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Abstract—Transmission of the same information signal simul-
taneously over multiple physical layers, such as powerline and
unlicensed wireless communication networks, results in higher
reliability and/or enhances the coverage range compared to
using a single physical layer due to diversity gains. However,
each physical layer suffers from its own distinct impairments
that can severely degrade performance. Unlicensed wireless
communications suffers from narrow-band interference (NBI)
while powerline communications (PLC) is impaired by impulsive
noise (IN). With orthogonal frequency division multiplexing used
for both communication systems, these two impairments, if
not mitigated, can severely degrade performance. This paper
proposes an approach for efficient joint estimation and mitigation
of the NBI and IN signals in hybrid wireless and PLC systems.
The proposed approach exploits the inherent sparse structures
of the NBI and IN signals in the frequency and time domains,
respectively, and is based on the compressive sensing (CS)
principles. The paper also addresses the practical asynchronous
NBI scenario that suffers from carrier frequency offset (CFO)
with respect to the wireless received signal. In this regard, it
investigates the use of time-domain windowing to enhance the
NBI’s sparsity and, hence, improve its subsequent estimation
and mitigation. Further, the paper enhances the estimation and
mitigation of NBI and IN by modeling the burstiness of both
impairments as block-sparse vectors. To this end, it investigates
the performance of two block-sparse CS recovery algorithms with
and without prior knowledge of the bursts’ boundaries. Finally,
numerical experiments quantify the performance gains realized
by exploiting both the burstiness and sparsity of the NBI and IN
signals over exploiting sparsity alone.

I. INTRODUCTION

Diversity reception techniques exploiting time, frequency,
space, or combinations thereof, are widely used to combat
the detrimental channel and interference effects [1]. To meet
the ever-increasing data rate demands and further improve
communication reliability, hybrid diversity receive combin-
ing based on multiple physical layers has gained increasing
interest recently. Unlicensed wireless communications and
powerline communications (PLC) are attractive candidates to
achieve this objective due to their ubiquity [2], [3].

In-home broadband PLC standards such as IEEE P1901.1
and ITU-T G.hn [4] use orthogonal frequency division mul-
tiplexing (OFDM) and operate in the 1.8–250 MHz fre-
quency band. In-home broadband wireless local area networks
(WLAN) standards such as IEEE 802.11g/n also use OFDM
and operate in the unlicensed 2.4 GHz and/or 5 GHz ISM
frequency bands. To improve transmission reliability, a hy-
brid PLC-wireless system can simultaneously transmit OFDM
symbols over both PLC and WLAN channels and jointly
process their received signals to exploit independence of the
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two channels and interference characteristics of the two phys-
ical media. Note that while channel fading and interference
in receive-diversity-based wireless systems follow the same
statistical distributions on all branches, these distributions can
be markedly different for the PLC and wireless branches.

WLAN signals experience narrow-band interference (NBI)
from co-existing wireless communication systems sharing the
same frequency band such as cordless phones and Bluetooth
devices in the 2.4 GHz band [5]. Given its narrowband nature,
NBI distorts the desired signal, but it occupies few OFDM sub-
carriers which makes it sparse in the frequency domain. On the
other hand, in-home PLC networks suffer from impulsive noise
(IN) due to abrupt voltage changes caused by on-off switching
of in-home appliances and power electronics devices such as
silicon-controlled rectifiers, switching regulators, and brush
motors [6]. These bursty impulses are limited in the time-
domain compared to the desired data OFDM symbol duration.
Our goal in this paper is to investigate novel approaches for
joint estimation and mitigation of NBI and IN in hybrid PLC-
wireless systems by exploiting their inherent sparse structures
in the frequency and time domains, respectively.

In practice, the NBI is asynchronous and, hence, exhibits a
frequency offset with respect to the desired signal. Therefore,
the NBI energy leaks to neighboring sub-carriers and occupies
a wider frequency band within the desired signal. This makes
the NBI less sparse and, hence, less amenable for accurate
estimation using sparse recovery algorithms. As a practical
solution to this problem, we investigate the effect of applying
time-domain windowing to the received signal to enhance the
sparsity of NBI in the presence of CFO.

Furthermore, both NBI and IN exhibit burstiness, which
makes their representations block sparse where the non-zero
coefficients occur in clusters (or bursts) [7], [8]. Based on
compressive sensing (CS) theory, several algorithms have been
proposed to reconstruct spare or block-sparse signals from an
under-determined linear model. These include l1 minimization
and greedy algorithms; see [7]–[9] and the references therein.

Considering prior works, mitigation of NBI and IN in
OFDM systems was studied in [2], [3], [5], [10], [11]. But
[2], [3] do not exploit the sparse structures of NBI and IN. In
addition, [2] assumes frequency-flat (non-selective) PLC and
wireless channels, while [3] assumes them to be deterministic.
Both [5] and [10] do exploit sparsity of NBI and IN to mitigate
them using CS techniques. They demonstrate that CS-based
mitigation of NBI or IN outperforms traditional interference
cancellation schemes. However, they do not consider joint
mitigation of NBI and IN. In [11], the author exploits the
block-sparse structure to estimate the IN in PLC networks.
Our work differs from [11] in that we consider hybrid wireless
and PLC networks and we jointly mitigate both NBI and IN.
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Moreover, we utilize two block-sparse recovery CS algorithm
with and without knowledge of the IN and NBI bursts’
boundaries. Finally, we consider multiple-output systems for
each of the PLC and wireless systems unlike [11] which
assumed a single output.

The work in here is an extension of our earlier work
[12] that developed a novel CS-based framework for joint
estimation and mitigation of NBI and IN that exploits their
inherent sparsity in different domains. While our formulation
in [12] accommodates multiple receive antennas and multiple
PLC wires, it neither addresses the practical scenario of
asynchronous NBI nor does it exploit the burstiness of the NBI
and IN signals in the frequency and time domains, respectively.
Our main contributions in this regard are as follows. First,
we enhance the sparsity of the asynchronous NBI signal by
applying time-domain windowing. Second, we exploit the
NBI and IN block-sparse (bursty) structure and investigate
CS recovery algorithms under different assumptions. With
known bursts’ boundaries, we investigate the block orthogonal
matching pursuit (BOMP) algorithm [7]. In the absence of
such knowledge, we investigate another CS recovery algorithm
proposed in [8]. Finally, we quantify the performance gains of
our proposed approaches through extensive numerical experi-
ments.

A. Notation and paper organization

Notation: Lower- and upper-case bold letters denote vectors
and matrices, respectively. I and F denote the identity and
the Fast Fourier transform (FFT) matrices, respectively, while
subscripts denote their sizes. The frequency-domain matri-

ces/vectors are denoted by A
(i)
x /a

(i)
x , where x ∈ {W,P} de-

notes the transmission system with W and P for wireless and
PLC systems, respectively, while the superscript i indicates
the ith antenna or wire. The corresponding time-domain matri-

ces/vectors are denoted by Ā
(i)
x /ā

(i)
x . Further, (·)H , (·)∗, (·)T ,

E [·], and |·| denote the complex-conjugate transpose, complex-
conjugate, transpose, statistical expectation and absolute-value
operations, respectively. Note that |·| with a vector argument
denotes element-wise absolute-value operation. Finally, we use
the terms “burst” and “cluster” interchangeably throughout the
paper to denote a block of contiguous non-zero elements in
the sparse NBI and IN vectors.

Paper Organization: Our system model, assumptions for
hybrid indoor PLC-wireless networks, and the problem for-
mulation are described in Section II. CS-based approaches for
joint mitigation of NBI and IN are presented in Section III.
Finally, numerical experiments and concluding remarks are
provided in Sections IV and V, respectively.

II. SYSTEM MODEL

We consider single-input multiple-output (SIMO) OFDM
simultaneous transmissions over PLC and wireless channels
[3] (see Fig. 1). The wireless system operates in an unlicensed
WLAN band and consists of a single-antenna transmitter and
a receiver equipped with K antennas. The PLC receiver can
process up to β ∈ {1, 2, 3} outputs over its 3 wires. We
assume that each antenna at the wireless receiver suffers

from uncorrelated NBI and the 3 wires of the PLC channel
experience uncorrelated IN.1 Under these assumptions, the
received signals at the kth, k ∈ {1, . . . ,K}, antenna and the
j th, j ∈ {1, . . . ,β}, wire are given by

ȳ
(k)
W =H̄

(k)
W x̄+D

(k)
W ī

(k)
W + n̄

(k)
W , (1)

ȳ
(j)
P =H̄

(j)
P x̄+ ī

(j)
P + n̄

(j)
P , (2)

where the subscripts W and P denote the wireless and
PLC systems, respectively. Here, assuming M OFDM sub-

carriers, H̄
(k)
W and H̄

(j)
P denote M × M circulant chan-

nel matrices between the transmitter’s antenna/wire and the
kth/j th receiver’s antenna/wire of the wireless and PLC
systems, respectively. The first columns of these matrices

are
[

h̄
(k)T
W 01×M−LW

]T

and
[

h̄
(j)T
P 01×M−LP

]T

,

where h̄
(k)
W and h̄

(j)
P are the wireless and PLC channel impulse

response (CIR) vectors with LW and LP complex taps,
respectively. We assume that the wireless CIR taps are zero-
mean complex Gaussian random variables, while the PLC CIR
taps are log-normal distributed [2]. In addition, we assume the
availability of perfect channel state information (CSI) at the
wireless and PLC receivers.

Using x for the M × 1 OFDM data symbols vec-
tor, x̄ in (1), (2) is defined as x̄ = F∗

Mx. In addi-

tion, n̄
(k)
W and n̄

(j)
P denote complex zero-mean circularly-

symmetric additive-white-Gaussian noise (AWGN) vectors at
the kth/j th receiver’s antenna/wire with variances σ2

W and
σ2
P , respectively. The NBI (which is sparse in the fre-

quency domain) and the IN (which is sparse in the time-

domain) vectors at each antenna/PLC wire are denoted by ī
(k)
W

and ī
(j)
P , respectively. Finally, the diagonal matrix D

(k)
W !

diag
[

1, exp
(

i 2πα
(k)

M

)

, · · · , exp
(

i 2πα
(k)(M−1)
M

)]

, where

i =
√
−1 and α(k) is the carrier frequency offset (CFO)

coefficient between the NBI signal and the received signal at
the wireless receiver. The CFO coefficient, denoted by α(k),
is normalized to the subcarrier spacing, assumed uniformly-
distributed in the interval [−0.5, 0.5], and may differ from
one receive antenna to another.

CFO destroys the NBI orthogonality and results in energy
leakage among the neighboring sub-carriers. Hence, the NBI
sparsity level is reduced. To enhance the system’s robustness
against CFO, we use time-domain windowing methods to
suppress the FFT side lobes and restore the sparsity of the NBI
signal. Applying windowing to the wireless received signal and
then taking the FFT of (1) and (2), we get

FMΦȳ(k)
W

︸ ︷︷ ︸

!y
(k)
W

=FMΦH̄(k)
W F∗

M
︸ ︷︷ ︸

!Λ
(k)
W

x+ FMΦD(k)
W ī

(k)
W

︸ ︷︷ ︸

!i
(k)
W

+FMΦn̄(k)
W

︸ ︷︷ ︸

!n
(k)
W

,

(3)

FM ȳ
(j)
P

︸ ︷︷ ︸

!y
(j)
P

=FMH̄
(j)
P F∗

M
︸ ︷︷ ︸

!Λ(j)
P

x+ FM ī
(j)
P + FM n̄

(j)
P

︸ ︷︷ ︸

!n
(j)
P

, (4)

1This is a worst-case assumption since spatial correlation between the
outputs of the PLC and/or wireless system can be exploited to further mitigate
IN and NBI effects; see, e.g., [13] for an example from DSL systems.
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Fig. 1. A block diagram of the system model of a SIMO hybrid wireless/PLC system. For simplicity, the CFO and windowing are not shown in this figure,

i.e., Φ = D
(k)
W

= IM . Here, red fonts are used to indicate sparse vectors.

where Φ is an M × M diagonal matrix whose diagonal
elements are the window coefficients. We use the Hamming
window as an example to quantify the effects of windowing

on NBI sparsity. Moreover, the matrices Λ(k)
W and Λ(j)

P denote

the M ×M effective channel matrices. Here, i
(k)
W denotes the

frequency-domain (FD) NBI vector at the kth antenna.
Concatenating the received wireless and PLC signals in (3)

and (4) for all k ∈ {1, . . . ,K} and j ∈ {1, . . . ,β} into a
single column vector results in
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y
(1)
W
...

y
(K)
W

y
(1)
P
...

y
(β)
P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

!y

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ(1)
W
...

Λ(K)
W

Λ(1)
P
...

Λ(β)
P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

!G

x+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i
(1)
W
...

i
(k)
W

FM ī
(1)
P

...

FM ī
(β)
P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

!i

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n
(1)
W
...

n
(K)
W

n
(1)
P
...

n
(β)
P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

!n

. (5)

We term the M(K+β)×1 vector y as the measurement vector,
while the M(K+β)×M matrix G is termed the measurement

matrix. Finally, i denotes the combined M(K + β) × 1 NBI
and IN vectors, while n is the equivalent M(K + β)× 1 FD
noise vector. Our main goal in this paper is to use (5) for
accurate estimation of the NBI and IN vectors.

III. CS-BASED JOINT NBI AND IN ESTIMATION

To estimate the NBI and IN vectors from y, we first cancel
the unknown term Gx in (5) by projecting y onto the left-
null space of G using the following projection matrix [5], [10]:
Q = IM(K+β)−GG†, where G† denotes the Moore-Penrose

pseudo-inverse of G that is given by
(

GHG
)−1

GH for the
case of a full-column-rank G. Since QG = 0M(K+β)×M , we
obtain the following expression after this projection step:

y′ ! Qy = Qi+Qn ! Qeqnieqn + n′. (6)

Here, ieqn !
[

i
(1)T

W . . . i
(K)T

W ī
(1)T

P . . . ī
(β)T

P

]T

,

n′ ! Qn, and the modified measurement matrix Qeqn is

defined in terms of Q as follows

Qeqn = Q

[

IKM 0KM×βM

0βM×KM Iβ ⊗ FM

]

︸ ︷︷ ︸

!A

, (7)

where ⊗ denotes the Kronecker product operation.

A. NBI and IN estimation in the presence of NBI CFO

In this section, we investigate reconstructing ieqn in the
presence of NBI CFO without assuming block-sparse structure
for the NBI or IN vectors. Based on the linear model in
(6), ieqn can be estimated by solving the following l1-norm
convex optimization problem that can be solved using convex
optimization techniques:

îeqn ! argmin
i∈C(K+β)M

∥i∥1 subject to ∥Qeqni− y′∥22 ≤ ϵ1, (8)

where ϵ1 is set such that ϵ1 ≤ ∥n′∥22 with high probability. To
further improve the ieqn estimate, we introduce an additional
constraint, based on (5), to formulate the following convex
optimization problem

îeqn ! argmin
i∈C(K+β)M

∥i∥1

subject to (9)

∥y′ −Qeqni∥22 ≤ ϵ1 and ∥y −Ai∥22 ≤ ϵ2,

where A is defined in (7) and ϵ2 is a quantity that can upper
bound ∥Gx + n∥22 with high probability. We use îeqn to find
the support of ieqn as follows [11]:

I =

{

j :
∣
∣
∣̂i[j]eqn

∣
∣
∣

2
>

max{ϵ1, ϵ2}
(K + β)M)

}

, (10)

where î[j]eqn is the j th element of the vector îeqn.

B. Joint NBI-IN estimation assuming known bursts boundaries

Both NBI and IN can be modeled as block sparse vectors
that are constructed from few non-zero blocks where each
block consists of dW and dP elements, respectively. Hence,
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i
(k)
W and ī

(j)
P can be decomposed into ζx blocks, where ζx = M

dx

and x ∈ {W, P} assuming that the number of sub-carriers
M is an integer multiple of the block size dx. These blocks

are denoted by i
(k)
W [uW ] and ī

(j)
P [uP ], respectively, where

ux ∈ {1 · · · ζx}, and can be written as follows:

i
(k)
W = [i(k)W,1 · · · i(k)W,dW

︸ ︷︷ ︸
(

i
(k)
W [1]

)T

· · · i(k)W,M−dW+1 · · · i(k)W,M
︸ ︷︷ ︸

(

i
(k)
W [ζW ]

)T

]T , (11)

ī
(j)
P = [̄i(j)P,1 · · · ī(j)P,dp

︸ ︷︷ ︸
(

ī
(j)
P [1]

)T

· · · ī(j)P,M−dP+1 · · · ī(j)P,M
︸ ︷︷ ︸

(

ī
(j)
P [ζP ]

)T

].T (12)

In particular, i
(k)
W and ī

(j)
P are called block-sparse vectors and

ρ(k)W !
∑ζW

j=1 1
{

∥i(k)W [j]∥2
}

and ρ(j)P !
∑ζP

l=1 1
{

∥i(k)W [l]∥2
}

count the number of nonzero blocks, respectively. The indica-
tor function 1{.} is equal to 1 for non-zero argument and 0

otherwise. For dW = dP = 1, ρ(k)W and ρ(j)P counts the number

of non-zero entries in i
(k)
W and ī

(j)
P , respectively.

This reduces the problem of NBI and IN estimation to
estimation of an S-block sparse vector ieqn, where S !
∑K

k=1 ρ
(k)
W +

∑β
j=1 ρ

(j)
P . Exploiting this block sparse structure

of ieqn, we estimate ieqn from (6) by solving the following
optimization problem [7]:

îeqn ! argmin
i∈C(K+β)M

M( K
dW

+ β
dP

)
∑

l=1

∥i[l]∥2

subject to ∥Qeqni− y′∥22 " ϵ. (13)

Alternatively, a number of greedy algorithms in the CS liter-
ature can be used to solve this problem in an efficient manner.
One of these algorithms is block orthogonal matching pursuit

(BOMP) [7], which is an extension of the conventional OMP
algorithm [14]. BOMP iteratively constructs the blocks of ieqn

by finding the block of the measurement matrix Qeqn that is
most correlated with measurements in (6) and then solving a
least-squares problem using the selected blocks2. These blocks
are constructed from the column vectors of Qeqn and each one
is of size M(K + β) × d, where d = min{dW , dP }, and
defined as follows:

Qeqn = (14)

[qeqn,1 · · · qeqn,d
︸ ︷︷ ︸

Qeqn[1]

· · · qeqn,M(K+β)−d+1 · · · qeqn,M(K+β)
︸ ︷︷ ︸

Qeqn[
M(K+β)

d ]

],

where qeqn,u denotes the uth column of Qeqn. Below, we
summarize main steps of the BOMP algorithm.

Inputs: Vector y′, matrix Qeqn, and block sparsity level S.

Initialization: Define index set I0 = {}, and set residual r0 =
y′, estimate îeqn = 0(K+β)M×1, and iteration count l = 1.

The lth iteration:

1) Compute δi = ∥ (Qeqn[i])
H
rl−1∥2 for all i /∈ Il−1.

2Most of sparse-block recovery algorithms, including BOMP, assume that
blocks’ boundaries are known apriori in order to construct the measurement
matrix blocks [7]. However, this assumption may not be satisfied in our
problem, which results in poor performance as will be shown in Section IV.

2) Choose index of the next nonzero block computed
during the lth iteration as cl = argmax

i
δi.

3) Update the indices of nonzero blocks as Il = Il−1 ∪ cl.
4) Solve the following optimization problem to obtain il[j]

for j ∈ Il:

min
{îl[j]}∈Il

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

y′ −
∑

j∈Il

Qeqn[j]îl[j]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
2

. (15)

5) Compute the residual error term in the lth iteration as

rl = y′ −
∑

j∈Il

Qeqn[j]il[j]. (16)

6) If l = S then exit, else set l = l+ 1 and go to Step 1.

Note that even if d is equal to the size of the nonzero blocks
in ieqn and the boundaries of those blocks are not known, then
the BOMP performance can be severely degraded since the
modified measurement matrix Qeqn can not be divided into
sub-matrices that perfectly align with the blocks of ieqn. This
challenge is addressed in the next section.

C. Joint NBI-IN estimation with unknown bursts’ boundaries

In this section, we relax the known bursts’ block boundaries
assumption in Section III-B, i.e., the nonzero blocks of ieqn

may not align with the Qeqn predefined sub-matrices in (14).
Only the number of nonzero entries, denoted by W , and the
number of clusters (bursts), denoted by C, are assumed known.

In [8], a new CS recovery algorithm, called the (W,C)
algorithm, was proposed. This algorithm exploits the block
sparse structure with no prior knowledge on the block bound-
ary location, i.e., only knowledge of W and C is required.
Moreover, this so-called (W,C) algorithm is based on the
compressive sampling matching pursuit (CoSaMP) algorithm
[15] with modified pruning based on dynamic programming
principles. For completeness, we summarize the main steps of
the (W,C) algorithm below.
Inputs: Vector y′, matrix Qeqn, number of nonzero entries W ,
block sparsity level C and the normalized difference between
estimated vector in two consecutive iterations denoted by µ.
Initialization: Set residual r0 = y′, estimate îeqn,0 =
0(K+β)M×1, and iteration count l = 1.
The lth iteration:

1) Update the residual as rl = y′ −Qeqnîeqn,l−1.
2) Compute e = QH

eqnrl .
3) Prune e using |e| to find the best 2W indices set Ω for

2C clusters based on the pruning algorithm in [8].

4) Construct set T = Ω ∪ supp
(

îeqn,l−1

)

, where supp (x)
denotes indices of the nonzero entries of x.

5) Define b = 0(K+β)M×1 and estimate the entries belong-
ing to the set T by applying least square (LS) as follows:
b|T = Qeqn(:, T )†y′, where Qeqn(:, T ) is constructed
from the Qeqn columns indexed by T .

6) Prune b using the absolute values |b| to find the best

W nonzero entries in C clusters and obtain îeqn,l.
7) The stopping criterion depends on the convergence of the

estimated îeqn,l. If
∥̂ieqn,l−îeqn,l−1∥

∥̂ieqn,l∥
≤ µ, where µ captures
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Fig. 2. AEVM versus IN-GN=NBI-GN with width=3 IN and NBI at each
wire and recieve antenna, respectively, i.e. d = 3. NBI and IN are estimated
using the CS recovery algorithm in Section III-A. Dashed and solid curves
represent results without and with windowing, respectively.

the performance-complexity trade-off (the smaller µ is,
the better estimate can be obtained with more iterations),
then exit, else set l = l + 1 and go to Step 1.

The key idea of the new pruning algorithm proposed in [8] is to
apply dynamic programming principles to iteratively construct
the clusters. In each pruning iteration, either new elements are
added to the already constructed clusters, or those clusters are
split into more clusters until all of the W nonzero entries in
the C clusters are computed. We refer the reader to [8] for
more details on the pruning algorithm.

IV. NUMERICAL RESULTS

In this section, we report the results of our numerical
experiments to evaluate the performance of our investigated
CS-based schemes for joint mitigation of NBI and IN in
hybrid PLC-wireless systems. Our simulation environment
corresponds to K = 3,β = 3 and M = 64, unless otherwise
mentioned. For the wireless channel modeling, we assume
a uniform power delay profile with LW = 8 zero-mean
complex Gaussian CIR taps with normalized powers; i.e.,

E
[

|h̄(k)H
W h̄

(k)
W |2

]

= 1, k ∈ {1, 2, 3}. We also assume that
the receive antennas suffer from independent contiguous nar-
rowband interferers that occupy independent subcarrier indices
and whose amplitudes are independent zero-mean complex
Gaussian taps with fixed NBI-to-background Gaussian noise

(NBI-GN) ratio, defined as
E

[

i
(k)H
W i

(k)
W

]

σ2
W

, ∀ k ∈ {1, 2, 3}.

Unless otherwise stated, we assume that each narrowband
interferer has a fixed width of 3 contiguous sub-carriers. This
setup is similar to a Bluetooth signal (with 1 MHz bandwidth)
interfering with an IEEE 802.11 g/n signal (with 20 MHz
bandwidth) [16], and is of high practical interest due to
collocated Bluetooth and WLAN signals in the unlicensed 2.4
GHz frequency band.

We assume that each PLC channel consists of two equal-
power taps, i.e., Lp = 2, having uniformly-distributed phases
and lognormal-distributed magnitudes with standard devia-
tions of 0.6 [2], [17]. We assume unit-power channels; i.e.

E
[

|h̄(j)H
P h̄

(j)
P |2

]

= 1, ∀ j ∈ {1, 2, 3} and we assume that
the IN is spread over 3 contiguous time samples. Finally,
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Fig. 3. BER performance versus SNR for R = 4 bits/sec/Hz and NBI-
GN=IN-GN=40 dB using the CS recovery algorithm in Section III-A.

we assume a fixed IN-to-background Gaussian noise (IN-GN)

ratio, defined as
E

[

ī
(j)H
P ī

(j)
P

]

σ2
P

, j ∈ {1, 2, 3}.

To quantify the performance of all investigated CS recovery
schemes in terms of NBI and IN estimation accuracy, we use
the performance metric of average error vector magnitude

(AEVM), which we define as η !
∑U

u=1 ∥ieqn−îeqn∥
2
2

∑

U
u=1 ∥ieqn∥2

2
with

U denoting the number of channel realizations. Note that a
smaller value of η indicates better estimation performance.

In Fig. 2, we investigate the effect of applying time-
domain windowing in the presence of asynchronous NBI with
uniformly-distributed CFO as defined in Section II. Moreover,
we set NBI-GN=IN-GN, both the NBI and IN clusters are
assumed to have the same width of 3, and we use the CS
recovery algorithm in Section III-A. As shown in Fig. 2, the
weaker the desired signal is, the higher the gain of using
windowing since the NBI effect becomes more detrimental.
Similar conclusions can be drawn from the BER simulations
in Fig. 3, which show up to 3 dB gain at BER = 5 × 10−4

due to windowing.

To investigate the performance of the block-sparse recovery
algorithms, we set the number of PLC and wireless outputs
to K = β = 1 to separate the effect of any gain due to
processing of multiple outputs. In Fig. 4, we use the metric
η to compare between the performances of the OMP, BOMP,
and (W,C) algorithms. As a performance lower bound, we
plot the (ideal) LS performance assuming that the locations
of the nonzero entries are perfectly known. The NBI and IN
clusters are assumed to be of the same width of 5 and can lie
anywhere within the OFDM symbol, i.e., locations of the burst
boundaries are not known. For BOMP, there is a mismatch be-
tween the clusters’ boundaries and the predefined sub-matrices
of Qeqn in (14). As shown in Fig. 4, the performance of BOMP
is severely degraded compared with that of the OMP and
(W,C) algorithms and this degradation becomes more severe as
the IN-GN level increases. In addition, the (W,C) algorithm
outperforms the conventional OMP algorithm over the whole
IN-GN range. At high IN-GN levels, the performance gap
between the (W,C) and conventional OMP diminishes since
the higher powers of the NBI and IN signals (relative to the
thermal noise level) enable accurate sparse recovery for both
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Fig. 4. AEVM versus IN-GN with NBI-GN=40dB for SISO systems. Here,
NBI and IN clusters are assumed to be of width 5.
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Fig. 5. BER performance versus SNR for R = 4 bits/sec/Hz, NBI-GN=40dB
and IN-GN=20dB. Both NBI and IN have the same width of 5.

algorithms without the need for exploiting their bursty nature.
Moreover, both algorithms approach the ideal LS lower bound.

To further illustrate the performance gain achieved by
exploiting the block-sparse structure, Fig. 5 compares the BER
of the aforementioned joint NBI/IN estimation algorithms.
The (W,C) algorithm achieves more than 2dB and 5dB SNR
gain at BER=10−4 over the conventional OMP and BOMP
algorithms, respectively. Moreover, as SNR increases, the
(W,C) algorithm approaches the LS performance with perfect
NBI and IN location knowledge. Finally, Fig. 6 shows the BER
performance, for a more general scenario, when the NBI and
IN clusters have different widths of 3 and 5, respectively. In
this scenario, the performance gain of the (W,C) algorithm
over the BOMP algorithm increases compared to the equal
width scenario in Fig. 5. For example, at BER =10−3, an
SNR gain of 5dB is achieved while only a gain of 2.5dB is
achieved when the NBI and IN clusters have the same width.

V. CONCLUSIONS

In this paper, we proposed joint processing of the hybrid
wireless and PLC systems outputs to jointly suppress NBI
and IN by exploiting their sparsity in the frequency and time
domains, respectively. Moreover, we generalized our model
to accommodate the practical scenario of asynchronous NBI
and investigated the application of time-domain windowing
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Fig. 6. BER performance versus SNR for R = 4 bits/sec/Hz, NBI-GN=40dB
and IN-GN=20dB, with NBI and IN widths of 3 and 5, respectively.

to enhance the NBI sparsity and, hence, CS-based estimation
of the NBI signal. Furthermore, we designed joint IN and
NBI mitigation schemes to exploit their inherent block sparsity
(bursty nature) with and without knowledge of the bursts’
boundaries. Finally, we quantified the performance gains of
our proposed schemes through extensive numerical simula-
tions.
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