
1

Resource Tradeoffs in Distributed Subspace
Tracking over the Wireless Medium

Matthew Nokleby∗ and Waheed U. Bajwa†
∗Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (matthew.nokleby@duke.edu)

†Dept. of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ (waheed.bajwa@rutgers.edu)

Abstract—This paper studies distributed subspace tracking in
wireless networks based on consensus averaging. Most prior
approaches to this require the exchange of many inter-node
messages between the arrival of new measurements, forcing com-
munications to happen at a faster timescale than measurements.
By contrast, this paper proposes a technique, termed hierarchical
subspace tracking, which leverages recent advances in consensus
over wireless networks in order to track subspaces when com-
munications and measurements occur on the same timescale. It
is shown that the resource consumption of hierarchical subspace
tracking scales slowly in the size of the network. Further, it
is shown that the convergence speed of hierarchical subspace
tracking is the same as if measurements were known globally.

I. INTRODUCTION

The subspace signal model, which assumes that the signals
of interest lie in a low-dimensional subspace, has long been the
mainstay of signal processing. In particular, many advances in
denoising, interference cancellation, data compression, array
processing, etc., can be attributed to this model. An im-
portant challenge in this regard is the estimation of signal
subspace from noisy measurements. Given a collection of sig-
nals {st ∈ CN}t∈Z+ drawn independently from a zero-mean
distribution with covariance C ∈ CN×N , this translates into
estimating the subspace spanned by the K � N eigenvectors
associated with the K largest eigenvalues of C.

In this paper, we focus on the problem of tracking a
signal subspace when measurements stream into a distributed
network of sensors, agents, nodes, etc. For the sake of this
exposition, we focus on the relatively simple problem of
tracking the one-dimensional subspace given by the principal
eigenvector of the covariance. Each node observes one of
the entries of st at time t and maintains a running estimate
of the principal eigenvector (or its “flipped” version) within
the network using local communications. While distributed
estimation of eigenvectors has been studied in the literature
in different contexts [1]–[4], the problem formulation in this
paper is most closely related to that of [3], [4]. In particular,
[4] proposes and analyzes a solution for online, distributed
estimation of the subspace spanned by the principal eigen-
vector that leverages the well-known Oja’s learning rule [5]
for subspace tracking and distributed average consensus for
data fusion. A major limitation of this work is its reliance
on gossip algorithms for consensus averaging, which suffer
from slow convergence in common network topologies. In
order for the proposed method in [4] to converge to the true
subspace in a random geometric topology with N nodes, for
instance, the network must be capable of making roughly

O(N2) transmissions between any two measurements. Stated
differently, distributed subspace tracking in [4] implicitly relies
on two timescales in the network: measurements arrive on one
(coarser) timescale and communications between nodes take
place on another (finer) timescale. Returning to the case of
a random geometric network, the estimate in [4] converges
only if the communication timescale is much finer than the
measurement timescale; otherwise, it diverges.

In contrast to [4] and other related works, we propose and
analyze an approach to distributed subspace tracking in which
measurements arrive and communications take place on a
single timescale. The proposed approach leverages hierarchi-
cal averaging—a novel approach to consensus averaging that
exploits the broadcast and superposition natures of the wireless
medium to accelerate consensus [6]—for data fusion. In order
to facilitate subspace tracking in this case, we tailor Oja’s rule
to hierarchical averaging, resulting in a distributed scheme
in which transmit power and bandwidth need only scale as
O(logN) in a grid network of N nodes for reliable tracking.
Furthermore, we show that our proposed scheme is optimal in
the sense that the estimate of the subspace converges to the
true subspace at a rate that matches the one achieved by the
canonical, centralized Oja’s rule.

II. PRELIMINARIES

A. System Model and Problem Formulation

Consider a grid network of N nodes, N = {1, . . . , N},
within a unit square in which nodes are geographically
distributed on a rectangular grid of size

√
N ×

√
N . We

assume that time and bandwidth in the network are slotted,
t = 1, 2, . . . , b = 1, 2, . . . , and each node transmits/receives
messages within one of these time–bandwidth slots. We use
Pn(t, b) to denote the transmit power of node n at time t and in
band b, and assume that node n successfully communicates a
single, infinite-precision scalar1 to node m provided: (i) node
m lies within the transmit radius of node n, as defined by
the free-space path-loss model: rn(t, b) = γ · P 2

n(t, b), where
γ > 0 is a constant determined by the transmit frequency and
the receiver characteristics; and (ii) node m does not lie within
the transmit radius of any other node transmitting at the same
time and over the same band.

We assume signals {st ∈ CN}t∈Z+
drawn independently

from a zero-mean distribution with covariance C := E[sts
H
t]

stream into the network, with each node n measuring the nth

1While quantization errors can be incorporated into our analysis, we assume
for the sake of this exposition that the quantization errors are negligible.

2

component of the signal, st(n), at time t. Using v to denote the
principal eigenvector of C, the main challenge then is for each
node n to maintain an estimate v̂t(n) of the nth component of
v, such that v̂t → ±v as quickly as possible. Mathematically,
the asymptotic, scaled error covariance

K = lim
t→∞

tE[(v ± v̂t)(v ± v̂t)H] (1)

can be used as a measure of the rate at which v̂t converges
to ±v. In the context of distributed subspace tracking in a
wireless network, however, the rate of convergence alone is
not sufficient to characterize the performance of a tracking
algorithm. Rather, one also needs the measures of average
bandwidth and average transmit power. Specifically, using
B(t) = |{b : ∃n, Pn(t, b) > 0}| to denote the total bandwidth
utilized by the network at time t, we define the average
bandwidth as

Bavg = lim
T→∞

1

T

T∑
t=1

B(t). (2)

Similarly, we define the average transmit power as

Pavg = lim
T→∞

1

T

T∑
t=1

B(t)∑
b=1

N∑
n=1

Pn(t, b), (3)

which represents the average total power used by the network
in each time slot. We are then interested in tracking methods
that not only have a fast rate of convergence, but that also
minimize the metrics of Bavg and Pavg.

B. Review of Oja’s Rule in Distributed Settings

The baseline (centralized) subspace tracking method that we
consider for comparison purposes in this paper is the well-
known Oja’s rule [5], which is known for its simplicity and
fast convergence. Given a sequence of signals {st}, Oja’s rule
maintains an estimate of the subspace spanned by the principal
eigenvector via the iterations

v̂t+1 = v̂t + εt[(sts
H
t)v̂t − v̂tv̂Ht stsHt v̂t], (4)

where εt > 0 is an appropriately-chosen step size and v̂0 is
an arbitrary, unit-norm initial estimate. It can be shown that
a proper choice of εt, along with some mild assumptions on
C (such as largest eigenvalue of multiplicity one and v̂0 not
being orthogonal to v) guarantee v̂t → ±v with probability 1.
Further, the asymptotic, scaled error covariance of Oja’s rule
(cf. (1)) in this case can be expressed as

Koja = A(I − C)E[sts
H
t vv

Hsts
H
t](I − C)AH , (5)

where A is a constant matrix that we leave unspecified
for brevity. We refer interested readers to the literature on
stochastic approximation theory in general and [7] in particular
for technical details.

In order to implement Oja’s rule given by (4) in a distributed
setting, [4] observed that each node n ∈ N needs only the
inner product sHt v̂t to compute the nth component of v̂t+1.
In addition, since the inner product is a linear operation, [4]
observed that it can be computed in a distributed fashion
via consensus averaging. Among the many approaches to

consensus averaging in the literature, [4] proposed the use
of gossip algorithms [8] and analyzed the performance of the
resulting tracking algorithm.

A major drawback of relying on gossip algorithms for
consensus averaging is their slow convergence. In grid and ran-
dom geometric topologies, for instance, they require roughly
O(N2) transmissions in the network for convergence. This
slow convergence of gossip algorithms forces [4] to carry out
communications between nodes on a timescale that is much
finer than the timescale on which measurements arrive within
the network. In particular, this imposes the condition in [4] that
the signal st+1 arrives in network only after the network has
achieved (approximate) consensus on sHt v̂t. In the sequel, we
show that this restrictive condition can be removed through a
modification of Oja’s rule and utilization of a newer consensus
averaging method, termed hierarchical averaging, introduced
and analyzed in [6]. Before proceeding further, we briefly
review this method.

C. Review of Hierarchical Averaging
Hierarchical averaging [6] is a novel approach to consensus

averaging in wireless networks that takes explicit advantage
of the broadcast and superposition natures of the wireless
medium for faster convergence. Instead of communications
between neighbors described through edges in a graph as in
traditional approaches to consensus, nodes in hierarchical av-
eraging broadcast messages to other nodes in geographically-
defined cells. These cells, as illustrated in Fig. 1, are organized
into a hierarchy of R = dlog4Ne layers. The entire network
is a single cell at layer R, the network is divided into four
square cells at layer R − 1, and this partitioning of the cells
continues until the network comprises 4R−1 cells at layer 1.

In order to illustrate the workings of hierarchical averaging,
suppose each node in our grid network has a a single scalar
measurement zn and that we are interested in computing the
average (

∑
n∈N zn)/N at each node. In order for this, hier-

archical averaging starts at layer 1 and nodes broadcast their
measurements zn to other nodes in their respective cells. At
the end of these broadcasts (i.e., round 1 of communications),
each node averages the measurements received from other
nodes within its cell. Therefore, all nodes within a cell end
up with identical estimates of the network average at the
end of round 1. Hierarchical averaging then moves to layer
2, in which a representative node from each layer 1 cell
is selected to broadcast its estimate of the network average
to all of the nodes within its cell at layer 2. Once again,
at the end of these round 2 of communications, each node
averages the measurements received from other nodes within
its layer 2 cell, resulting in all nodes within every layer
2 cell to have identical estimates. This selection–broadcast–
average process continues till layer R, at which point four
representative nodes—one from each of the cells at layer
R− 1—broadcast their estimates to the entire network. Every
node in the network then computes an average of these final
four measurements, which ends up being precisely the average
(
∑
n∈N zn)/N . In words, hierarchical averaging carries out

consensus averaging by fusing estimates up the hierarchy in
R rounds of communications.

3

Fig. 1. An illustration of hierarchical averaging at three different layers. At layer 1, nodes first broadcast messages that reach other nodes within their cells
and then nodes average the received messages. At subsequent layers (up to layer R = dlog4 Ne), a representative from each cell in the lower layer broadcasts
messages that reach other nodes within their cells in the current layer, followed once again by averaging of received messages by the nodes.

One of the biggest advantages of hierarchical averaging, as
established in [6], is its frugal usage of network resources.
Specifically, it can compute a single average (equivalently,
a single linear operation of initial measurements) by using
only R = dlog4Ne time slots, O(logN) units of bandwidth,
and O(logN) units of transmit energy. Note that if one
were interested in computing x linear operations of network
measurements then that can also be accomplished by hierar-
chical averaging at the expense of an increase in (cumulative)
bandwidth and (cumulative) energy, resulting in R = dlog4Ne
time slots, O(x logN) units of bandwidth, and O(x logN)
units of transmit energy. In the following, we exploit these
facts about hierarchical averaging for distributed subspace
tracking on a single timescale.

III. HIERARCHICAL SUBSPACE TRACKING

While hierarchical averaging enables relatively fast and low-
resource consensus averaging, the need for R = dlog4(N)e
time slots to compute a linear functional precludes the use of
canonical Oja’s rule for single timescale subspace tracking.
Instead, we modify the Oja iterations (4) in a way that they
accommodate the R = dlog4(N)e time slots for consensus
averaging but still manage to incorporate every signal st into
the final estimate. Our approach is to run an Oja-like iteration
once every R slots, but which is based on an R-point estimate
of the covariance formed from the previous R received signals.

Specifically, consider slot t with t/R an integer and define

Ct =
1

R

t∑
τ=t−R+1

sτs
H
τ , (6)

an estimate of the covariance formed from the previous R
measurements. In hierarchical subspace tracking, nodes update
their estimates according to the following “Oja-like” rule:

v̂t+R = v̂t + εt[Ctv̂t − v̂tv̂Ht Ctv̂t]. (7)

In words, the network updates its estimate of v once every R
slots, and this update employs a rank-R covariance estimate,
rather than the rank-one estimate employed under Oja’s rule.

In terms of computing (7) in a distributed setting, notice
that each node n can compute v̂t+R(n) from the nth element
of Ctv̂t and the scalar v̂Ht Ctv̂t. These quantities in turn can
be computed from the R inner products {sHτ v̂t}tτ=t−R+1. In

hierarchical subspace tracking, the nodes compute these R
inner products over R time slots by means of hierarchical
averaging. The complete algorithm proceeds as follows.

In time slot t ∈ RZ+, each node n computes the R
scalars sτ (n)v̂t(n) for each t − R + 1 ≤ τ ≤ t. Then,
the nodes compute the sum of these scalars via R parallel
instances of hierarchical averaging as described in Section
II-C. That is, over R time slots, the nodes perform distributed
computations of the R necessary inner products. Then, in
time slot t + R, having the necessary quantities, each node
computes its component of the new iterate described by (7).
Meanwhile, R newer signals arrived in the network during the
hierarchical averaging step and the nodes continue this process
with these newer signals, which now involves computing the
scalars sτ (n)v̂t(n) for t + 1 ≤ τ ≤ t + R, computing the
inner products {sHτ v̂t}t+Rτ=t+1 via hierarchical averaging, and
updating the network estimate using (7).

To summarize, the network processes R measurements via
R parallel instances of hierarchical averaging in R time slots.
In this fashion, the network can incorporate all of the measure-
ments in its estimates while operating on a single timescale.
The following theorem shows that the resource requirements
of this subspace tracking method are rather favorable.

Theorem 1: Hierarchical subspace tracking results in

Bavg = O(logN) = Pavg. (8)

Proof: The proof follows straightforwardly from known
results on hierarchical averaging [6]. To compute R inner prod-
ucts in parallel, hierarchical averaging requires O(R logN)
units of energy and bandwidth over R slots. Substituting these
into the definitions of Bavg and Pavg yields the claim.

Next, we prove convergence of hierarchical subspace track-
ing. In particular, we show that v̂t converges on ±v with
probability 1 and that the convergence speed is identical to
that of the centralized, canonical Oja’s rule. In other words,
our algorithm converges as fast as if we were able to run an
Oja’s rule iteration at every time slot.

Theorem 2: For hierarchical subspace tracking, v̂t → ±v
with probability 1. Furthermore, let Kh be the asymptotic,
scaled error covariance for hierarchical subspace tracking.
Then we have Koja = Kh.

Proof sketch: That v̂t
w.p.1−→ v is a direct corollary to the

4

fact that the original Oja’s rule converges. Indeed, hierarchical
subspace tracking implies only a decrease in the noise on each
iteration, therefore convergence is assured with probability 1.

Proving the convergence rate, in the form of Kh, requires
the framework of stochastic approximation. Since we cannot
fully present the framework here, we give only a sketch of
the proof; see [7], particularly Ch. 10, for more details. Our
sketch focuses on the vector-valued sequence2

δMt = (Ctv̂t − v̂tv̂Ht Ctv̂t)− Ei<t[(Ctv̂t − v̂tv̂Ht Ctv̂t)]. (9)

In particular, we are interested in the matrix

Σ = lim
t→∞

Ei<t[δMtδM
H
t]. (10)

Under proper assumptions (including ones on the step size εt)
[7], it can be shown that Kh = RAΣAH , where A is the same
constant matrix as in (5). Here, the factor of R is due to the
fact that nodes update their estimates only every R slots.

To specify Σ, we first evaluate the second term of δMt:

Ei<t[(Ctv̂t − v̂tv̂Ht Ctv̂t)] = Cv̂t − v̂tv̂Ht Cv̂t. (11)

Then, algebraic manipulations yield

δMt = (Ct − C)v̂t − v̂tv̂Ht (Ct − C)v̂t. (12)

Now, in the limit v̂t = ±vt. Supposing v̂t converges on vt
(the other case follows similarly), we get

Σ = Ei<t[((Ct − C)v − vvH(Ct − C)v)×
((Ct − C)v − vvH(Ct − C)v)H]

= (I − vvH)Ei<t[Ctvv
HCHt](I − vvH). (13)

Next, we expand Ei<t[CtvvHCHt] to obtain

Ei<t[Ctvv
HCHt] =

1

R2

R∑
m,n=1

E[sms
H
mvv

hsns
H
n]

=
R(R− 1)

R2
vvH +

1

R
E[sns

H
n vv

Hsnsn]. (14)

Observing that (I − vvH)vvH = 0, we finally obtain

Σ =
1

R
(I − C)E[sts

H
t vv

Hsts
H
t](I − C), (15)

which yields the claim through pre- and post-multiplication of
Σ by RA and AH , respectively.

IV. NUMERICAL RESULTS

To numerically demonstrate the convergence speed of our
method, we consider a network of N = 64 nodes. We let the
signals st be zero-mean Gaussian with a random covariance
C having unit `2-norm columns, and we randomly initialize
v̂0. We choose the stepsize εt = 0.02 for every iteration t.
In Fig. 2, we show the tracking error t||v̂t ± v||2 averaged
over 100 initializations as a one-dimensional surrogate for (1).
In addition to showing the results for hierarchical subspace
tracking, we show the error performance for standard Oja’s
rule, which requires instant access to the measurements, as

2The operator Ei<t denotes expectation conditioned on the initial estimate
v̂0 and the previous update terms Civ̂i− v̂iv̂

H
i Civ̂i, i < t, where we slightly

abuse the notation and use t for the iteration count, rather than the “slot index.”

200 400 600 800 1,0001,2001,4001,600
0

500

1,000

1,500

Time slot t

Tr
ac

ki
ng

er
ro

r
t||
v̂ t
±
v
||2

Hierarchical Subspace Tracking
Standard Oja’s Rule

“Skipping” Oja’s Rule

Fig. 2. Distributed tracking error as a function of the time-slot index t.

well as a naive implementation in which a single, standard
Oja’s iteration is carried out every R rounds (i.e., (R − 1)
measurements are skipped between successive iterations).

The results bear out the predictions in Theorem 2. Although
the convergence of hierarchical subspace tracking is initially
slower than standard Oja, it “catches up” as asymptotic effects
begin to dominate. On the other hand, hierarchical subspace
tracking offers a large performance increase over discarding
intervening measurements.

V. CONCLUSION

We have presented and analyzed hierarchical subspace
tracking, a distributed approach to subspace tracking in wire-
less networks. Unlike previous methods, which require inter-
node communications at a rate much faster than arrival of
new measurements, hierarchical subspace tracking succeeds
when measurements and communications occur on the same
timescale. Hierarchical subspace tracking has excellent con-
vergence speed, with the estimation error decaying as though
nodes had complete access to the distributed data, and its
resource requirements scale only logarithmically in network
size, making it an effective solution to subspace tracking.

REFERENCES

[1] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” J. Computer and System Sciences, pp. 70–83, Feb. 2008.

[2] B. Oreshkin, M. Coates, and M. Rabbat, “Optimization and analysis
of distributed averaging with short node memory,” IEEE Trans. Signal
Processing, pp. 2850–2865, May 2010.

[3] L. Li, X. Li, A. Scaglione, and J. Manton, “Decentralized subspace
tracking via gossiping,” in Dist. Comp. Sensor Syst., 2010, pp. 130–143.

[4] L. Li, A. Scaglione, and J. Manton, “Distributed principal subspace
estimation in wireless sensor networks,” IEEE J. Selected Topics Signal
Proc., pp. 725–738, Aug. 2011.

[5] E. Oja, “Simplified neuron model as a principal component analyzer,” J.
Math. Biology, pp. 267–273, Nov. 1982.

[6] M. Nokleby, W. U. Bajwa, A. R. Calderbank, and B. Aazhang, “Toward
resource-optimal consensus over the wireless medium,” IEEE J. Selected
Topics Signal Proc., pp. 284–295, Apr. 2013.

[7] H. J. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithms and applications. Springer, 2003.

[8] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proc. IEEE, pp. 1847–1864,
Nov. 2010.

