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Abstract—The number and relative geometry of collected mea-
surements significantly affect the reliability of massive antenna

array diagnosis. In this paper, we investigate and compare
two deterministic algorithms for taking measurements based
on a compressive-sensing-based approach for rapid and reliable
detection of faulty elements in massive multi-input multi-output
antenna arrays. We exploit the fact that the measurement
matrix for a uniform linear antenna array reduces to a partial
discrete Fourier transform matrix with rows corresponding to
the measurements’ locations. With the aid of the investigated
algorithms, the measurements can be wisely taken to reduce
the measurement matrix’s worst-case coherence, which affects
the detection probability of the defective antenna elements.
In particular, one of the algorithms aims at constructing a
measurement matrix with fewer distinct inner product values
to reduce the worst-case coherence. The second algorithm is
based on bounding the inner product between any pair of
measurement matrix columns. Our study shows that uniform
measurements can adversely affect the detection probability
of the defective antenna elements, while using either one of
the investigated deterministic algorithms leads to remarkable
performance improvement.

I. INTRODUCTION

Very large multiple-input multiple-output (MIMO) systems,

widely known as massive MIMO, have gained an increasing

attention in academic and industrial circles as one of the key

enabling technologies for the 5G cellular systems [1]. They

offer substantial performance gains over traditional MIMO

systems such as increasing the system throughput by allowing

multiple user equipment to be scheduled simultaneously over

the same time-frequency resources and enabling transmis-

sion of multiple independent data streams to fully exploit

all available spatial degrees of freedom. Moreover, massive

MIMO mitigates inter-user interference by creating narrow

beams directed to the receiver of interest and extends the

cell radius by focusing the transmitted power in such spatial

directions. Furthermore, it permits significant power reduction

by coherently combining the transmitted or received signals.

To realize these performance gains, several schemes have

been proposed to design the precoder and decoder matrices.

Those schemes assume the massive MIMO antenna array

elements to be fault free. In practice, with large antenna arrays

consisting of low-cost antenna elements, the presence of faulty

antenna elements with excitation coefficients different from

the designed ones may occur with high probability. Such faults

result in significant deviation from the designed array radiation

pattern and can lead to severe performance degradation.

Several array diagnosis schemes have been proposed in the

literature to detect faulty antenna elements and compensate

for their detrimental effects on the performance. Backward
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method array diagnosis based on the inverse fast Fourier trans-

form (FFT) was proposed in [2]. To obtain reliable diagnosis

using this scheme, a very large number of measuremts must be

collected in the measurement plane. In [3], another technique

based on the ”matrix method” was proposed to reconstruct the

excitation coefficients. The main drawback of this technique

is that the number of measurements has to be bigger than

the number of antenna elements in the array, which requires

tremendous time to collect measurements for large antenna

arrays. A spectral estimation technique based on the Multiple

Signal Classification (MUSIC) method was presented in [4];

it is based on singular value decomposition (SVD), which is

not practical for large antenna arrays.

To reduce the number of measurements and enhance the

reliability of detecting defective antenna elements, array di-

agnosis schemes based on compressive sensing (CS) have

been recently proposed. They exploit the fact that only few

antenna elements tend to be defective compared with the

total number of elements and, hence, the difference between

the excitation coefficients of the array under test and the

reference array is a sparse vector that can be recovered using

conventional CS recovery algorithms. In [5], identifying the

faulty antenna elements from near-field measurements based

on CS techniques was achieved by minimizing the l1 norm. A

Bayesian CS recovery approach for linear antenna arrays was

proposed in [6] and generalized for planar arrays in [7].

To the best of the authors’ knowledge, this paper is the first

to address the problem of measurement collection procedures

for array diagnosis based on CS techniques for massive

unifrom linear antenna arrays (ULAs). In related work [5]–[7],

and the references therein, the measurements were assumed

to be uniformely collected and nonuniform sampling has not

been investigated before. The main contributions of this paper

are as follows. First, for a prime number of antenna elements,

we present an algorithm to select the measurement positions

based on the approach outlined in [8] when the number

of measurements is any divisor of the number of antenna

elements−1. Second, when this condition is not satisfied, we

describe another algorithm based on the approach in [9]. Third,

through extensive numerical simulations, we demonstrate the

performance gains of the presented algorithms over the con-

ventional uniformly-sampled measurements that result in poor

performance in terms of detection probability.

The rest of the paper is organized as follows. In Section

II, we present a brief background on CS, develop our system

model and state our main assumptions. The proposed mea-

surements procedures are described in Section III, followed

by numerical simulations in Section IV. Finally, the paper is

concluded in Section V.
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II. CS RECOVERY BACKGROUND AND SYSTEM MODEL

A. CS Recovery Background

Based on CS techniques, a sparse U -dimensional signal

vector x with κ nonzero entries such that κ ≪ U can

be efficiently and reliably estimated from N noisy linear

measurements where N < U . The stacked N measurements

can be denoted by vector y ∈ CN and written as follows

y = Φx+w, (1)

where Φ is an N×U measurement matrix and w is N×1 noise

vector. An estimate of the sparse vector x can be obtained by

solving the following optimization problem

x̂ , argmin
x∈CU

‖x‖0 subject to ‖y −Φx‖22≤ ǫ (2)

where ‖x‖0 is the l0 norm of the vector x, which counts its

nonzero entries, and ǫ is chosen large enough to bound the

measurement noise with high probability.

Recovering the locations of the κ nonzero entries of x

depends on the characteristics of the measurement matrix Φ.

Several metrics have been developed to assess the quality

of the measurement matrix to enable stable and reliable

recovery of the support of x, such as the restricted isometry

property (RIP), average coherence, and worst-case coherence

[10]. In this paper, we focus on the worst-case coherence

as a coherence measure between the measurement matrix’s

columns, which is defined as follows

µ = max
i,j:i6=j

∣
∣φH

i φj

∣
∣

‖φi‖2‖φj‖2
, (3)

where the operators (.)H , |.| and ‖.‖2 denote the matrix

complex-conjugate transpose, absolute value of a complex

number and the l2 vector norm, respectively. Moreover, φi ∈
CN denotes the ith column of the matrix Φ.

The well-known lower-bound on the worst-case coherence,

called the Welch bound, is given by [11]

µ ≥
√

U −N

(U − 1)N
(4)

with equality if and only if
∣
∣φH

i φj

∣
∣ =

√
U−N

(U−1)N ∀ i 6= j.

The closer the worst-case coherence of the constructed mea-

surement matrix is to the Welch bound, the more reliable the

recovering of the nonzero entries will be.

B. System Model

Let us consider a linear antenna array consisting of U
antenna elements located on the x-axis. The position of the uth

antenna element is denoted by xu. Moreover, the excitation

coefficient of the uth antenna element is denoted by cu.

Suppose there are κ faulty antenna elements with unknown

locations, where κ ≪ U ; i.e., their excitation coefficients are

not equal to the true ones.

To detect the faulty antenna elements, N far-field mea-

surements are collected, where the (n + 1)th measurement

is vn+1 =
∑U

u=1 cu
e−jkrun

−→
fu(−→r un,θn,φn)
4πrun

+ wn, where n ∈
{0, 1, · · · , N − 1}, j =

√
−1 and k = 2π

λ
is the wave

number with λ being the free-space wavelength. The vector−→
fu (

−→r un, θn, φn) is the electric field radiation pattern of the

uth antenna element at the (n + 1)th measurement point and

run = |−→r un| = |−→r n −−→r u|, where −→r u and −→r n are the

position vectors of the uth antenna element and the (n+ 1)th

measurement point, respectively. The azimuth and elevation

angles of the probe at the (n + 1)th position are denoted

by φn and 90◦ − θn, respectively. Moreover, wn denotes

the measurement noise of the (n + 1)th measurement. The

noise samples over all the measurements are assumed to be

independent, identically distributed (i.i.d) zero-mean additive

white Gaussian noise (AWGN) samples with variance σ2
w.

The N measurements are collected in a measurement vector

v ∈ CN , termed as the measurement vector, given by

v = Ac+w, (5)

where the (n+ 1, u)
th

entry of the N × U measurement

matrix A is given by
e−jkrun

−→
fu(−→r un,θn,φn)
4πrun

, the U × 1
vector c consists of the excitation coefficients of the antenna

array elements, i.e., c = [c1, · · · , cU ]
T

and vector w =
[w0, · · · , wN−1]

T
. Denoting the error-free antenna elements’

excitation coefficients by cT ∈ CM and subtracting the ideal

radiation pattern at the N measurement positions given by

vT = AcT from (5), we get

v − vT
︸ ︷︷ ︸

ṽ

= A (c− cT)
︸ ︷︷ ︸

c̃

+w, (6)

where the indices of the κ nonzero entries of c̃ indicate the

location of the faulty antenna elements.

For a linear array with isotropic antenna elements, we

consider the array factor instead of the far electric field, which

can be written at the (n+1)th measurement position as follows

vLAF,n+1 =

U∑

u=1

cue
−jkxu sin θn cosφn + wn. (7)

Without loss of generality, we assume that the measure-

ments are collected in the x − z plane, i.e., φn = 0, ∀ n =
0, · · · , N − 1. Hence, the measurement matrix A is

A =






e−jkx1 sin θ0 e−jkx2 sin θ0 · · · e−jkxU sin θ0

...
...

...
...

e−jkx1 sin θN−1 e−jkx2 sin θN−1 · · · e−jkxU sin θN−1




 .

Moreover, the l2 norm of any column of the measurement

matrix is equal to
√
N : ‖A(:, i)‖=

√
N, ∀ i ∈ {1, ..., U}.

After some straightforward manipulations, the inner product

between the uth and qth columns of A can be written as follows

|〈A(:, u),A(:, q)〉| =
∣
∣
∣
∣
∣

N−1∑

n=0

e−jk△uq sin θn cosφn

∣
∣
∣
∣
∣
. (8)

Computing a closed-form expression for the worst-case

coherence for a general measurement matrix, A, appears to be

too complicated. Therefore, we focus on a uniform linear array

(ULA) with inter-element spacing denoted by dx, which is of

high practical interest. Both dx and θn, n ∈ {0, · · · , N−1}
can be chosen in this case such that A is constructed from N
rows of the discrete Fourier transform (DFT) matrix of size
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U × U . For example, for dx = λ and sin θn = n
U
, n ∈

{0, · · · , N − 1}, the measurement matrix reduces to the first

N rows of the DFT matrix of size U × U and each row

corresponds to a particular measurement as follows

A =








1 1 · · · 1

1 e−j2π 1
U · · · e−j2π U−1

U

...
...

...
...

1 e−j2π (N−1)
U · · · e−j2π (N−1)(U−1)

U







. (9)

This raises the following interesting question: what is the

best set of indices out of
(
U
N

)
in the U × U DFT matrix

to achieve the smallest worst-case coherence? Conducting

exhaustive search over all the possible subsets is not feasible,

especially for a large number of antenna array elements with a

relatively small number of observations. In the next section, we

describe two procedures to construct the measurement matrix

with low worst-case coherence by judiciously choosing N
rows from the U × U DFT matrix based on [8] and [9].

III. MEASUREMENTS PROCEDURES

A. Few-Distinct-Inner-Products Measurements Procedure

In this section, we present an algorithm based on the ap-

proach outlined in [8]. Our goal is to select N rows out of the

full U ×U DFT matrix to minimize the worst-case coherence,

where each row represents a particular measurement angle θn.

The presented algorithm determines the N rows such that the

number of distinct pairwise inner products is reduced from
(
U

2

)
to U−1

N
and it ensures that each such inner product value

has the same multiplicity factor. The authors of [8] showed

that such measurement matrix has low worst-case coherence

and, in certain cases, the Welch bound is achieved.

For a prime number of antenna elements U and assuming

that N is any divisor of U−1 such that r = U−1
N

is an integer,

the cyclic group G = (Z/UZ)
×

, the multiplicative group

of the integers modulo U , has a unique subgroup, denoted

by K, of order m consisting of distinct rth powers of the

elements of G. In other words, K = {1, k, · · · , kN−1} where

k = gr and g is the unique generator of G. The measurement

matrix constructed from rows of the U × U DFT matrix and

indexed by the set K has at most r distinct inner product

values [8]. For example, for U = 67 antenna elements and

choosing N = 11 measurements, i.e., r = 66
11 = 3, the

constructed measurement matrix consists of the rows indexed

by {1, 9, 14, 15, 22, 24, 25, 40, 59, 62, 64} and has at

most 3 distinct inner product values with an equal multiplicity

of 672−67
3 = 1474. The algorithm steps are summarized below:

Algorithm 1 Few-Distinct-Inner-Products Measurements Pro-

cedure

1: Find the unique generator g for (Z/UZ)
×

.

2: Choose the number of measurements N to be any divisor

of U − 1.

3: The set of rows’ indices is given by {1, k, · · · , km−1}
mod U , where k = g

U−1
N .

It is worth mentioning that the measurement matrix in this

case achieves the Welch bound if and only if the set K forms

a difference set in (Z/UZ)× [11]. For instance, if r = 2 and

N−1 is not dividable by 4, then the Welch bound is achieved

[8].

In this algorithm, the number of measurements, N , is

restricted to be one of the factors of U − 1. In some cases,

N approaches half the number of antenna elements which is

considered too many measurements. For example, assuming

U = 107, then N ∈ {1, 2, 53, 106} which is either too

few measurements to reliably recover the defective antenna

elements or too many measurements.

B. Polynomial-Based Measurements Procedure

Next, to overcome the drawback of Algorithm 1, we present

an alternative algorithm that can be used for any number of

measurements. In scenarios where both algorithms can con-

struct the measurement matrix, the one obtained by Algorithm

1 exhibits smaller worst-case coherence, as will be numerically

verified in Section IV.

The procedure for this algorithm is similar to the algorithm

described in [9]. For prime U , construct the multiset T =
{Q(m) mod U : m = 1, 2, · · · , M} where M is an integer

greater than 1 and Q(m) is an R-degree polynomial with R ≥
2 and coefficients denoted by {αi}Ri=1: Q(m) = α1m+ · · ·+
αRm

R. Those coefficients are chosen to be co-prime to U , i.e.,

αR ∈ {1, · · · , U−1} while the other coefficients {αi}R−1
i=1 ∈

{0, 1, · · · , U − 1}. The set of row indices corresponds to

the unique elements in T . It is worth mentioning that M is

chosen big enough such that the multiset T has N unique

elements. The entire procedure for selecting the measurements

is outlined below:

Algorithm 2 Polynomial-Based Measurements Procedure

1: Select integer R ≥ 2.

2: Select αR ∈ {1, 2, · · · , U − 1} relatively prime to U

and {αi}R−1
i=1 ∈ {0, 2, · · · , U − 1}.

3: Construct Q(m) = α1m+ · · ·+ αRm
R.

4: Choose integer M ≥ 1 and form the multiset of integers

T = {Q(m) mod U : m = 1, 2, · · · , M}.

5: Select the N rows’ indices to be unique elements of T .

IV. NUMERICAL RESULTS

To evaluate the performance, we define detection probability

as follows: PD =
|Ŝ∩S|

κ
, where κ is the number of defective

antenna elements that the CS recovery algorithm tries to

recover, while S and Ŝ are the sets of true and estimated

indices of the defective antenna elements, respectively. The

quantity |Ŝ ∩S| determines the number of correctly identified

faulty antenna elements. Moreover, we define SNR =
c
H
T cT

σ2
w

.

To recover c̃ from (6), several approaches have been pro-

posed in the CS literature to convert the problem in (2) into

a convex optimization problem by replacing the l0 norm by

the l1 norm or other greedy algorithms with low complexity.

Here, we focus on a well-known greedy algorithm, namely the

orthogonal matching pursuit (OMP), that iteratively finds the

most correlated column of the measurement matrix A and the

corresponding entry in c until κ entries are recovered.
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Unless stated otherwise, we consider a ULA with inter-

element spacing of λ and the angular space is sampled such

that sin θn ∈ {0, · · · , U−1
U

}, ∀ n ∈ {0, · · · , N − 1}. The

algorithms in Section III enable one to select the N measure-

ments to reduce the worst-case coherence and improve the

reliability of recovering the faulty antenna elements. Moreover,

the number of faulty elements is set to be 4% of the total

number of antenna elements and their excitation coefficients

are set equal to zero. For simplicity, the excitation coefficients

of the fault-free antenna elements are set to 1.

Figure 1 shows the detection probability for a ULA with

U = 941 antenna elements where 38 are defective antenna

elements and 235 measurements are collected. In this figure,

we compare between Algorithm 1 with the generator g = 2
and uniform sampling of the elevation angle, i.e., θn being

equal to 2πn
N

with n ∈ {0, . . . , N−1}. The constructed matrix

using Algorithm 1 achieves a lower worst-case coherence of

µ = 0.0717 than the one constructed using uniform sampling,

for which µ = 0.22. At high SNR, the detection probability

using Algorithm 1 increases from 75% to 97%. To further

assess the performance of Algorithm 1, we also compare it

with a random measurements collection procedure where the

measurements correspond to a partial DFT matrix with the

rows selected uniformely at random, which is known to satisfy

near-optimal RIP guarantees [9]. It is evident from this figure

that the detection probability using Algorithm 1 is close to the

performance achieved by random measurements collection.

Next, Figure 2 shows the detection probability versus the

number of defective antenna elements κ. At detection probabil-

ity of 90%, Algorithm 1 identifies 58 faulty antenna elements

compared with only 14 faulty elements when uniformly-

sampled measurements are used, while it approaches the

performance of random measurements collection.

When the number of measurements, N , is not a divisor

of U − 1, Algorithm 2 can used to construct the measurement

matrix with low µ. We consider the same antenna array size of

U = 941 and N = 230, for which U−1
N

is not integer. For the

R-degree polynomial, we choose R = 2 and set {αi}Ri=1 = 1
as in [9]. The constructed measurement matrix exhibits lower

worst-case coherence of µ = 0.113, compared to uniform

elevation angle sampling with µ = 0.3073 and it achieves

higher detection probability. Also, it gets closer to the near-

optimal performance of random measurements collection as

shown in Figure 3.

Table I shows the worst-case coherence for measurement

matrices constructed by Algorithms 1 and 2. It shows that

Algorithm 1 achieves lower worst-case coherence or even the

Welch bound in some cases. However, it can only be applied

when U−1
N

is an integer. On the other hand, Algorithm 2 has

more parameters to control such as the polynomial order R
and its coefficients {αi}Ri=1, which gives it greater flexibility

for any number of measurements N .

In Figure 4, we quantify the detection probability for

different δ = N
U

and ρ = κ
N

, where δ and ρ are the normalized

indeterminacy and sparsity levels. This figure can be called

the detection probability phase transition figure (PTF) [12]

because it shows the transition from the upper-left corner

representing recovery failure to the lower-right corner for

TABLE I: The worst-case coherence for different ULA sizes.

(U, N ) Algorithm 1 Algorithm 2 Welch bound

(67, 11) 0.344 0.473 0.278

(73, 9) 0.314 0.540 0.314

(941, 235) 0.072 0.102 0.057
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P
D

Algorithm 1
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Fig. 1: Detection probability versus SNR (dB) for ULA of

941 antenna elements and 235 measurements, corresponding

to different measurement collection procedures.

successful recovery in a noise-free scenario. As shown in

Figure 4a, uniform sampling results in poor performance at

high sparsity levels. On the other hand, Figure 4b shows

similar detection probability region for Algorithm 2 as the

random measurements collection procedure in Figure 4c. It

is worth mentioning that the detection probability PTF for

Algorithm 1 is less informative because only few points can

be generated since the number of measurements has to be a

divisor of the number of antennas −1, which restricts ρ and

δ to specific values.

V. CONCLUSION

In this paper, we presented two algorithms to construct

the measurement matrix for a massive MIMO ULA to en-

hance the reliability of antenna array diagnosis based on

CS principles and increase the detection probability of the

faulty antenna elements. We showed that uniformly taking

the measurements results in inferior performance compared

with carefully-designed deterministic measurements. In most

scenarios, the presented algorithms either achieved the Welch

lower-bound or came very close to it. Finally, we presented

extensive numerical simulations to quantify the performance

gains of the presented algorithms.

There is significant room to improve the performance of our

proposed techniques. For instance, the excitation coefficients

vector, c, can be optimized to enhance the detection probabil-

ity. For Algorithm 2, the polynomial order and its coefficients

can be further investigated and optimized.

In our future work, we will also generalize this work to

nonuniform linear arrays, study two-dimensional (2D) antenna

array elements and extend the presented algorithms to select

the best N rows out of a U × U 2D DFT matrix.
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Fig. 2: Detection probability versus the number of defective

antenna elements at SNR=40dB for ULA of 941 antenna

elements and 235 measurements.
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Fig. 3: Detection probability versus SNR (dB) for ULA of 941

antenna elements and 230 measurements.
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