2l − 1)2−l}N ,

drawn from the unit interval and quantized uniformly to the 2l

quantization levels. In computing updates, each node simply
rounds the result of its gossip calculation to the nearest
quantization value. While in general this can cause the the
dynamics to diverge from consensus, in practice we found
that this occurs less than 1% of the time.

To see the effects of quantization, we plot a single instance
of the gossip dynamics on a fully-connected network of 10
nodes. In Figure 2 we plot each element of z[t] to give a
qualitative feel for the performance. In the case of randomized
gossip, the dynamics converges relatively quickly to a consen-
sus around the average. In the case of group gossip, however,
the convergence is immediate: after one round, the network has
converged on an estimate very close to the average. However,
as the dynamics continue, we see another effect: decoding
errors. Every so often a node incorrectly decodes a neighbor’s
message, which causes the network to drift slightly from the
true average.
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Fig. 2. Gossip realization for a 10-node fully-connected graph, with
randomized gossip (a) and group gossip (b).

With all of these practical issues in play, we next examine
the averaging time of of group gossip. For each topology,
we empirically compute the number of rounds necessary to
achieve convergence within ε = 1/N . We average the con-
vergence time over 1000 uniformly distributed initializations
z[0] ∈ {0, 2−l, · · · , (2l − 1)2−l}N , discarding the few cases
in which the algorithm fails to achieve consensus.

In Figure 3 we plot the averaging time for fully-connected
graphs. As predicted in Section IV, group gossip significantly
outperforms randomized gossip. The averaging time grows
as log(N) for randomized gossip, while for group gossip it
remains constant, even accounting for practical issues such as
quantization and decoding errors.
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Fig. 3. 1/N -averaging time for fully-connected graphs.

In Figure 4 we plot the averaging time for random geo-
graphic graphs. In both cases the averaging time grows linearly
with the size of the network, bearing out the analysis in
Section IV. However, the slope is significantly smaller for
group gossip than for randomized gossip. Indeed, we see that
the averaging time for group gossip is roughly one-third that
of randomized gossip—exactly as predicted by Theorem 2!
These results demonstrate that, even in cases where an order-
wise improvement in averaging time is not possible, group
gossip still provides a considerable improvement.
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Fig. 4. 1/N -averaging time for random geographic graphs.



VI. CONCLUSION

We have presented an approach to gossip algorithms con-
structed explicitly to address the challenges and exploit the
advantages of wireless communications. We built our approach
on a virtual full-duplex framework, which allows nodes to
carry out multilateral exchanges of messages without need
for orthogonal signaling or medium access control. Using this
framework we developed and analyzed group gossip, a more
general class of gossip algorithms in which nodes broadcast
their estimates to their neighbors while simultaneously receiv-
ing their neighbors’ estimates. Group gossip permits a tighter
bound on the averaging time, and in special cases the order of
the averaging time can be improved. Simulations show that,
even accounting for channel errors and quantization effects,
the theoretical gains predicted for group gossip indeed bear
out in practice.
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