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ABSTRACT

Estimation of the level set of a function (i.e., regions where the
function exceeds some value) is an important problem with appli-
cations in digital elevation maps, medical imaging, and astronomy.
In many applications, however, the function of interest is acquired
through indirect measurements, such as tomographic projections,
coded-aperture measurements, or pseudo-random projections asso-
ciated with compressed sensing. This paper describes a new method-
ology and associated theoretical analysis for rapid and accurate es-
timation of the level set from such projection measurements. The
proposed method estimates the level set from projection measure-
ments without an intermediate function reconstruction step, thereby
leading to significantly faster computation. In addition, the coher-
ence of the projection operator and McDiarmid’s inequality are used
to characterize the estimator’s performance.

Index Terms— Compressed sensing, coherence, level sets, per-
formance bounds, segmentation, thresholding

1. INTRODUCTION

Level set estimation is the process of using observations of a function
f defined on a Hilbert space X to estimate the region(s) in X where
f exceeds some critical value v; ie. S* = {z € X : f(z) >~}
Accurate and efficient level set estimation plays a crucial role in a
variety of scientific and engineering tasks, including the localization
of “hot spots” signifying tumors in medical imaging, significant pho-
ton sources in astronomy, or strong reflectors in remote sensing. Pre-
vious work by one of the authors [1] explored the estimation of level
sets of a function f from noisy observations of the form y = f + n,
where n denotes a vector of independent, zero-mean noise realiza-
tions. However, there are many contexts where direct observations
of this form are not available; instead, we make observations of the
form y = Af + n, where A is a linear projection operator that
may not be invertible. For instance, y might correspond to tomo-
graphic projections in tomography, multiple blurred, low-resolution,
dithered snapshots in astronomy, or pseudo-random projections in
compressed sensing systems [2].

Our goal in this setting is to perform level set estimation with-
out an intermediate step involving time-consuming reconstruction of
f. There are two reasons for this: (1) Level set estimation without
reconstruction of f would allow sequential measurement schemes
to be performed on the fly. For instance, in tomography we would
like to estimate S™ quickly from the observations so that additional
data focused on S™ can be collected immediately, resulting in an
overall low radiation dose. (2) “Plug-in” approaches that estimate f
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and threshold the estimate fAto extract S™ are notoriously difficult
to characterize; the performance hinges upon the statistics of f— f,
which for most reconstruction methods are unknown (with the pos-
sible exception of the first moment). More generally, reconstruction
methods aim to minimize the total error, integrated or averaged spa-
tially over the entire function. This does little to control the error at
specific locations of interest, such as in the vicinity of the level set.

1.1. Our contribution and relation with previous work

In this paper, we demonstrate that, subject to certain conditions on
the (linear) projection operator A and the ¢, norm of f, the level set
S™* can be estimated quickly and accurately without first reconstruct-
ing f. Our method consists of constructing a set of proxy observa-
tions z = f+n' from the actual observations y and applying a varia-
tion on the tree-based set estimation techniques established in [1] on
z. The idea of constructing proxy observations z to deduce certain
properties of the underlying f has been successfully employed in re-
cent compressed sensing and statistics literature to solve the problem
of support detection of a discrete f having no more than m non-zero
entries; see, e.g., [3, 4, 5]. In fact, our level set estimation method-
ology is inspired by the empirical and theoretical success of using
thresholded proxy observations for support detection of (discrete)
sparse functions. However, despite the fact that both our method and
the thresholded support detection of [3, 4, 5] make use of a function
proxy, there are some key differences between the two lines of work
that stem partly from different underlying assumptions. Specifically,
it is established in [3] that the support of an m-sparse f can be re-
liably detected from appropriately thresholded proxy observations
with an overwhelming probability as long as A satisfies a certain
coherence property. On the other hand, the level set estimation anal-
ysis carried out in this paper does not impose any sparsity constraints
on the underlying function f. Indeed, it is not difficult to convince
oneself that directly thresholding the proxy observations for level set
estimation in the case of a non-sparse f would lead to numerous
false positives and false negatives (see, e.g., Figs. 1(c) and 1(e)). In
contrast, our methodology relies on a novel two-step approach that
enables us to work with proxy observations without requiring f to
be strictly sparse. In our experiments, the proposed method performs
an order of magnitude better than sparse support estimation methods
in [3, 4, 5] with an appropriate threshold.

There are two key challenges we address in our analysis to spec-
ify the proposed estimator’s performance. First, we must character-
ize n’, which can be considered a combination of noise and inter-
ference caused by calculations of the proxy observations; the inter-
ference plays a crucial role in our estimation error and scales with
the worst-case coherence of the projection operator A and the ¢;
norm of f. Second, the original analysis in [1] considered indepen-
dent noise realizations, allowing for the application of Hoeftding’s
inequality to analyze estimator’s performance. However, n’ in our
proxy observations contains statistical dependencies which we con-



sider in our revised analysis. Our theoretical analysis is validated via
a medical imaging simulation.

2. FAST LEVEL SET ESTIMATION FROM PROJECTION
MEASUREMENTS

Let us consider a function f € RY and let f; denote the ‘" element

of f. We are interested in estimating a y level set S* = {i : fi >~}
of f from projection measurements of the formy = Af +n € RX
for K < N, where A € R**¥ is a projection operator that is
assumed to be known, and n is bounded, independent and zero-mean
noise !. The main goal of this paper is to estimate S* from y without
reconstructing f.

For A = I, [1] provides a minimax optimal level set estimation
strategy that estimates S* from noisy observations j = f +n € RY
without estimating f. Though a direct application of the estima-
tion strategy in [1] to our problem is nontrivial because A # I, we
will construct proxy observations z = f + n’ from y and draw on
some of the key insights from [1] to address our problem. Before we
present our estimation method, we briefly discuss the main ideas of
[1] below.

2.1. Previous work on level set estimation

The basic idea in [1] was to design an estimator of the form S =
argminggg R(S)+®(S), where S is a class of candidate estimates,
R is an empirical measure of the estimator risk based on /N noisy
observations of the function f, and @ is a regularization term which
penalizes improbable level sets. They described choices for R, ®,

and S which made S rapidly computable and minimax optimal for a
large class of level set problems. In particular, [1] proposed a novel
error metric between S™ and a candidate estimate S that was ideally
suited to the problem at hand. That error metric in our case can be

written as 1
N 2
iEA(S*,S)

where A(S* S) = {i € (S*NS)U(S*NS)} denotes the symmetric
difference, and S is the complement of S. While the expression
in (1) is not directly computable (since S is unknown), one can
nevertheless minimize it by defining the risk

1
R(S)= = (v— fi) [Mtiesy — Lagsy) 2
£;(S)

Iy — fil ey

N i

where I 5y = 1if event E is true and O otherwise. The loss function
£;(S) measures the distance between the function at location i, f;,
and the threshold, ~, and weights this distance by 41 according to
whether ¢ € S or not. Note that R(S) — R(S™) is equivalent to the
error metric defined in (1), and that it is possible to estimate R(S)
from ¥ in a straightforward manner.

Using Hoeffding’s inequality, [1] derived a regularization term
® and developed a dyadic tree-based framework which can be used
to obtain S. Trees were utilized for a couple of reasons. First, they
both restricted and structured the space of potential estimators in a
way that allowed the global optimum to be both rapidly computable
and very close to the best possible (not necessarily tree-based) esti-
mator. Second, they allowed the estimator selection criterion to be
spatially adaptive, which appeared to be critical for the formation of
provably optimal estimators.

IThis assumption is reasonable, since, in practice, the noise is always
bounded due to hardware limitations in physical sensors.

2.2. Our method

In order to extract the ~y- level set of f from y, we propose a novel
two-step procedure. First, we construct a proxy of f as follows:

z:ATy:er(ATAfI)erATn. 3)

n!

This allows us to arrive at the canonical signal plus noise observation
model. Next, we perform level set estimation on the proxy observa-
tions z, rather than on y, by relying on the insights of [1]. Note that
for any unitary A, z in (3) reduces to y. However, for non-unitary
A, the proxy defined in (3) creates a signal-based interference term
(AT A —1I) f and a zero-mean correlated noise term A” n. This in-
terference term n’ makes a direct extension of the level set approach
discussed in [1] to our problem nontrivial. In our work, we theoret-
ically analyze the impact of n’ and use the theoretical results to de-
velop a dyadic, tree-based level set estimation approach that adapts
to the interference term. _

Given z, our goal is to find a level set estimate S =
arg ming. g R(S) — R(S™) where S is a family of candidate level
set estimates and R(-) is defined in (2). (Note that S = S™* if
S* € §.) Since f is unknown, we consider an empirical risk of
the form

N

= 1

R(S) = > (v - =) [Luesy — Ligsy] “)
=1

and show that finding an estimate § = arg ming,g R(S) +
®(S), where ®(.5) is an interference-dependent penalty term, yields
R(S) — R(g)‘ 5 0. The penalty term plays a major role in our
estimation strategy and is crucial in finding estimates that hone in
on the boundary of the level set S*. We thus focus on designing a
spatially adaptive penalty ®(.S) that promotes well-localized level
sets with potentially non-smooth boundaries. Following the analysis
in [1] we let S be a family of level set estimates defined on recur-
sive dyadic partitions of the domain of f; e.g., an image could be
partitioned into patches of varying side-lengths using a quad-tree, so
that each leaf of the tree corresponded to one patch. Each leaf in
the partition would be estimated to be in or out of the level set of
interest. Let 7(.5) be the partition induced by an estimate S € S.
Then, the risk of S in each of its leaf L € 7(.S) is given by R(L) =
LN (v = £3) Tgecy=1y — Leczy=oy] Liiery where £(L) = 1
if ¢ € L and 0 otherwise. We design a spatially adaptive penalty term

by analyzing R(L)— R(L) at each leaf separately. Note that R(S) =
> Len(s) B(L). To facilitate our analysis, let us define R(L) =

% 2ivy (v = E[z]) [Lrecny=13 — Lecr)=o0y] Tgiery- Then

R(L) — R(L) = R(L) — R(L) + R(L) — R(L)

(B [zi] = fi) [Liecry=1y — Lecry=03] Lsery

Il
2|~

=1
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N
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Note that while 7} is a measure of the biases of {z;}, T is a
measure of the concentration of {z;} around their means. Let us



consider the statistics of z to further understand 77 and 7% re-
spectively. Assuming without loss of generality that the columns
of A have unit /2 norms, one can easily see from (3) that z; =
fi + Z;.V:l,#i i (AD AWy 1 (AD 1) where A® denotes the
i*" column of A. Since A is given, and n is zero mean, the term
Elz] - fi = Z;V:L#i Fi(AD ADY in Ty is the signal-based in-
terference term at the ' location due to the signal energies at other
locations. We upper bound 77 by the ¢; norm of f and the worst-
case coherence of A, and bound 7% using McDiarmid’s inequality
[6] and sum the risk in each leaf of the estimate S to arrive at our
main result stated below:

Theorem 1. Suppose that the entries of noise n are bounded be-

tween [c¢, cy]. Then, for & € [0,1/2], with probability at least 1 — 4,
the following holds for all S € S:

RS) < Fs)+ (T ) wA s ©

3 [log(2/9) + [L]1og 2] ¢*pr (u(A) [NpL = 1] +1)

2N
Len(S)

where ¢ = |cy — cq|, u(A) is the worst-case coherence of A given by
p(A) = max; jeq1,. N}z ‘(A(i)7A(j)>’: P = 5 Xty Lpsery
and [ L] is the number of bits in a prefix code for L.

A sketch of the proof of this theorem is provided in the appendix.
Note that the bound in (6) depends on (a) the signal-based interfer-
ence term in (3) through || f||,, (b) the noise through |c. — cel, (c)
the choice of A through p(A), (d) the size and depth of each leaf
through pz, and [L], respectively, and (e) the parameter §. If L is in
level j of a dyadic, tree-based estimate S, then it has been shown in
[1] that [L] < j and pr, < 277 for j € 0,...,log, N. As a result,
searching for an estimate S € S that minimizes the upper bound of
R(S) in (6) will favor estimates with few, deep leaves that hone in
on the boundary of the level set. Though the theoretical analysis of
our method is significantly different from the analysis in [1] because
of the interference term, it only changes the way the penalty is de-
fined in our setup. As a result, we can adapt the computational tech-
niques discussed in [1] to compute our estimator in an efficient way.
Our method is computationally efficient since the proxy computa-
tion needs at most O(K IN) operations (fewer if A contains certain
structure; e.g., A is a Toeplitz matrix) and the level set estimation
method needs O(N log N) operations.

Recent work on sparse support estimation in [3] suggests that
the second term (proportional to p(A)]|| f||,) in the right hand side
of (6) may be tightened significantly if we make some additional as-
sumptions. In particular, if f is assumed to be approximately sparse,
so that the £; norm of f restricted to the set S* is sufficiently small,
then the bound on 77 may be tightened by using the average coher-
ence v(A) = 7=||(ATA = I)1||__ of the projection operator A
[3]. A comprehensive analysis that utilizes both ;i(A) and v(A) to
tighten the bounds in Theorem 1 will be explored in a sequel to this
work.

3. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the proposed approach by per-
forming level set estimation of the medical image f € R128x128
shown in Fig. 1(a) from its projection measurements y = Af +n €
R for K < N, N =128 x 128, where the entries of A are drawn

from N (0,1/K) and n ~ N (0, I). Note that we consider a Gaus-
sian noise model here, which is unbounded. However, it is bounded
with high probability and our theory can also be extended to this
case. This input image is a cropped portion of a magnetic resonance
angiography image of the brain ( http://en.wikipedia.org/wiki/File:
Mra-mip.jpg ) where one is interested in identifying the blood ves-
sels that react to an injected contrast agent. The goal of this experi-
ment is to find the v-level set of the image in Fig. 1(a) for v = 420
from y without reconstructing f. Note that the input image is not
even approximately sparse, but the locations corresponding to the
level set occupy only a small portion of the entire image scene as
shown in Fig. 1(b). Specifically, the cardinality of the true level set
is |S*| = 1452, which is approximately 9% of N. Moreover, the
mean intensity at the locations in the level set is about 646.8 and
that outside the level set is 185.4.

We compare the estimates obtained using our method with the
ones obtained by simply thresholding the proxy observations at level
~ for different values of K < N. Estimates are computed by mini-
mizing (6) with a scaling factor in front of the sum over leafs. This
scaling factor is chosen to minimize the excess risk in (1). Figs. 1(c)
and 1(e) show the results obtained by the thresholding method for
K ~ N/2 and K ~ N/4 respectively. These pictures illus-
trate the effect of interference on the proxy observations z. Since
zi = fi+ni, where nf = 3. f;{AD, AD)) 4 (A ),
a thresholding operation on z will result in several false positives
and misses at locations where f; is comparable to nj, as shown
in Figs. 1(c) and 1(e). The interference increases as K decreases
since the worst-case coherence of A increases with a decrease in
K. Figs. 1(d) and 1(f) show the results obtained by our method for
K ~ N/2 and K ~ N/4 respectively, which offers an order of
magnitude improvement in the excess risk over thresholding meth-
ods associated with sparse support estimation. Fig. 1(g) shows how
the excess risk in both these approaches vary as a function of K.
These plots are obtained by averaging the results obtained over 500
different noise and projection operator realizations. Estimates ob-
tained using our method outperform the ones obtained by threshold-
ing the proxy observations since our method relies on the spatial
piecewise homogeneity of the underlying function f to eliminate
false positives and misses. This is also the reason why our method
misses some of the isolated pixels that correspond to the true level
set as shown in Figs. 1(d) and 1(f).

4. CONCLUSION

This work proposes a theoretically tractable and computationally
efficient tree-based approach to extract level sets of a function
from projection measurements without reconstructing the underly-
ing function. Simulation experiments demonstrate the applicability
of our method to medical imaging applications. One of the key ad-
vantages of our approach is that we can parallelize the level set esti-
mation problem when the domain of the function of interest is very
large. In such cases, we can partition the data into different patches,
run our estimation algorithm on each patch separately and merge the
results to identify the regions that correspond to the level set. In
applications such as medical imaging, the time saved by collecting
fewer projective measurements and parallelization can be significant
and crucial.

5. APPENDIX

Let us begin by bounding 77 and 75 in (5) separately. Let
P = D ier % From the statistics of z, we can bound T} =
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Fig. 1. Simulation results. (a) True function f € R'2%*!28 quch that f; € [87,765]. We measure K Gaussian random projections of this

image. (b) Level set S* = {i : fi > 420} such that |.S™|

~ 0.088N where N = 128 x 128. (c) Level set obtained by thresholding the

proxy observations z when K ~ N/2; excess risk = 59.35. (d) Level set obtained by the proposed approach when K ~ N/2; excess risk
= 3.746. (e) Level set obtained by thresholding the proxy observations z when K =~ N/4; excess risk = 73.40. (d) Level set obtained by
the proposed approach when K =~ N/4; excess risk = 7.407. (g) Performance comparison of our method and the thresholding approach for

different K < N = 16384.

N 2ty (B[] = £) [Tgecey=1) — Lgecey=0y] Lzery as follows:
1 i
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where the third inequality is due to the fact that
|Tgecry=1y — Igecry=03]| = 1 and ’(A(i)w‘l(j))) < u(A)
for all j # 4.

We can bound 7%, which is a function of z, using McDiarmid’s
inequality by observing that z; = Zj{: 1 @5,:y; and thus T5 can
be written as a function of the independent random variables {y; }.
Specifically,

Tr =+ Z i~ E[z) [Lier)=1y — Lewy=o3]
’LGL
K
:Zijj -E Zijj(L)
j=1
9(y1,YK) Elg(y1:--vK)]

where w; (L) = 3,cp, [Trery=1y = Tgecry=0y] %"~ Since the

entries of noise n are bounded, it can be shown that the function

g(y1,...,yk) satisfies the bounded differences property [6], which

lets us use McDiarmid’s inequality to arrive at the following result:
—2¢?

®
St lwp(L)Plew — 052>

We can easily bound Zle |w,(L)|* in (8) similar to the bounding
techniques used in bounding 7% and show that

Z |wp (L

By substituting (9) in (8) and by equating the right hand side of (8) to
0z, € (0,1/2) and solving for €, we can show that, with probability
atleast 1 — 6y,

b < \/1og(1/6L>|cu — i (u
2N

P (T 25)§exp<

P < P (u(a) (NP — 1) + 1), ©

(4) [NpL 1]+ 1)

10)

Applying the bounds in (7) and (10) to (5) we can see that with
probability at least 1 — d,, the following holds:

R(L) — R(L) < <u(A)ﬁL|f|1 _ )

Zm)

i€L

. \/ tog(1/61)lew — ed*Pr (1(A) [NFL 1] + 1)
2N '

Thus for a given S € Sy, the risk difference R(S) — R(S) is upper
bounded by summing the bound corresponding to each leaf sepa-

rately. Since 32, gyPr = land -, s 2 icr 1fil = Il
we have

R(S) - () < ) (V) 111,

p>

Lew(S)

log(1/6L)|cu —0g| L (

n(A) [Npr — 1] +1)
2N '

with high probability. If we let 6, = 62~ (1141 where [L] is the
number of bits required to uniquely encode the position of leaf L,
then we can follow the proof of Lemma 2 in [1] to show that the
bound above holds for every S € S, which leads to the result of
Theorem 1.
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