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ABSTRACT

Technological constraints severely limit the rate at which analog-to-
digital converters can reliably sample signals. Recently, Tropp et
al. proposed an architecture, termed the random demodulator (RD),
that attempts to overcome this obstacle for sparse bandlimited sig-
nals. One integral component of the RD architecture is a white noise-
like, bipolar modulating waveform that changes polarity at a rate
equal to the signal bandwidth. Since there is a hardware limitation
to how fast analog waveforms can change polarity without undergo-
ing shape distortion, this leads to the RD also having a constraint on
the maximum allowable bandwidth. In this paper, an extension of
the RD, termed the constrained random demodulator (CRD), is pro-
posed that bypasses this bottleneck by replacing the original modu-
lating waveform with a run-length limited (RLL) modulating wave-
form that changes polarity at a slower rate than the signal bandwidth.
One of the main contributions of the paper is establishing that the
CRD, despite employing a modulating waveform with correlations,
enjoys some theoretical guarantees for certain RLL waveforms. In
addition, for a given sampling rate and rate of change in the modulat-
ing waveform polarity, numerical simulations confirm that the CRD,
using an appropriate RLL waveform, can sample a signal with an
even wider bandwidth without a significant loss in performance.

1. INTRODUCTION

One of the defining characteristics of analog-to-digital converters
(ADCs) is the tradeoff between sampling rate and resolution. This
tradeoff exists, in part, because the capacitors used to build ADC
circuits take time to switch between charged and uncharged states,
forcing designers to limit either the sampling rate or the resolution
of an ADC [1,2]. A rule of thumb for this rate-resolution tradeoff
is that a doubling of the sampling rate causes a 1 bit reduction in the
ADC resolution; in other words, 25- fs = P, where B denotes the
effective number of bits (ENOB)—a measure of ADC resolution, fs
denotes the sampling rate, and the constant P is determined by the
state-of-the-art in ADC technology. Unfortunately, the constant P
in ADC technology increases at a much slower pace than that fol-
lowed by Moore’s law for microprocessors [1,2]. This forces many
applications to push the current ADC technology to the limit. For
example, software-defined radios require sampling rate on the order
of 1 GHz and therefore can only manage resolution of 10 ENOB
using today’s ADC technology [1].

Fortunately, the rate-resolution tradeoft of the ADC technol-
ogy can be circumvented by exploiting prior knowledge of addi-
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tional structure in signals. One such additional structure is signal
sparsity; it has been known for some time that bandlimited sig-
nals that are sparse in the frequency domain can be sampled at a
rate that is much smaller than the Nyquist rate [3]. This old idea
has been revisited in the past few years given the recent theoreti-
cal triumphs of compressed sensing [4]. In particular, while several
techniques have been put forward for sampling sparse bandlimited
signals at sub-Nyquist rates, three candidate architectures that rely
primarily on recent developments in compressed sensing are chirp
sampling [5], Xampling [6], and Random Demodulator [7]. Our fo-
cus in this paper is on the sampling of bandlimited signals that can
be well-approximated through a small number of frequency tones
and the Random Demodulator (RD) architecture seems particularly
well-suited for this specific problem, including near-optimal guaran-
tees for robustness against noise. Therefore we concentrate on the
RD architecture in this exposition, although some of the ideas pre-
sented also appear to be of relevance to the Xampling architecture.

1.1. Our Contributions

One integral component of the RD architecture is a white noise-like,
bipolar modulating waveform that changes polarity at a rate equal
to the signal bandwidth. Since there is a hardware limitation to
how fast analog waveforms can change polarity without undergoing
shape distortion, the RD also has a constraint on the maximum al-
lowable signal bandwidth. This bottleneck is reminiscent of the chal-
lenges faced by researchers in the early days of magnetic recording
systems. In magnetic disks, 0’s and 1’s are stored by changing the
polarization of the recording media and the read head reports tran-
sitions in recorded data as alternating positive and negative peaks in
read-back voltage. Increasing the recording density on a magnetic
disk by packing more bits in a region causes the read-back voltage
to rapidly change polarity, leading to significant distortions in the
peak amplitudes, among other things, and causes a large number of
read errors.

In order to overcome this challenge in magnetic recording sys-
tems, Tang and Bahl [8] introduced the idea of Run-Length Limited
(RLL) sequences in which run-length constraints describe the mini-
mum separation, d, and maximum separation, k, between transitions
from one state to another. The idea in the case of magnetic recording
being that one can use (d, k) RLL binary sequences to increase the
number of bits written on the disk by a factor of (d + 1) without af-
fecting the read-back fidelity. Note that there is a rate loss associated
with converting arbitrary binary sequences to (d, k) RLL binary se-
quences and the major breakthrough in magnetic recording was that
the rate loss associated with certain (d, k) sequences is smaller than
d + 1, leading to a net increase in recording density; we refer the
reader to [9] for further details on this topic.

In this paper, we make use of the lessons learned from the re-
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Fig. 1. Block diagram of the (constrained) random demodulator [7].

search on magnetic recording systems and propose an extension of
the RD architecture, termed the Constrained Random Demodula-
tor (CRD), that replaces the original RD modulating waveform with
a (d, k) RLL modulating waveform. This is quite similar in spirit
to the use of (d, k) sequences in magnetic recording systems and
clearly leads to an increase in the operating bandwidth of the RD by
a factor of (d+1) without any hardware modifications. This increase
in the operating bandwidth however comes at the cost of introducing
statistical dependence across the modulating waveform. One of our
main contributions is establishing that the CRD, despite employing
a modulating waveform with correlations, enjoys some theoretical
guarantees for certain RLL waveforms that are quite similar to the
original RD architecture. In addition, one would expect an increase
in the operating bandwidth to lead to an overall reduction in the al-
lowable sparsity of the bandlimited signal. However, for a given
sampling rate and rate of change in the modulating waveform po-
larity, we find through numerical simulations that the CRD using an
appropriate RLL waveform can sample a signal with approximately
25% ~ 35% more bandwidth without a significant reduction in the
signal sparsity.

2. BACKGROUND: THE RANDOM DEMODULATOR

In this section, we briefly review some of the key characteristics of
the RD architecture as they pertain to the sampling of sparse ban-
dlimited signals. We refer the reader to [7] for a comprehensive
overview of this architecture.

The basic purpose of the RD is to take samples at a sub-Nyquist
rate and still be able to reconstruct signals that are periodic, limited
in bandwidth to W Hz, and are completely described by a total of
S <« W tones. In other words, a signal f(t) being fed as an input to
the RD takes the parametric form

)= ave ™ te(0,1) (1)

weN

where Q C {0,+1,...,£(W/2 — 1), W/2} is a set of S integer-
valued frequencies and {a., : w € Q} is a set of complex-valued
amplitudes. In order to acquire this sparse bandlimited signal f(¢),
the RD performs three basic actions as illustrated in Fig. 1. First, it
multiplies f(¢) with a modulating waveform p,, (¢) that is given by

W-—1
pm(t) = Z 6n1[

where the discrete-time modulating sequence (MS) {e,} indepen-
dently takes values +1 or —1 with probability 1/2 each. Next, it
low-pass filters the continuous-time product f(t) - pm (t). Finally, it
takes samples at the output of the low-pass filter at a rate of R < W.

One of the major contributions of [7] is that it expresses the ac-
tions of the RD on a continuous-time, sparse bandlimited signal f(¢)
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in terms of the actions of an Rx W matrix ® grp on a vector o« € C
that has only S nonzero entries. Specifically, let x € C" denote a
Nyquist-sampled version of the continuous-time input signal f(¢).
Then it is easy to conclude from (1) that x can be written as x = F'a,

. _ 1 —2minw/W
where the matrix F' = v [e ]

ized) discrete Fourier transform matrix and o € C" has only S
nonzero entries corresponding to the amplitudes of the nonzero fre-
quencies in f(¢). Now note that the effect of the modulating wave-
form on f(t) in discrete-time is equivalent to multiplying a W x W
diagonal matrix D = diag(eo, €1, ,ew—1) with x = Fa. Fur-
ther, the effect of the low-pass filter on f(t) - pim (¢) in discrete-time
is equivalent to multiplying an R x W matrix H, which has W/R
consecutive ones starting at position rW/R + 1 in the rt* row of
H, with DFa." Therefore, if one collects R samples at the output
of the RD into a vector y € C¥, then it follows from the preceding
discussion that y = HDFa = ®rp - o, where we have that the
random demodulator matrix ®rp = HDF'.

Given the discrete-time representation y = ®rp - «, recovering
the continuous-time signal f(¢) described in (1) is equivalent to re-
covering the S-sparse vector o from y. In this regard, the primary
objective of the RD is to guarantee that « can be recovered from y
even when the sampling rate R is far below the Nyquist rate . For-
tunately, recent theoretical developments in the area of compressed
sensing have provided us with numerous greedy as well as convex
optimization based methods that are guaranteed to recover « (or a
good approximation of ) from y as long as the sensing matrix ® rp
can be shown to satisfy certain geometrical properties [4]. The high-
light of [7] in this regard is that the RD matrix is explicitly shown to
satisfy the requisite geometrical properties as long as the sampling
rate R scales linearly with the number of frequency tones S in the
signal and (poly)logarithmically with the signal bandwidth W.

denotes a (normal-
(n,w)

3. THE CONSTRAINED RANDOM DEMODULATOR

With the RD, it is possible to sample a sparse bandlimited signal at
a significantly lower rate than the Nyquist rate. Still at issue though
is the fact that the RD requires creation of a modulating waveform
that changes polarity at the Nyquist rate. Given the nature of ana-
log electronics, there is a hard bandwidth limit beyond which such
waveforms cannot be generated without shape distortion. Stated dif-
ferently, the RD makes use of a modulating waveform with an un-
constrained (d, k) = (0,00) RLL MS that in turn determines the
maximum operating bandwidth of the RD architecture. The basic
idea behind the CRD proposed here is to replace the unconstrained
MS of the RD with an RLL MS with d > 0, which increases the
operating bandwidth of the architecture by a factor of (d 4+ 1) with-
out any changes to the hardware technology. In terms of the system
equation, the CRD has the diagonal of the matrix D comprised of
the RLL MS.

There is of course a price to be paid for using RLL sequences
to increase the addressable bandwidth. Specifically, recall that RLL
sequences place constraints on separations between different states
(transitions), which are characterized by the parameters d and k—
the minimum and maximum separation, respectively. Therefore the
price we pay is that the entries of an RLL MS are not statistically
independent. However, the key insight here is that the dependence
for certain RLL MS’s is local and decays geometrically to zero as
separation within the MS increases.

In the following, we will make use of this insight to characterize

!"Throughout this paper, we assume WLOG that R divides W.



the geometry of the CRD matrix ®crp in terms of the Restricted
Isometry Property (RIP). The RIP of a matrix ® is important for
the recovery of signals using the techniques of compressive sensing.
The RIP of order S with restricted isometry constant g is satisfied
for @ if
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with §s € (0,1) and ||x||o < S. Stated alternatively, RIP requires
that the singular values of every W x S submatrix of & satisfy
V1—10s < 0y < V/1+4+0sforl < i < S. In the following, we
use the "triple-bar”” norm of [7] to describe the RIP condition. Given
a matrix A, this norm captures the largest magnitude eigenvalue of
any S x S principal submatrix of A: [|[A]|| = sup,q|<sllAlexall-
Therefore, (3) is satisfied if and only if |||®*® — I||| < ds.

In [7], independence of the MS and independence of the rows
of ®rp are used to show that ®zrp satisfies the RIP. For the CRD,
however, we have statistical dependencies both within the MS and
across the rows of ®crp that must first be dealt with. To that end,
we apply an argument similar to that used in [10] establishing the
RIP of random Toeplitz matrices and show that ®crp can satisfy
the RIP if entries of the MS become independent when separated
by a distance greater than ¢ < oo. In the following section, we
argue the validity of this assumption by discussing RLL MS’s that
(approximately) exhibit this behavior.

The forthcoming analysis relies on the matrix
A = {Aaw}a,w=0,..,w—1 determined by the correlation charac-
teristics of the MS. It has entries An., = Z].#k Elejer]nir fro frw
where fjq is the (j, a)th entry of E, 0, = (h;, hi), and h; is the
jth column of H. For the RD, A = 0, whereas we require that
[[|A]]| < 1 for the CRD to satisfy RIP. To this end, we give the fol-
lowin% theorem for which a proof will be provided in a future journal
paper.

<ds 3

Theorem 1 (RIP for the CRD). Let ®crp be a R x W CRD matrix
using a (d, k) RLL MS with maximum dependence distance £ and
[I|Al] < 0 for afixed 6 € (0, 1). Next, suppose that R satisfies

R> (6~ [|All) 72 C- Slog® (W)

where C'is a fixed constant. Then with probability O(1 — W™1)
the CRD matrix ®crp satisfies the RIP of order S with constant
ds < 6.

4. “GOOD” RUN-LENGTH LIMITED SEQUENCES

The statement of Theorem 1 suggests the CRD requires an RLL MS
for which a) |||A]|| < 1 and b) entries separated by more than ¢
are statistically independent. We examine these conditions for two
classes of RLL MS’s.

First, consider a rate-ﬁl1 repetition-coded (RC) MS that is gen-
erated from a Rademacher MS by repeating each element d times.
Such a MS satisfies the (d, 00) RLL constraints. The repeated en-
tries of the sequence are perfectly correlated with each other while
remaining independent of all other entries in the sequence, resulting
in £ = d + 1, which is optimal. However, the Gram matrix A* A for
a rate-3 RC MS is the identity matrix resulting in |||A||| = 1, and
[[|A]|]| > 1 for any lower rate RC MS. We conclude that the CRD
matrix using a RC MS will not satisty the RIP.

Second, consider a General RLL (G-RLL) MS generated from
a Markov chain. The correlation within such a sequence decays ge-
ometrically, i.e. the autocorrelation function Re(m) ~ ™! with

2Ford = 0,¢ = 1 and A = 0 and the result of [7] is obtained.
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Fig. 2. Log-magnitude plot of the auto-correlation of an RLL code
as a function of the time separation. Larger values of d and smaller
values of k exhibit stronger correlation. The function for £ = 20
is nearly identical to the function for & = oco. For reference, an
independent sequence is given by d = 0 and k = oo.

A < 1[9,11]. The dependence in such a sequence is not entirely lo-
cal, so we cannot find a finite separation that guarantees complete in-
dependence. However, the correlation decays geometrically to zero
so we can find a separation that gives us near independence. We will
show that these sequences perform well as MS’s in the CRD and
approximately satisfy Theorem 1.

To find the autocorrelation function for these G-RLL MS’s, we
need to understand the underlying Markov chain. The Markov chain
is stationary and has 2k + 2 states described by a transition matrix
P = {pi;} [9]. Calculation of the autocorrelation function R;(m)
requires the vectors a : a; = Zi’:ﬁ TuDuilfui and b : b =
Zi?{z PjvYju containing the weighted sum of symbols output on
arriving at each state and on departing each state respectively. Here,
7u is the ut™ entry of the stationary distribution for P, and Yij 1S
the symbol output on departing state ¢ and arriving at state j. The
autocorrelation is a function of only the separation between entries
and is given by R, (m) = b7 P Da[11].

The autocorrelation is dependent on d, k, and the matrix P. Fig.
2 shows a plot of the auto-correlation function for several (d, k)
sequences. We see the correlation indeed decays geometrically as
m, the separation, increases. As an example, consider a G-RLL
MS with (d, k) = (1,20). The first few terms of the autocorrela-
tion are given by R.(m) = [+ 5t 52 0 & 5 ..]. For this au-
tocorrelation function, we can carry out calculations to show that
Al < 4/ + 2&(S —1). Itis likely that optimizing over the
choice of Markov chain used to generate the G-RLL MS will offer a
smaller bound on |||Al|], but that is beyond the scope of this paper.

5. NUMERICAL RESULTS AND DISCUSSION

The RD is shown to satisfy RIP [7], and Theorem 1 tells us the CRD
with certain RLL MS’s also satisfies RIP. While these results do not
hold for every RLL MS, numerical results suggest good performance
if the correlation in the MS decays rapidly to zero and [||A]|] <
1. Fig. 3(a) shows the average minimum and maximum singular
values, with error bars of two standard deviations, as a function of
R obtained by evaluating sub-matrices of the system matrix using a
G-RLL MS with (d,k) = (0,00) and (d, k) = (1,20) and a RC
MS with (d, k) = (1,00). The d = 0 points use an unconstrained
MS and correspond to the RD. The d = 1 points are for the two
CRD’s. We can see a gap between the singular values for the CRD
and the RD, and the CRD with the RC MS has some 0 singular
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(a) Minimum and maximum singular values of
size W x S sub-matrices of a CRD matrix as a
function of R. The RLL d=0 points correspond to
the RD of [7]. The RLL d=1 points correspond
to a CRD with a (1,20) RLL MS and the Rep
d=1 points correspond to a CRD with a (1, c0)
RC MS. In each case, W = 512, S = 10, and
200 realization of the system are evaluated. We
see a gap between the RD and CRD, but only the
RC MS gives singular values of 0.
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(b) RC MS: Probability of successful reconstruc-
tion vs. sparsity using the Basis Pursuit algorithm
for 1000 instances of ® for each set of parame-
ters. The (x) marks are the RD with a 200Hz sig-
nal. The (0), (+), and (¢) marks are the CRD with
arate-2 RC MS ((d, k)=(1, 0c)) and a 200Hz,
300Hz, and 400Hz signal. R = 50 and the tran-
sition width is fixed for each. The reconstruc-
tion performance is in all cases worse than with
a G-RLL MS and is very poor for bandwidths of
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(c) G-RLL MS: Probability of successful recon-
struction vs. sparsity using the Basis Pursuit al-
gorithm for 1000 instances of ® for each set of
parameters. The (x) and (o) marks are the RD
with a 150Hz and 200Hz signal. The (+) and
(0) marks are the CRD with (d, k)=(1, 20) and
a 200Hz and 300Hz signal. The (*) marks are
the CRD with (d, k)=(2, 20) and a 300Hz sig-
nal. R = 50 and the transition width is fixed
for each. Reconstruction performance using the

200Hz and 400Hz.

CRD is comparable to that of the RD, sacrificing
only a small decrease in the allowed sparsity.

Fig. 3. Numerical Results

values. The singular values for the CRD with the (1,20) G-RLL
MS are, however, still bounded close to 1. This leads us to believe
that the RIP is satisfied, and we will still see good reconstruction
performance in practice using a G-RLL MS with d > 0.

Fig. 3(b) and Fig. 3(c) plot the probability of successful recon-
struction as a function of the input signal sparsity, S. The curves
were obtained with different RLL sequences and signal bandwidths
W. Fig. 3(b) uses RC MS’s which become independent if entries
have separation more than d+1 but which have |||A||| > 1. Fig. 3(c)
uses G-RLL MS’s which do not become completely independent but
have geometrically decaying correlation and for which [||A]|] < 1.
In both plots, the d=0 curve is the RD and provides the baseline for
our comparison, and all curves were created with a random wave-
form that switches at the same rate. Fig. 3(b) tells us that using a RC
MS does not result in good reconstruction performance, especially
for certain bandwidths. Fig. 3(c) tells a different story about using a
G-RLL MS. The CRD with d=1 offers comparable performance to
the RD but with the benefit of acquiring an input signal with more
bandwidth. Depending on the tolerance in reconstruction probabil-
ity, it can provide up to a 33% increase in the acquirable bandwidth.
Even at 50% greater bandwidth, the CRD only reduces the sparsity
by ~4 (25%). This shows numerically that observable bandwidth
can be increased with a slight to no drop in the sparsity.

To conclude, the RD shows that a sparse bandlimited signal can
be sampled not only based on the bandwidth of the signal, but also
the sparsity of the signal. The underlying hardware also gives a min-
imum transition width of the random waveform, so when at this limit
we are limited to viewing a bandwidth W with the RD. However, by
using a CRD with an appropriate RLL MS, we can increase the band-
width up to W’ < (d + 1)W if we are willing to incur a penalty in
the sparsity of the signal. We give a theoretical justification based on
the RIP, and numerical simulations suggest that only a small penalty
is incurred for bandwidth increases of even 50%. Despite the spar-
sity penalty, we still gain a great advantage; the RD is limited by
the hardware to viewing signals of a particular bandwidth while the
CRD can look beyond this bandwidth.
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