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ABSTRACT

State-of-the-art sparse recovery methods often rely on the restricted isometry property for their theoretical
guarantees. However, they cannot explicitly incorporate metrics such as restricted isometry constants within their
recovery procedures due to the computational intractability of calculating such metrics. This paper formulates
an iterative algorithm, termed yet another matching pursuit algorithm (YAMPA), for recovery of sparse signals
from compressive measurements. YAMPA differs from other pursuit algorithms in that: (i) it adapts to the
measurement matrix using a threshold that is explicitly dependent on two computable coherence metrics of the
matrix, and (ii) it does not require knowledge of the signal sparsity. Performance comparisons of YAMPA against
other matching pursuit and approximate message passing algorithms are made for several types of measurement
matrices. These results show that while state-of-the-art approximate message passing algorithms outperform
other algorithms (including YAMPA) in the case of well-conditioned random matrices, they completely break
down in the case of ill-conditioned measurement matrices. On the other hand, YAMPA and comparable pursuit
algorithms not only result in reasonable performance for well-conditioned matrices, but their performance also
degrades gracefully for ill-conditioned matrices. The paper also shows that YAMPA uniformly outperforms
other pursuit algorithms for the case of thresholding parameters chosen in a clairvoyant fashion. Further, when
combined with a simple and fast technique for selecting thresholding parameters in the case of ill-conditioned
matrices, YAMPA outperforms other pursuit algorithms in the regime of low undersampling, although some of
these algorithms can outperform YAMPA in the regime of high undersampling in this setting.

1. INTRODUCTION

Compressive sensing (CS) has gained a lot of interest in the signal processing community in the past decade.
Compressive measurements allow one to sample sparse signals at a much lower rate than that dictated by the
Whittaker–Nyquist–Kotelnikov–Shannon sampling theorem and reconstruct them with high fidelity.1–5 Given
a k-sparse signal u ∈ Cn and an m× n measurement matrix A, compressive measurements can be expressed
as y = Au, where y ∈ Cm is the vector corresponding to m � n measurements. Therefore, the problem of
recovering a sparse signal from compressive measurements is essentially equivalent to solving an underdetermined
system of linear equations with sparsity constraints. Computationally, this is a very challenging task and a
significant portion of research in the CS literature is devoted to addressing this challenge. To this end, a
number of methods have been devised that rely on various linear algebra techniques as well as optimization and
probability theory for finding efficient solutions to CS problems. Our goal in this paper is to formulate another
such efficient method and discuss its relationship with various state-of-the-art sparse recovery methods.

Relation to prior work: Methods for recovery of sparse signals from compressive measurements can be
broadly divided into four categories: optimization-based methods, iterative thresholding algortihms, greedy
algorithms (also referred to as matching pursuit algorithms) and approximate message passing algorithms. A
well-known example of optimization-based methods is basis pursuit (BP), which aims to solve the sparse recovery
problem by formulating it as a linear program.6,7 Although this method is quite robust and has rigorous
guarantees for reconstruction,6–8 it suffers from high computational costs. Iterative hard thresholding (IHT), an
example of iterative thresholding algortihms, thresholds a signal estimate plus a signal proxy using a nonlinear
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thresholding function that returns the k largest (in magnitude) entries of its argument to obtain a new estimate
in each iteration.9,10 IHT is considerably faster than BP and it too has theoretical guarantees for recovery and
reconstruction of sparse signals. One of the most familiar examples of greedy algorithms is orthogonal matching
pursuit (OMP) (and its many variants).11–13 OMP estimates a sparse signal from compressive measurements by
iteratively estimating the support of the signal, one index at a time, and then solving a restricted least-squares
problem. While there exist theoretical guarantees for OMP,14,15 it has been observed that optimization-based
methods such as BP tend to perform better than greedy algorithms such as OMP. Nonetheless, OMP is often
preferred in many situations due to its low computational cost. Finally, approximate message passing (AMP) is
used to describe a fairly recent class of Bayesian sparse recovery methods with remarkable empirical performance,
asymptotic theoretical guarantees, and low computational costs.16–21 In particular, empirical results reported
in recent literature suggest AMP algorithms either match or surpass the performance of other sparse recovery
methods for random measurement matrices.18,19

Despite the availability of such a plethora of efficient methods for sparse signal recovery, many of them
have a major limitation: they cannot explicitly adapt to the underlying measurement matrix. Specifically, while
theoretical analyses of IHT, OMP, etc., rely on the measurement matrix satisfying the restricted isometry property
(RIP),22 explicit calculation of RIP constants is a computationally intractable problem.23 Because of this reason,
none of the aforementioned methods can explicitly incorporate RIP constants within their frameworks. Similarly,
while AMP algorithms are formulated under the assumption of independent and identically distributed (iid)
(sub)Gaussian entries within the measurement matrix, their formulations remain unchanged in the case of non-
iid matrices. This inability of existing efficient algorithms to adapt to the specific measurement matrix has
serious implications for recovery of sparse signals in CS applications with non-standard measurement matrices.

Our contributions: In this paper, we formulate a new algorithm for recovery of sparse signals that is not only
computationally efficient, but is also able to explicitly adapt to the underlying measurement matrix through
the use of two coherence metrics of matrices within its formulation. Our proposed algorithm belongs to the
class of matching pursuit algorithms; it iteratively estimates the signal support—possibly multiple indices at a
time—by thresholding the match-filtered residual vector in each iteration and then updates its signal estimate
by solving a restricted least-squares problem. The fundamental difference between this algorithm, which we
term yet another matching pursuit algorithm (YAMPA), and popular matching pursuit algorithms such as OMP,
stagewise orthogonal matching pursuit (StOMP),24 and compressive sampling matching pursuit (CoSaMP)13 is
that the threshold in YAMPA is an explicit function of two coherence metrics of the underlying measurement
matrix. These two metrics quantify similarities between the columns of a measurement matrix and, under the
assumption of the measurement matrix A having unit `2-norm columns, are formally defined as:

Worst-Case Coherence: µ(A) = max
i,j;i 6=j

∣∣〈ai,aj〉
∣∣, and

Average Coherence: ν(A) =
1

n− 1
max

i

∣∣∣ ∑
j:j 6=i

〈ai,aj〉
∣∣∣, (1)

where ai denotes the i-th column of A. Notice that both these coherence metrics are explicitly computable
in polynomial time and, as such, can be incorporated into the frameworks of sparse recovery algorithms. The
RIP constants, on the other hand, cannot be explicitly computed for arbitrary matrices and, therefore, cannot
be incorporated into sparse recovery frameworks. We refer the reader to [25, Chapter 9] and [26] for further
heuristical interpretation of the metrics of worst-case and average coherences. It is worth noting here that the
worst-case coherence and the RIP of a matrix are related to each other through the Gersgorin disc theorem
[25, Chapter 9]. Unfortunately, RIP constants derived using the worst-case coherence end up being strictly
suboptimal [25, Chapter 9].

In addition to the fact that YAMPA adapts to the measurement matrix through the use of the coherence
metrics, another notable aspect of the proposed framework is that it does not require an explicit knowledge of
the signal sparsity. We conclude by pointing out that while YAMPA lacks theoretical guarantees for its perfor-
mance, we do establish its usefulness through extensive numerical simulations. In particular, we demonstrate
that YAMPA easily outperforms state-of-the-art approximate message passing algorithms for ill-conditioned



measurement matrices. Further, we show that—when combined with a simple and fast technique for selecting
the threshold parameters—YAMPA outperforms related matching pursuit algorithms for ill-conditioned matri-
ces with exponentially decaying singular values whenever the number of measurements is much smaller than the
length of the signal. In the process, we also pinpoint a key property of the measurement matrices that affects the
performance of sparse recovery algorithms, namely, decay of singular values of the measurement matrices. This
suggests that CS applications involving ill-conditioned measurement matrices could potentially benefit from any
redesign of measurement matrices that reduces the decay of their singular values.

Notation: We now describe some notation used in this paper. The notation ‖A‖ and ‖A‖F refers to the
spectral and Frobenius norms of matrices, respectively. By aij , we refer to the element in row i and column j of
A. The notation aj refers to the j-th column of A. By AT and AH , we refer to the transpose and Hermitian
of A, respectively, while A† denotes its Moore–Penrose pseudoinverse. For vectors, ‖v‖p corresponds to the
`p-norm, |v| refers to the absolute values of the entries of v and vj denotes the j-th entry of v. The notation 〈·, ·〉
is used to represent the innerproduct of two vectors. For a set of positive integers Ω, AΩ and vΩ refer to the
submatrix of A and the subvector of v obtained by keeping the columns (of A) and the entries (of v) indexed
by Ω, respectively. We also use 0 to denote a vector of all zeros. Lastly, for a positive integer n, JnK denotes the
set of integers {1, 2, . . . , n}.

Organization: The rest of this paper is organized as follows. Sec. 2 describes YAMPA and provides a heuristi-
cal justification of the threshold used within YAMPA. Sec. 3 details various practical considerations and heuris-
tical approaches for an efficient implementation of YAMPA. The details of the experiments and a discussion of
the associated results are provided in Sec. 4. And lastly, the paper is summarized in Sec. 5.

2. YET ANOTHER MATCHING PURSUIT ALGORITHM

In this section, we provide a description of YAMPA and motivate the threshold used within the algorithm. But
in order to put things into perspective, we first begin with a brief review of existing matching pursuit algorithms.

2.1 REVIEW OF MATCHING PURSUIT ALGORITHMS

All matching pursuit algorithms work along the same lines. In each iteration s, they first form an estimate of
the sparse signal u and then remove the contribution of the estimates from compressive measurements y to form
a residual rs. This process is repeated for a number of iterations until some appropriate conditions (depending
on the specific algorithm) are met, at which point the algorithm is terminated. To find the estimate in each
iteration, first a proxy vector of correlations with the residual is formed as q = |AHrs|. This proxy vector is
then thresholded to get a set of indices as Ts = {i| qi > λs}, with λs depending on the specific pursuit algorithm.
This set of indices corresponds to an estimate of locations of the nonzero entries of the sparse signal in the s-th
iteration. This estimate of the signal support is then either merged with or appended to the support estimate
from previous iterations to obtain a global support set Tgl. Finally a restricted least-squares problem is solved
to obtain an estimate of the entries of u corresponding to Tgl in the s-th iteration.

In terms of the specific details, the threshold in OMP is chosen such that only one new coordinate enters the
support estimate in each iteration. CoSaMP, on the other hand, sets the threshold so that 2k components are
added to the local support in each iteration (where k is the sparsity of the signal and is assumed to be known).
Afterwards, CoSaMP performs a pruning step at the end of each iteration to get a support estimate of size k.

Finally in StOMP, the threshold is more complex and can be expressed as λs = t‖rs‖2√
m

. Here, t is a parameter

that depends on the dimensions of the measurement matrix A and the signal sparsity k.

2.2 YAMPA

YAMPA follows the same steps as other matching pursuit algorithms. But the distinguishing feature of YAMPA
is the threshold it uses to form the support estimate in each iteration: the threshold depends on the coherence
metrics of the measurement matrix, as opposed to it being independent of the matrix (as in OMP and CoSaMP)
or dependent on just the dimensions of the matrix (as in StOMP). In particular, similar to CoSaMP and StOMP,



YAMPA adds multiple indices to the support estimate in each iteration and thus requires much less number of
iterations than that needed in OMP.

In terms of specific details, consider a k -sparse signal u ∈ Cn, an m × n measurement matrix A with unit–
norm columns and compressive measurements y ∈ Cm. YAMPA first initializes the following entities: initial
estimate of the k-sparse signal û0 = 0, the initial global support set Tgl = φ and the iteration number s = 0.
It then runs until one of the stopping criteria is satisfied (details in Sec. 3.1). The s-th iteration of our recovery
procedure (starting with s = 1) starts by making the s-th residual signal rs = y −Aûs−1. Using rs, we form the
(absolute-valued) proxy vector q = |AHrs| and find local support set as Ts = {i| qi > λs}. Finally the new and
old supports are merged as Tgl = Tgl ∪ Ts with the s-th estimate acquired through a restricted least-squares

problem: ûsTgl
= A†Tgl

y, where ûsTgl
represents the indices of ûs indexed by Tgl and the rest of the indices are

set to zero. The whole procedure is outlined again in Algorithm 1.

Algorithm 1: Yet Another Matching Pursuit Algorithm (YAMPA)

Input: Compressive measurements y and measurement matrix A.
Initialization: Initial estimate û0 ← 0, initial global support Tgl ← ∅, and iteration number s← 0.
1: while stopping criteria is satisfied do
2: s← s+ 1
3: Obtain s-th residual signal rs ← y −Aûs−1

4: Form (absolute-valued) proxy vector q← |AHrs|
5: Find local support set Ts ← {i| qi > λs}
6: Merge supports: Tgl ← Tgl ∪Ts

7: Find new estimate ûsTgl
← A†Tgl

y

8: end while

Output: Final estimate ûs.

As noted earlier, the main difference between YAMPA and related algorithms is the threshold λs. In case of
YAMPA we require that

λs = c1µ‖rs‖2 + c2ν
√
k̂‖rs‖2, (2)

where c1 and c2 are empirically determined constants, µ and ν are the worst-case and average coherences of
A, and k̂ = m/ log(n) is a crude upper bound on the signal sparsity.2 We use k̂ because we do not assume
knowledge of the signal sparsity, but it can be replaced by a better upper bound (or exact k), if known. A
detailed discussion of our rationale for the threshold in (2) is provided in the next section. We conclude by
noting that the focus of this paper is on sparse recovery in noiseless settings, but the results can be extended
to include settings with noise. More precisely, the threshold can be modified to account for noisy measurements
(along the lines of Ref. 27) to make the YAMPA work in noisy settings.

2.3 DERIVATION OF THE THRESHOLD FOR YAMPA

In this section we justify the use of the thresholding procedure in (2) for YAMPA by using [27, Lemma 4]. Before
proceeding further, however, it is important to point out that our derivation is somewhat heuristic in nature.
First, although our derivation does not require a particular form of the measurement matrix, it does assume the
locations of the nonzero entries of u to be drawn uniformly at random from {1, . . . , n}. This, however, is a rather
mild probabilistic assumption and simply reflects our lack of knowledge about the signal support. Second, our
derivation is focused only on the first iteration of YAMPA. Specifically, we establish that the threshold given in
(2) ensures T1 ⊂ support(u) with high probability. The idea here is that if YAMPA selects only indices from
the actual signal support in each iteration then contribution of the signal corresponding to those indices can be
subtracted from the compressive measurements and this procedure can be repeated till the entire signal support
is exhausted. In order to formally establish this fact, however, we need to ensure Ts ⊂ support(u), ∀s > 1.
But formally proving this for the case of s > 1 becomes nontrivial and, as such, is not attempted in this paper.
Despite these shortcomings of our derivation, extensive numerical experiments reported in Sec. 4.3 suggest the
usefulness of the derived threshold.



We begin our derivation by considering a deterministic k-sparse vector x̄ ∈ Cn with all nonzero entries in the
first k locations. Next we also consider an n× n permutation matrix Pω = [eω1 eω2 . . . eωn ]T , where ej is
the j -th column of an n× n identity matrix and Ω̄ = (ω1, ω2, . . . , ωn) is a random permutation on JnK. We also
define Ω to be the first k entries of Ω̄ and Ωc to be the set of last n − k elements of Ω̄ that are not present in
Ω. In the following, we assume the compressive measurements y to be given by:

y = Au = APωx̄ = AΩx, (3)

where A is the m×n measurement matrix, x is the vector that contains only the first k nonzero entries of x̄ and
AΩ is the m× k submatrix containing the columns of A indexed by the elements of Ω. Notice that the support
of u in this case is simply given by support(u) = Ω.

We are now ready to derive our threshold for the s = 1 from the proof of [27, Lemma 4]. The proxy vector
for the first iteration is given by q = |AHy| = |AHAΩx|. Notice that qΩ = |AH

ΩAΩx| and qΩc = |AΩc
HAΩx|.

In order to establish T1 ⊂ Ω we need to show that ‖qΩc‖∞ < λ with high probability for some λ > 0. To this

end, notice that ‖qΩc‖∞ = ‖AΩc
HAΩx‖∞ = max

i∈Jn−kK

∣∣∣∑j xj〈aωc
i
,aωj
〉
∣∣∣ where ωc

i denotes the i-th element of Ωc.

Now defining the event Ai′ = {ωc
i = i′}, our goal is to show that Pr

(∣∣∣∑k
j=1 xj〈aωc

i
,aωj
〉
∣∣∣ > λ | Ai′

)
is small.

We resort to the method of bounded differences28 for this purpose. Specifically, we first define the (k− 1)-vector
Ω−i = (ω1, . . . , ωi−1, ωi+1, . . . , ωk) and then construct a Doob Martingale as follows:

M0 = E
[ k∑
j=1

xj〈aωc
i
,aωj
〉|Ai′

]
= E

[ k∑
j=1

xj〈ai′ ,aωj
〉|Ai′

]
, and (4)

Ml = E
[ k∑
j=1

xj〈aωc
i
,aωj 〉|ω−i1→l,Ai′

]
= E

[ k∑
j=1

xj〈ai′ ,aωj 〉|ω−i1→l,Ai′

]
, l = 1, 2, . . . , k, (5)

where ω−i1→l denotes the first l elements of Ω−i. Now similar to [27, Lemma 4], we use the linearity of expectation
to get:

|M0| =
∣∣∣ k∑
j=1

xjE
[
〈ai′ ,aωj

〉|Ai′

]∣∣∣ ≤ k∑
j=1

|xj |
∣∣∣E[〈ai′ ,aωj

〉|Ai′

]∣∣∣ ≤ ν‖x‖1. (6)

The proof of [27, Lemma 4] also provides a bound on the difference of martingales, given as follows:

|Ml(r)−Ml(s)| ≤ 2µcl, (7)

where Ml(r) = E
[∑k

j=1 xj〈ai′ ,aωj
〉|ω−i1→l−1, ωl = r,Ai′

]
and cl = |xl|+

∑
j>l|xj |

n−l−1 . It can be also verified through

calculations that
∑k

l=1 c
2
l ≤ (1 + a−1)2‖x‖22 under the assumption of k ≤ n

1+a . Then using complex Azuma
Inequality [27, Lemma 5], we obtain:

Pr
(∣∣∣ k∑

j=1

xj〈ai′ ,aωj
〉
∣∣∣ > λ

∣∣∣Ai′

)
≤ Pr

(∣∣∣Mk −M0

∣∣∣ > λ− ν‖x‖1
∣∣∣Ai′

)
≤ 4 exp

(
− (λ− ν‖x‖1)2

8(1 + a−1)2µ2‖x‖22

)
. (8)

We need to find a λ such that Pr
(∣∣∣∑k

j=1 xj〈ai′ ,aωj
〉
∣∣∣ > λ

∣∣∣Ai′

)
≤ 4δ for a small enough δ ∈ (0, 1). Defining

α = 8(1 + a−1)2, this simply leads to:

(λ− ν‖x‖1)2

αµ2‖x‖22
≥ log δ−1 ⇔ λ− ν‖x‖1 ≥ µ

√
α log δ−1‖x‖2 ⇔ λ ≥ µ

√
α log δ−1‖x‖2 + ν‖x‖1, (9)

and using ‖x‖1 ≤
√
k‖x‖2 and ‖x‖2 6 ‖y‖2 = ‖r‖2 for s = 1, we can use:

λ = c1µ‖r‖2 + c2
√
kν‖r‖2, (10)



where k is replaced by the upper bound on signal sparsity k̂, while c1 and c2 are to be determined empirically (see
Sec. 3.2 for details). It should be noted here that we have derived our threshold conditioned on one occurrence
of ωc

i , i.e., Ai′ = {ωc
i = i′}. But since ωc

i ’s are identically (not independently) distributed and event Ai′ has
a uniform distribution over JnK, we can show, using basic facts of probability, that our choice of λ ensures

Pr
(
‖qΩc‖∞ > λ

)
is also small. This concludes our derivation of the threshold for YAMPA.

3. PRACTICAL CONSIDERATIONS

We now discuss some practical aspects that have to be considered for implementation of YAMPA. These include
the stopping criteria and the procedure for selecting constants in the threshold. Our discussion is based on
experimental observations and an intuitive understanding of the sparse recovery problem.

3.1 STOPPING CRITERIA FOR YAMPA

Since YAMPA is iterative in nature, we have to specify criteria under which it terminates successfully and
efficiently. Otherwise, the algorithm might keep iterating indefinitely or might start adding indices to the
support estimate that do not belong to the original support. Some of these stopping conditions are listed below:

1. Empty local support set: In any iteration ‘s’ (s > 1), an empty local support, i.e., Ts = {i|qi > λs} = ∅,
indicates the energy left in the residual rs is likely not due to the signal. Therefore, we terminate YAMPA
whenever an empty local support set is encountered in an iteration.

2. Unchanged global support set for two iterations: An unchanged global support set for two consecu-
tive iterations is an indication that YAMPA cannot extract any new information from the residual signal.
Thus, we terminate YAMPA whenever this condition is met. While this stopping condition is rarely met in
practice, we did observe in our experiments that sometimes we get a nonempty local support set in higher
iterations that, when merged with the global support set, does not add any new elements. This condition
is helpful in terminating the algorithm in such situations.

3. Norm of residual below a tolerance level: This is a standard stopping criterion in compressive
sensing literature and is needed to account for finite-precision calculations. Specifically, once the norm of
the residual falls below a certain level, it is better to terminate the algorithm rather than add negligible
components to the signal estimate.

4. Maximum number of iterations reached: This user-specified parameter, as the name implies, termi-
nates YAMPA after a maximum number of allowable iterations is reached.

5. New threshold larger than previous threshold (backtracking): The YAMPA threshold in Sec. 2.3
is derived under the assumption that only indices belonging to the signal support get added to the support
estimate in each iteration. This of course dictates that the residual vector rs should have lower and lower
energy with each successive iteration. While this does happen for a normal run of YAMPA, there are
instances where it ends up picking incorrect support indices. In this case, the residual vector in the next
iteration, rs+1, ends up having a larger norm than the previous residual, rs. Fortunately, this also results
in a larger threshold, i.e., λs+1 > λs, which is an indication of unsuccessful previous iteration. When this
occurs, it is better to backtrack one iteration, i.e., go back to the last correct estimate, and then stop.
Because of this, we always keep track of our current and previous global support sets in each iteration, and
we make use of the previous global support set to get back to the point where no incorrect indices were
added to the support estimate and then terminate the algorithm.

Note that the first three conditions are important for YAMPA to terminate efficiently, the fourth condition is
a user-defined constraint and the fifth one is meant to prevent the addition of wrong indices to the support set.
In the end, all of these criteria signify settings in which we need to terminate the algorithm because keeping the
algorithm running would either be wasteful of resources or would introduce false entries in the estimated signal.



3.2 SELECTION OF CONSTANTS IN YAMPA THRESHOLD

The exact threshold expression derived in Sec. 2.3 is just a lower bound on the threshold needed for YAMPA to
succeed. In practice, the constants c1 and c2 in (2) should be empirically determined. To find these constants,
we devise a method called YAMPA constants finder (YCF). The basic motivation behind YCF is as follows.
We ran YAMPA for a number of different problem setups and exhaustively searched for the best collection of
constants using the ground truth. The resulting set of constants suggest that YAMPA’s performance stays more
or less consistent for a range of values of constants c1 and c2. It therefore suffices to select a reasonable set of
constants within this range for YAMPA to perform well, which is precisely what YCF does.

YAMPA Constants Finder

It follows from the preceding discussion that any set of constants c1 and c2 within a predefined range that does
not result in abnormal behavior is a good candidate. To select the best candidate among good candidates in an
efficient manner, YCF makes use of the residual energy and the cardinality of the global support set. Specifically,
YCF first involves running YAMPA for just two iterations over the predefined (experimentally determined)
range of constants and discarding any combination of constants that invokes any of the stopping criteria (i.e.,
abnormal behavior). The idea is that any combination of constants that makes YAMPA quit in two iterations
results in a threshold that is either too high or too low. We declare the remaining sets of constants as good and,
for each of these sets, we next focus on two parameters: cardinality of global support set and residual energy.

Heuristically, the best set of constants among good constants should result in an estimate after two iterations
that is the sparsest and that has the least residual energy. However, as evident from an example of YCF in
Fig. 2, the set of constants with the sparsest solution can result in the highest residual energy and the set of
constants with the least residual energy can have the least sparse solution. Therefore, we need to look for a
balanced set of constants that results in a sufficiently small cardinality of the global support set and that also
produces low residual energy. To choose such a set of constants, we compare the cardinality of the global support
set with a suitable sparsity level defined as ksuit = (m

n + 1) m
log(n) . Notice that this parameter varies between

m
log(n) and 2m

log(n) , depending on the ratio m
n . Specifically, we sort the sets of constants according to how close the

cardinality of their global support set is to ksuit and then pick the set with the first lowest residual energy. In
particular, this pertains to picking the set of constants that corresponds to the first local minima in the sorted
residual energies. The example in Fig. 2 illustrates the whole procedure in terms of plots.

4. NUMERICAL EXPERIMENTS AND DISCUSSION

In order to compare and characterize the performance of YAMPA, we run simulations for numerous measurement
matrices and test signals. We evaluate the performance for different undersampling factors (ρ = m/n) and spar-
sity factors (δ = k/m). For each combination of undersampling and sparsity factors, we keep the measurement
matrix fixed and run 50 trials with random test signals. The number of columns of measurement matrices used
throughout these experiments is n = 1000, and m and k are picked as m = bρnc and k = δm. The undersampling
factor (ρ) and sparsity factor (δ) are varied between 0 and 1 to get different values of m and k.

The performance metrics that we focus on for comparison purposes are the mean relative error, the mean
success value, and the mean support intersect ratio across different trials for fixed ρ and δ. The relative error

between a test signal u and its recovered version û is defined as ε = ‖u−û‖2
‖u‖2 . The success value for each random

test signal is set to “1” if the relative error is less than 0.05 and to “0” if the relative error is greater than 0.05.
The support intersect ratio between the support of a test signal, Su, and the support of its recovered version, Sû,

is defined as ζ = |Sû∩Su|
|Su| , which is the ratio of ‘the cardinality of intersection of Sû and Su’ to the ‘cardinality of

Su’. In addition to these parameters, the cardinality of the support of the recovered signal, i.e., the number of
nonzero entries, is also reported. Finally, for all experiments, the tolerance level set for residual energy is 10−6.

4.1 Measurement Matrices

In this section, we describe the construction of different measurement matrices used to test the performance of
YAMPA. It should be noted here the columns of all measurement matrices are normalized to have unit `2-norm
after their initial construction.



Normal random matrices: Normal random matrices are matrices with entries drawn from the standard
normal distribution in an independent and identically distributed fashion.

Binary random matrices: Binary random matrices have equiprobable binary entries that belong to either
{0, 1} or {+1,−1} and that are drawn in an iid fashon.

Cauchy random matrices: Each entry in a Cauchy random matrix is obtained as tangent of the angle θ that
is uniformly distributed on [−π, π] in an i.i.d. fashion.

Matrices with correlated columns: For this type of matrices, we randomly take p columns from an m ×
(n− p) matrix and then add perturbations to these p columns in the form of Gaussian white noise with variance
0.25. These perturbed columns are then appended to the original matrix to make a new m × n matrix with
correlated columns. This procedure can be carried out for any of the matrices described in this section.

Random ill-conditioned matrices (with exponentially decaying singular values): These matrices are
formed from the product of three matrices U, S and V as A = USV, where U and V are random orthogonal
matrices and S is a diagonal matrix containing singular values that have an exponential decay. The dimensions of
U, S and V are m×d, d×d and d×n, respectively, where d = min(m,n). Let us assume that the diagonal entries

of S are between smax and smin, then the i-th diagonal entry si is obtained as smax( smin

smax
)

i−1
d−1 for i = 1, . . . , d.

For neighboring singular values, this construction results in the ratio si
si+1

= ( smax

smin
)

1
d−1 . To construct matrices

with same extreme singular values but different decays, i.e., to control the decay rate, we introduce another
parameter called cutoff index (dcut). If dcut < d, then for i = 1, . . . , dcut the diagonal entries are formed as

si = smax( smin

smax
)

i−1
dcut−1 and for i = dcut + 1, . . . , d we assign si = smin.

In order to assess the performance of recovery algorithms, we mainly focus on four parameters of these
matrices: maximum singular value (smax), minimum singular value (smin), condition number ( smax

smin
), and the rate

of decay of singular values. Control of these parameters gives us the ability to experiment with different matrix
properties and exactly pinpoint the factors that affect the performance of different sparse recovery methods.
Finally, note that we allow for m > n for the case of ill-conditioned matrices with correlated columns.

Modified normal random matrices: We define modified normal random matrices to be matrices that are
initially constructed as normal random matrices but then their singular values are redistributed in various ways.
This redistribution is done so as not to affect the energy of the matrix, defined as EA =

∑m
i=1 s

2
i , with s1, . . . , sm

denoting singular values of the matrix A.

4.2 Test Signals

Besides experimenting with various measurement matrices, we also experiment with different types of test signals
such as uniform random signals, binary random signals and normal random signals. In order to make an n-length
k-sparse random signal of a particular type, first k samples are drawn from the respective distribution (e.g.,
normal random signals are obtained from normal distribution) and then k locations are drawn in a uniform
fashion from JnK to place these samples.

4.3 RESULTS

In this section, we describe the results of our experiments using three algorithms: YAMPA, StOMP and
expectation-maximization gaussian-mixture approximate message passing18 (EMGMAMP). We chose EMG-
MAMP (among different variants of AMP) because it is a state-of-the-art algorithm with the best performance
among many variants of AMP.18 Similarly, we picked StOMP because it has the best performance among match-
ing pursuit algorithms.24 To assess the performance of YAMPA, we focus on two setups: one in which we pick
constants for the threshold using YCF and the other in which we pick constants in an oracle fashion (i.e., with
the knowledge of the ground truth). We use the second setup to get an idea of the best-case performance of
YAMPA.



4.3.1 Normal random matrices

We start our discussion with normal random matrices and sparse uniformly distributed test signals. For normal
random matrices (and any type of test signal), the algorithm with best performance is EMGMAMP. The rest of
the algorithms, i.e., StOMP, YAMPA with oracle, and YAMPA with YCF have similar performances as shown
in Fig. 3. The graphs in Fig. 3 also show that YCF picks good constants and gives performance close to thet
of the oracle setup. The results for other test signals (binary random signals and normal random signals) look
quite similar to Fig. 3 and are hence omitted. Plots for Binary random matrices look quite similar to the plots
for normal random matrices and are therefore also omitted.

Since EMGMAMP performs quite well for normal random matrices (better than YAMPA and StOMP), one
can question the need for another sparse recovery method. In practical situations, however we don’t always
have well-conditioned random matrices of this sort as measurement matrices. Instead, we often come across
measurement matrices that are ill-conditioned and, as it will be demonstrated in later sections, EMGMAMP
breaks down for certain ill-conditioned matrices. While YAMPA, on the other hand, suffers a loss in performance,
it does not break down completely (see Sec. 4.3.3 for further details).

4.3.2 Cauchy random matrices

For Cauchy random matrices, EMGMAMP does not perform well in high undersampling conditions but as the
number of samples increases, the performance of EMGMAMP gets better (Fig. 4). This initial degradation for
EMGMAMP is expected, given that it was primarily designed with normal random matrices in mind and for
Cauchy random matrices the assumption of Gaussianity is broken.18 As for YAMPA and StOMP, we can see
from Fig. 4 that the performance of StOMP worsens more rapidly compared to YAMPA, whose performance
degrades gradually. However, the regions where StOMP does recover the test signals, it recovers with lesser errors
than YAMPA. The results for binary random signals and normal random signals using Cauchy measurement
matrices are similar to the results for uniform random signals which are reported in Fig. 4.

4.3.3 Random ill-conditioned matrices

For the case of random ill-conditioned matrices, we have four parameters that can affect the wellness of the
matrix in terms of recovery and we experiment with all of these to find out which parameters, individually or in
combination with others, actually effect the recovery performance. For all the experiments done with random
ill-conditioned matrices, EMGMAMP breaks down completely (as shown in Fig. 5), since the assumption of
normal measurement matrices is completely violated. So in all the experiments with these matrices we only
compare YAMPA with StOMP. It should be noted here that both setups of YAMPA outperform StOMP in the
high undersampling regime (i.e., for low values of ρ), while StOMP outperforms in low undersampling regime
(i.e., for high values of ρ). Further discussion of these experiments with ill-conditioned matrices is provided at
the end of this section. The performance plots for uniform random signals using random ill-conditioned matrices
are shown in Fig. 5.

4.3.4 Matrices with correlated columns

To study the effect of adding correlated columns to a measurement matrix on recovery performance of sparse
recovery algortihms, we run experiments using normal random matrices and ill-conditioned matrices with in-
creasing number of correlated columns. The specific effect of this procedure depends on how the decay of singular
values of a particular measurement matrix changes in response to the addition of correlated columns.

For ill-conditioned matrices, the performance of YAMPA and StOMP actually improves as we introduce more
correlated columns (since EMGMAMP breaks down for ill-conditioned matrices, we do not investigate it further).
This phenomena occurs due to the fact that inclusion of correlated columns introduces more energy in the lower
singular values of the matrix. This essentially has two effects: the condition number is lowered and the decay of
singular values becomes less rapid. Both of these events contribute towards better performance with correlated
columns in the matrix. This is also evident from the plots in Fig. 6.

On the other hand, the opposite is true for normal random matrices with correlated columns. Adding
correlated columns degrades the performance for all algorithms for exactly the opposite reason. Introducing
correlated columns introduces more energy into the higher singular values of the matrix and thus results in poor



performance. In particular, EMGMAMP starts to break down completely as the number of correlated columns
is increased. The final results for this set of experiments are shown in Fig. 7.

4.3.5 Discussion

In this section, we expand on our previous experimental observations involving ill-conditioned measurement
matrices. As noted earlier, we have control over four parameters related to random ill-conditioned matrices. We
want to study the effect of each one of these parameters on the recovery performance. We start by exploring
the effects of the condition number. In this regard, the first parameter that we manipulate is maximum singular
value. Specifically, to increase the condition number ( smax

smin
), we increase the maximum singular value by scaling

it with a factor α greater than 1, i.e., s̄max = αsmax with α > 1. While doing this, we keep other matrix
parameters (the minimum singular value and the rate of decay of singular values) and the total energy, EA, in
the matrix fixed. In order to keep EA constant, we reduce all the other singular values by an appropriate amount.
Doing this increases the condition number by the same factor α and makes the matrix more ill-conditioned. Our
experiments suggest that just increasing the maximum singular value has little effect on the performance of
YAMPA and StOMP as shown in Fig. 8. Similar experiments in which we scale the minimum singular value by
a factor less than 1 to increase the condition number lead us to believe that decreasing the minimum singular
value by itself doesn’t have much effect on the performance either.

To further investigate the effect of condition number, we also run experiments with modified normal random
matrices that have same condition number and energy but different extreme singular values. The extreme singular
values of these matrices differ by a scale of ᾱ > 1. Specifically, let s1,max and s1,min denote the extreme singular
values of the first matrix. Similarly, let s2,max and s2,min denote the extreme singular values of the second matrix.
Then we have the following relation between their singular values: s2,max = ᾱs1,max and s2,min = ᾱs1,min. In
order to keep the energy same in both matrices, we redistribute the energy in the non-extreme singular values of
the second matrix. The results suggest that matrices with same condition number but with different distribution
of singular values tend to have different performance; see Fig. 9 for further details.

Next, we focus on the decay of singular values of the matrices and investigate its affect on performance. For
this purpose we run simulations using matrices with different rates of exponential decay and different minimum
singular values, but with same maximum singular values and energy. The rate of decay in these experiments is
controlled by the cutoff index dcut (Sec. 4.1) and minimum singular value is controlled by a scale factor γ > 0.
These experiments (see Fig. 10) show that when the minimum singular value is small, faster decay leads to worse
recovery performance. This suggests matrices with a fast decaying tail of singular values tend to result in worse
performance.

To further substantiate this observation, we devise a procedure for modified normal random matrices to
redistribute energy from a subset of adjacent singular values to another subset of singular values (all the while
keeping the total energy constant). We run experiments in which we redistribute energy from lower (singular
values in the tail), middle and upper singular values to other regions of singular values. These experiments verify
our observation that sparse recovery performance depends on the distribution of energy in the tail of singular
values. These results are supported by plots in Fig. 11 and Fig. 12.

5. CONCLUSION

In conclusion, we devised a new matching pursuit algorithm, termed yet another matching pursuit algorithm
(YAMPA) that incorporates two coherence metrics of the measurement matrix within its thresholding procedure.
Although state-of-the-art algorithms (e.g., EMGMAMP) work better than YAMPA for random well-conditioned
matrices, they break down for ill-conditioned matrices and suffer performance loss for measurement matrices with
correlated columns. Such matrices tend to arise in many practical settings and that is where YAMPA makes a
contribution. We established the advantages of using YAMPA through extensive simulations and in the process
we also identified key parameters that tend to affect the recovery performance of sparse recovery algorithms.
Our work demonstrated that rapidly decaying singular values are likely to be the true culprit for bad recovery
performance. In terms of future work, more work is required to refine the procedure for selection of constants.
There are other questions that also need to be addressed, including the fact that the threshold is derived for
the first iteration of YAMPA only and as of yet we have no analysis of how the threshold should change from
iteration to iteration.
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Figure 1. YAMPA results in small error over a range of values for constants c1 and c2, rather than for just one particular
value for each. This observation motivates our method for selecting constants, YAMPA Constants Finder, in which we
search for suitable sets of constants over this experimentally determined range of good constants.
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Figure 2. This is an example of how YCF works. The first plot (from left) in the first row is for the cardinalities of global
supports for the good candidates. The second plot is the difference these cardinalities with ksuit and the third plot is the
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Figure 3. Figures for normal random matrices with n = 1000. The results are reported for EMGMAMP, StOMP, YAMPA
with oracle and YAMPA with YCF. Each point in these plots is an average over 50 trials. The dotted white line in the
relative error plots indicates the 50% success value boundary. The plots for other test signals look similar to these plots
and are thus omitted. Moreover, binary random matrices show similar performance.
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Figure 4. Figures for Cauchy matrices with n = 1000. The results are reported for EMGMAMP, StOMP, YAMPA with
oracle and YAMPA with YCF. Each point in these plots is an average over 50 trials. The dotted white line in the relative
error plots indicates the 50% success value boundary. The plots for other test signals look similar to these plots and are
thus omitted.
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Figure 5. Figures for random ill-conditioned matrices with n = 1000, smax = 1 and smax = 0.01. The results are reported
for EMGMAMP, StOMP, YAMPA with oracle and YAMPA with YCF. Each point in these plots is an average over 50
trials. The dotted white line in the relative error plots indicates the 50% success value boundary. The plot for relative
error of EMGMAMP is all white because EMGMAMP fails completely and results in a mean relative error value 1 for all
points. The plots for other test signals look similar to these plots and are thus omitted.
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Figure 6. Figures for random ill-conditioned matrices for recovering uniform random signals with increasing number of
correlated columns. The number of correlated columns are 0, 500 and 800 in the left, middle and right figures. The results
are reported for StOMP and YAMPA with YCF. Each point in these plots is an average over 50 trials. The dotted white
line in the relative error plots indicates the 50% success value boundary.
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Figure 7. Figures for normal random matrices for recovering uniform random signals with increasing number of correlated
columns. The number of correlated columns are 100, 300 and 500 in the first second and third figures. The results are
reported for EMGMAMP, StOMP and YAMPA with YCF. Each point in these plots is an average over 50 trials. The
dotted white line in the relative error plots indicates the 50% success value boundary.
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Figure 8. Figures for random ill-conditioned matrices for recovering uniform random signals with scaled maximum
singular value. The lower figures are plots for matrices with maximum singular values that are 1.35 times the maximum
singular value of the matrices in the upper figures. Each point in these plots is an average over 50 trials. The dotted
white line in the relative error plots indicate the 50% success value boundary.
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Figure 9. Figures for two different matrices for recovering uniform random signals with same condition number but scaled
extreme singular values. The lower figures correspond to extreme singular values scaled by 1.3.
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Figure 10. Plots for observing the effects of min singular value and the decay rate. For all figures n = 1000 and m = 500.
The minimum singular values, from left to right, are 2, 1, 0.5, 0.05. The performance starts to degrade when the minimum
singular value becomes small with a fast enough decay rate.
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Figure 11. Figures for modified decays of singular values to demonstrate that the distribution of energy in the tail of
singular values has considerable effect on the performance. The first figure (top left) is the reference figure. In the 2nd,
3rd and 4th figures (from left to right), the last 20%, 50% and 80% of singular values are set equal to the lowest singular
value and the difference in energy is added to the rest of the singular values, thus keeping the extreme singular values and
total energy in the matrices constant.
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Figure 12. Figures for modified decays of singular values to demonstrate that the distribution of energy in singular values
other than the tail has minor effect on sparse recovery performance. The first figure (top left) is the reference figure. In
the 2nd figure (top middle) energy from the middle singular values (for d singular values, energy from indices 0.4d to 0.8d)
is reduced by a factor of 1

5
and is redistributed to the remaining singular values. This has minor effect on the performance.

In the 3rd figure (top right), the energy from upper singular values (for d singular values, energy from indices 3 to 0.2d)
is reduced by a factor of 1

5
and is redistributed to the lower singular values. This slightly improves the performance for

high values of undersampling factor m
n

.
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