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ABSTRACT

Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-
resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging
using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper
is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to
around 2 µm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few
resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments
for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles
allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue
features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles
to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging.
In a previous paper we examined the practical challenges involved in implementing a highly parallel version
of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for
fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging
physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

1. INTRODUCTION

Endoscopy is a technique of particular interest in the medical imaging community as it allows for in-vivo access
to tissues for minimally invasive surgeries. Coherent fiber-optic bundles are commonly used in endoscopy because
they are compact, flexible, and provide ample light throughput for imaging purposes. While these qualities are
favorable for clinical use, traditional fiber bundle imaging is unable to provide the histopathology-level resolution
that is required for some applications. It is technically challenging to fabricate bundles with small, densely packed
fibers to achieve a high number of resolvable points in a given field of view. As a result, imaging through a fiber
bundle results in loss of fine details when compared to microscopy (Fig. 1). Furthermore, core-to-core coupling,
or crosstalk, increases with closer fiber spacing, particularly at near-infrared wavelengths.1 A new strategy,
therefore, is needed to overcome this resolution limitation of fiber-bundle imaging without increasing the outer
diameter of an endoscopic probe.

To overcome the resolution limitation of fiber-bundle imaging, while modifying the physical platform as little
as possible, we direct our focus towards compressive sensing (CS).2–6 The principles of CS provide a theoretical
framework that enables one to reconstruct a signal that is sparse in some domain from much fewer samples than
dictated by the traditional Nyquist sampling theorem. When integrated into an optical imaging system, where
images are often sparse in wavelet or other domains, CS techniques make it possible to generate images with more
resolvable points than are physically present in an optical sensor, such as a camera. Our goal in this paper is to
demonstrate that assimilating CS into endoscopic imaging can help overcome the resolution limitations incurred
by fiber-optic bundles. Integrating CS for our proposed computational endomicroscopy approach involves the
addition of a coded mask at the distal end of a traditional setup which contains more elements than there are
fibers in the bundle. CS reconstruction algorithms then contend that several diverse low-resolution observations
of a scene through different masks can be used to obtain a single high-resolution image with more resolvable
points than there are fibers in the bundle.
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Figure 1. The same region of an Haemotoxylin & Eosin stained tissue slide imaged (a) with a microscope and (b) through
a fiber bundle.

In terms of relationship to prior work, imaging systems based on CS principles are common in the existing
literature.7–16 A prototypical example of such a system is the Rice Single-Pixel Camera,7 which demonstrates the
extreme case of CS by imaging a scene using a single photodetector, or pixel. To generate a high resolution image,
several measurements of a static scene are recorded, each through a different mask. Afterwards CS algorithms
are used to reconstruct an image with more pixels than there were individual sensors. The single-pixel camera
sparked interest into integrating CS into imaging modalities and currently there are several architectures that
exploit these principles. Various modifications of the single pixel camera have been proposed to reduce the
sampling time by taking several measurements in parallel by using sensor arrays.8–11 Other architectures that
differ on the type and location of the mask have also been proposed.12–16 However, none of the aforementioned
systems investigate imaging through the fiber bundles and the ones that actually deal with fiber bundles do not
exploit the CS principles.

In this paper, we take the first step towards integrating CS principles into endoscopy imaging by proposing
an architecture for computational imaging through fiber bundles and putting forth a preliminary forward model
for this architecture. We also investigate the performance of our proposed architecture and model using both
numerical and a physical experimental setup (see Sec. 5). Our numerical simulations explore fiber bundles of
different radii with regular or irregular arrangement of fibers in the bundle. Additionally, we discuss how to learn
and incorporate imperfections of the imaging system in our forward model to obtain better reconstructions.

The organization of the rest of the paper is as follows: In Sec. 2 we describe the limitations of the conventional
fiber-bundle imaging setup. Then in Sec. 3 we put forth the CS-based modified setup for fiber bundle imaging
and provide a forward model for this setup. In Sec. 4 and 5 we provide results for numerical experiments for
data collected from an experimental platform. And in Sec. 6 we conclude our paper.

2. LIMITATIONS OF TRADITIONAL FIBER-BUNDLE IMAGING AND
PROPOSED ALTERNATIVE

In this section, we will motivate the need for computational imaging through fiber-optic bundles and the chal-
lenges that it entails. In the traditional fiber-bundle imaging setup, the object is typically imaged onto, or in
direct contact with, the distal end of a fiber bundle. This image is transmitted to the proximal end of the bundle,
from where it is relayed onto a sensor array, whose resolution is higher than the resolution of the fiber bundle
(Fig. 2). This means that each fiber in the fiber bundle is mapped onto several sensors in the sensor array such
that individual fibers, and the gaps between them, are visible in the recorded image. Each fiber in the bundle
incurs a high blur on the part of the image that it transmits and the corresponding sensors in the sensor array
all see a washed out highly blurred spot that effectively produces the same value on these sensors. Thus, each



Figure 2. Diagram of a typical setup for traditional fiber bundle-based imaging.

fiber can be considered as one point/pixel in the observation. An example of this is shown in Fig. 1 where one
can clearly see the loss in resolution due to imaging through a fiber bundle. Our objective in this paper is to
improve the achievable resolution of a traditional fiber-bundle imaging setup.

2.1 Proposed architecture

To overcome the resolution limitation inherent to fiber bundles, we draw our attention towards CS-based com-
putational imaging. Similar to the fiber bundle imaging setup, in conventional imaging, an object is typically
imaged onto a low-resolution sensor array. However, CS-based computational imaging enables one to reconstruct
a high resolution object by placing a mask in the imaging path (Fig. 3a). By taking several low resolution obser-
vations of the object, where each observation manipulates the object’s intensity or phase in a certain manner, one
can reconstruct the object through numerical reconstruction algorithms that exploit the fact real-world images
tend to have sparse representations in appropriate bases.2–6 The main difference is that while the resolution
of the observations in (CS-based) computational imaging is limited by the spacing of individual sensors in the
sensor array, the resolution of the observations in a fiber-bundle imaging setup is restricted by the spacing of
individual fibers in the fiber bundle. Nonetheless, the concepts of computational imaging are transferable to the
fiber-bundle imaging setup with appropriate modifications. Specifically, the setup in Fig. 2 can be modified to
include a mask at a conjugate-image plane between the object and the bundle (Fig. 3b), and the mathematical
model for Fig. 3a can be updated to include the addition of a fiber bundle in the imaging path. It is important
to point out here that as the resolution of the fiber bundle is typically lower than the sensor array, the inherent
reconstruction problem that one has to solve for a fiber-bundle imaging setup is computationally harder than
traditional computational imaging.

We now discuss the specific details of our proposed architecture. The two key aspects that we considered
when developing the computational imaging architecture for fiber-bundle-based imaging were: (i) the choice
of imaging architecture, and (ii) the mapping of mask elements to individual fibers in the fiber bundle. For
choosing the architecture in our setup, we must consider the nature of modulation (intensity, phase, etc.) and
the location of the mask that best suits a fiber-bundle-based imaging system. Since endoscopic imaging is
typically done in reflectance mode or with fluorescence, where light coming from tissue is spatially incoherent,
architectures that use phase modulation are not feasible as they are more appropriate for spatially coherent light
situations.17 In terms of the location of the mask in CS systems, it is mostly placed at a conjugate-image plane
to spatially modulate the object’s intensity. Furthermore, we have previously shown that magnitude-only masks
are more effective when used at a conjugate-image plane than at a conjugate-Fourier plane in a CS architecture.18

Therefore, we chose to build on previous work by integrating a mask into the fiber-bundle imaging system at a
conjugate-image plane as depicted in Fig. 3b. We constructed an experimental platform based on Fig. 3b that uses
a digital micromirror device (DMD) to simulate the projection of the object onto the mask (Fig. 3c). Typically,
a DMD is used as a reprogrammable mask to obtain diverse observations in image-plane coded setups. However,
in our experimental setup, we use it to display the mask overlaid with the object as illustrated in Fig. 3c, hence
the term synthetic object. In the system, the DMD is imaged onto the front end of an oversized fiber bundle via
the projection optics (Thorlabs AC254-100-A, then Thorlabs AC254-080-A). The back end of the bundle is then
imaged onto a camera (Point Grey Research, GRAS-14S5M-C ) via relay optics (Thorlabs AC254-30-A, then
Thorlabs AC254-040-A). This concludes the description of our physical experimental platform.
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Figure 3. This figures makes a comparison between the architectures of traditional image-plane computational imaging
and computational imaging through fiber bundles. (a) shows the traditional image-plane architecture for computational
imaging. (b) is the image-plane architecture for imaging through fiber bundles. (c) shows our experimental setup for
imaging through fiber bundles.

The second key aspect that we address in our architecture design is the element mapping from mask elements,
in our case DMD elements, to the fibers in the bundle. In typical computational imaging systems, the modules
(mask, imaging optics, sensor arrary, etc.) are aligned in a way that an integer downsampling is maintained from
the mask elements to the sensors in the sensor array. In particular, each non-overlapping d × d square block
from the mask is mapped onto a single sensor in the sensor array and this mapping holds for all sensors. Here d
takes integer values and is referred to as the downsampling factor. In contrast, in a fiber-bundle based imaging
system, several mask elements map onto a single, typically circular, fiber in the bundle. In addition, the fibers
in a bundle are of different radii as well. These two constraints make it impractical to have a global integer
downsampling factor when imaging through a fiber bundle. We will address this issue of element mapping for
fiber-bundle imaging in the forthcoming sections.

We conclude this section by pointing out that, as can be seen in Fig. 1, there are opaque gaps between the
individual fibers in the fiber bundle due to the epoxy/cladding that holds fibers together. The part of our
object imaged onto these gaps does not appear in the observations and hence cannot be recovered through CS
reconstruction algorithms. This limitation in fiber-bundle imaging lies outside the scope of this paper and will
be explored in future publications.

3. FORWARD MODEL OF COMPUTATIONAL IMAGING THEROUGH A FIBER
BUNDLE

As discussed in the previous section, although many possible CS-based computational imaging architectures exist,
we focus on a system that uses lenses to image an object through an image-plane mask. Specifically, we use a
4f imaging architecture with intensity masks placed at a conjugate-image plane (see Fig. 3a). Note that while
we are focused on spatially incoherent illumination, this image-plane setup results in the same forward model
for spatially coherent illumination strategies. Readers interested in the details of the coherent and incoherent
systems unexplored in this paper can refer to the relevant publications.17,19,20



3.1 Image-plane coding architecture

For a 4f image-plane coding architecture, the modulation agent, i.e., the mask, is situated at a conjugate image
plane between the object and the sensor to modulate the intensity being observed on the sensor end. This
architecture is shown in Fig. 3a. Denoting the imaged object as X, the n × n mask as M and the m × m
observations as Y where m� n, we can write the following equation for observed image:8

Y = Dr{h ∗ [M�X]}Dc (1)

where � denotes the Hadamard product, ∗ represents the 2-D convolution operation, h is a system specific
convolution kernel that models the contributions and mappings from mask elements to sensor elements, and Dr

and Dc represent the m × n and n × m downsampling in the rows and columns, respectively. A noteworthy
point is that the achievable resolution in the reconstructed image is limited by the resolution of the mask. We
can rewrite the observation model (1) in vector form, as presented in the following equation:

y = DThMx (2)

where y is the m2 × 1 vectorized observation, x is the n2 × 1 vectorized object, M is a n2 × n2 diagonal matrix
with mask elements on the diagonal, Th is a block Toeplitz convolution matrix obtained from h, and D denotes
the appropriate downsampling operation (combining downsampling in both directions). All of this manipulation
is done to bring our system into the much recognized system model, y = Ax, used in CS literature. Here
A = DThM denotes the measurement/sensing matrix, which is completely dependent on the system and highly
impacts the quality of reconstructions. In most cases, for computational imaging, one observation is insufficient
to reconstruct x from y using CS-reconstruction methods. Thus several observations are used, each with a
different mask, to obtain a larger system of equations that provides better reconstruction. To this end, denoting
the matrix for the i-th mask as Mi and the i-th observation as yi, the actual system of equations in consideration
can be written as: 

y1

y2

...
yK

 =


DThM1

DThM2

...
DThMK

x (3)

where K is the total number of observations. For this larger system, the measurement matrix is the concatenation
of all of the individual measurement matrices.

3.2 Fiber-optic image-plane architecture

We can now formulate the forward model for our proposed computational endomicroscopy architecture. A
graphical representation of this architecture can be seen in Fig. 3b. The only change from a standard image-
plane architecture (Fig. 3a) is at the sensor-end where the light first passes through the fiber bundle before falling
onto the sensor array. Since each fiber is mapped to multiple sensors on our sensor array, all of these sensors can
be effectively considered as one observation pixel by adding their individual values. This changes our forward
model from the standard image-plane forward model as follows:

Y = Df

(
F� (Dr{h ∗ [M�X]}Dc)

)
(4)

where F represents the transmissivity of the fibers in the bundle and Df

()
represents a function that defines the

mapping of mask elements to the fibers in the bundle. The matrix F can be obtained from the system when the
bundle is illuminated in the absence of object and mask. This image can also be used to construct Df

()
. The

representation in (4) can be represented in a much simpler way for a vector representation of this architecture
(as done previously for standard image-plane architecture):

y = DFFDThMx (5)



where F is a diagonal matrix with the entries of F on its diagonal, and DF is now a binary {0, 1} matrix that
defines the mapping of mask elements to the fibers in the bundle. To construct DF , we can use the image F of
the bundle from our system and perform circle detection to find the centers and radii of the fibers. With the
centers and radii of the fibers in the bundle, we can easily make DF to map mask elements to the fibers. This
can be done using any off-the-shelf circle detection algorithm with appropriately tuned parameters. The number
of rows in DF is equal to the number of fibers in the bundle and the number of nonzero entries in a row of DF

equals the number of mask elements mapped onto that respective fiber. Thus, the measurement matrix A for
our proposed architecture can we written as A = DFFDThMx.

Recall that the fiber bundle has gaps between individual fibers that are opaque. This means that the part
of our imaging object falling on this gap is lost and we can only recover parts of our object that fall on the
fibers. Nonetheless, we can combine multiple observations, as we did in (3), to make a system of equations that
is solvable through CS reconstruction algorithms.

3.3 Optical imperfections

The aforementioned forward model for our proposed fiber bundle-based computational imaging setup represents
the ideal case scenario. In the ideal case, the system specific convolution kernel h is a matrix that denotes
the contributions from just the mask elements that map onto a fiber. However, in case of inevitable optical
imperfections in the system, h is usually a larger matrix and models the mapping imperfections and contributions
from neighboring mask elements to individual fibers.8 This larger kernel associated with the system can be learned
by using observations from known (training) images and then using non-negative least squares to solve for h
from the following linear system:

y = DFFDTMxh (6)

where TMx is now the block Toeplitz convolution matrix obtained from Mx.

4. SIMULATED SETUP

We now move on to the numerical simulations of our proposed architecture and model for fiber bundle-based
computational imaging. We provide results for two scenarios: one where the true convolution kernel is known
and the other where it is unknown. In the case where the true kernel is unknown, we use some predefined kernel
for reconstruction. For all simulations in this section, the masks were of size 256× 256, which is also the size of
the reconstructed images. Each mask was generated as a random matrix with integer elements drawn uniformly
at random in the range [0, 255]. The true kernel in all simulations was an 8 × 8 Gaussian low pass kernel with
standard deviation 1.75.

4.1 Known convolution kernel

For our first set of simulations, we assume the model with optical imperfections. However, we also assume
access to the true kernel h modeling these imperfections. We consider two different objects for imaging: one is a
cropped 1951 USAF resolution target image (Fig. 4d) and the other is the popular cameraman image (Fig. 4h).
Moreover, we consider two arrangements of the fibers in the fiber bundle. The first one has a simple pattern
which we refer to as the regular fiber grid (Fig. 4a). The second arrangement with misaligned fibers is referred
to as the irregular fiber grid (Fig. 5a) and is more representative of an actual fiber bundle.

Fig. 4 shows results for reconstruction of the two objects for the case of the regular fiber grid. The results
of reconstructions with varying number of observations are shown in Fig. 4e–Fig. 4g (target image) and Fig. 4i–
Fig. 4k (cameraman image). Comparing the reconstructions with the no mask observation (Fig. 4b and Fig. 4c)
from the setup (which is what a typical observation from a traditional fiber-bundle imaging setup would look
like), we do not see an immediate improvement. However, as we keep increasing the number of observations used
for reconstruction, we successively resolve more features in the reconstructed image.

Fig. 5 shows reconstruction results for just the cameraman image for the case of the irregular fiber pattern.
Once again, we observe that computational imaging results in better spatial resolution than traditional fiber-
bundle imaging. From the reconstruction in Fig. 5, we can see that increasing the number of observations improves
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Figure 4. This figure shows the results from simulations for imaging of two different objects through a fiber bundle-based
computational imaging system with a regular grid pattern and known convolution kernel. (a) depicts the ideal/regular
fiber pattern used for these simulations. (b) and (c) show examples of observations through the fiber bundle without any
mask for the two objects in consideration. (d) shows the cropped target image used as the first object. (e), (f) and (g)
show reconstructions using 10, 50 and 100 observations, respectively, for the target image. (h) is the cameraman image
used as the other object. (i), (j) and (k) have the reconstructions using 10, 50 and 100 observations, respectively, for the
cameraman image.

the resolution. This is encouraging because the physical fiber bundles rarely have an ideal grid arrangement of
fibers. Finally, Fig. 5 also shows that resolution of the reconstructed image in the case of irregular fiber pattern
also increases with an increase in the number of observations.

4.2 Unknown convolution kernel

Next, we perform numerical experiments under the assumption of an unknown convolution kernel. In this case,
we use a predefined convolution kernel instead of the true kernel. This predefined kernel is a d× d matrix with
all entries equal to 1/d2, where d is the mode of all radii values for the fibers in the bundle. We will only focus
on the irregular grid of fiber pattern and the target image in these simulations. We can see from Fig. 6 that the
reconstructions with the incorrect kernel are inferior to the reconstructions with the true kernel. However, the
encouraging observation is that we are still able to reconstruct some larger features (Group-0 features in Fig. 6c)
even in this case.
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Figure 5. This figure shows the results from simulations for imaging of the cameraman image through a fiber bundle-based
computational imaging system with irregular grid pattern and known convolution kernel. (a) depicts the irregular fiber
pattern used for these simulations. (b) shows an observation through the fiber-bundle without any mask. (c), (d) and (e)
have the reconstructions using 10, 50 and 100 observations, respectively, for the cameraman image.

4.3 Effect of fiber radii and bin factor of masks

Next, we investigate the effect of fiber radii and the size of mask elements on the reconstructions by running
simulations for fibers of radii 5 and 11 units. Here we define the radii in terms of the mask elements; e.g., a
radius of 5 means that an individual fiber has 5 mask elements contained within its radius. Note also that, for
a fiber of particular radius, we can use the coded mask in several ways. Specifically, we could assign different
random values to different mask elements or we could make d × d groups of mask elements and assign random
values to these groups. We term the latter setup as binning and we define d to be the bin factor. In Fig. 7, we
show reconstructions of the target image for fibers of radii 5 (2nd row) and 11 (3rd row), and masks with bin
factors d = [1, 2, 4, 8], where d = 1 means no binning.

The first observation we make from Fig. 7 is that fibers of smaller radii result in better reconstructions.
This seems logical as the bundle with smaller fibers has more fibers in a given area, which gives us more
points/pixels in our final observations. The second observation is the relation between mask binning, fiber
radius, and reconstruction quality. For the fibers of radius 5, the best reconstructions are with masks that have
a bin factor of d = 2 (Fig. 7e). On the other hand, masks with bin factor of d = 4 (Fig. 7j) produce the best
reconstruction for fibers with radius 11. This suggests that as the fiber radius increases, one will benefit from
using masks with larger bin factors. But one must also be cautious about choosing the appropriate bin factors
as masks with too large bin factors result in poor reconstructions (Fig. 7g).
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Figure 6. This figure shows the results from simulations for imaging of the USAF target image through a fiber bundle-
based computational imaging system with irregular grid pattern and unknown convolution kernel. (a) shows the no mask
observation through the fiber bundle. (b) and (c) show the reconstructions using 50 and 100 observations, respectively.

5. EXPERIMENTAL SETUP

Next we look at the reconstructions from our experimental platform using a synthetic object. This is done initially
as a proof of concept experiment to show that methods discussed in the previous section can be translated to
a hardware implementation. For simplicity, we are imaging synthetic objects, but the experimental platform
can be modified to image real objects by projecting a scene onto the DMD. The synthetic object used in these
experiments was a custom designed image of size 200x200 with line pairs of varying width. Further, the masks
used in these experiments were of the same size as well, i.e., 200× 200. At the back end, we gathered the values
from each individual fiber to obtain one observation point per fiber in post-processing. Finally, we reconstructed
images of size 200× 200 with varying numbers of observations. The results are shown in Fig. 8. We can see from
the figures that we are able to resolve some features in the reconstructed images that are not present in no mask
observation. Further experiments that compare different fiber radii and mask types are left as the subject of
future investigation.

6. CONCLUSION

This paper introduced a new setup that integrates compressive sensing (CS) principles into endoscopy imaging.
This was achieved by the introduction of a mask at the conjugate image plane in the imaging path of a fiber
bundle-based imaging system. The forward model for this modified imaging setup was formulated and tested
through both simulations and experimental data. The results suggested that CS-based endoscopy imaging is
likely to have superior resolution compared to traditional endoscopy imaging. Future work in this regard will
focus on imaging with real-world data and tissue samples, accounting for the opaque regions in the imaging path,
and estimating the true convolution kernel using training images.
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Figure 7. This figure makes a comparison of the trade-off between the reconstruction quality, fiber radii and the bin
factor of the masks. (a) and (b), respectively, show the fiber bundles with radii 5 and 11 used for these simulations. (c),
(d), (e) and (f) show reconstructions for a fiber bundle with radius 5 (all with 100 observations) for masks with bin factors
d = [1, 2, 4, 8], respectively. Similarly, (g), (h), (i) and (j) show same reconstructions for a fiber bundle with the radius
11. All simulations here are done without the knowledge of the true kernel.

(a) (b) (d) (e)

Figure 8. This figure shows results for the simulated data from the experimental setup. (a) shows the original image
for reference. (b) shows the no mask image seen by the camera. (c) and (d) show reconstructions with 50 and 100
observations, respectively.
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