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Abstract—In the design of line codes for data transmission and
modulation codes for data storage it is important to match the spectral
properties of bipolar sequences (containing the symbols ±1) to the
spectral properties of the transmission or storage medium. This paper
demonstrates that spectral shaping is possible with bipolar sequences,
and explores the advantage of bipolar sequences with shaped spectra in
Analog-to-Digital Converters (ADCs) where they are used to modulate a
sparse input waveform that is described by a small number of parameters.
Performance is improved by matching the spectrum of the modulating
waveform to prior information about the spectrum of the sparse input.
The focus is on the Random Demodulator where sparse signals are
reconstructed from sub-Nyquist samples.

I. INTRODUCTION

The characteristics of a recording (or communication) medium
define a channel; for example, readback voltage responds to changes
in magnetization, defining a one-dimensional channel. This “partial-
response” (or differential) channel leads to inter-symbol interference
(ISI) between closely spaced symbols. It is important to write
sequences to the medium that minimize ISI or that have small spectral
energy at the nulls of the corresponding partial-response channel.
Tang and Bahl [1] introduced run-length limited (RLL) (d, k) codes
in 1970 to limit inter-symbol interference in bipolar sequences. These
codes limit the minimum, d, and maximum, k, length runs allowed
in the sequence without changing symbol and are analyzed further
in [2], [3].

A recent application of bipolar sequences is to the design of
Analog-to-Digital Converters (ADCs) that overcome the Nyquist limit
linking the sampling rate of ADCs to the bandwidth of acquired
signals. Spectrum shaping of sequences is very important in this
application because matching the spectrum of the sequence to the dis-
tribution of spectral energy in the input signal significantly improves
performance [4]. This paper focuses exclusively on the application
to sub-Nyquist sampling. Two defining characteristics of ADCs are
sampling rate and resolution, and they are generally in contention.
An increase in resolution requires a drop in rate, and vice-versa. The
rule-of-thumb is that doubling the rate causes a one bit reduction in
the resolution: 2B · fs = P where B is the effective number of bits
(ENOB) – a measure of resolution, fs is the sampling rate, and the
constant P is a figure-of-merit determined by the ADC architecture.
This figure-of-merit advances at a much slower pace than Moore’s
law for microprocessors [5]–[7], and many current applications push
the technology to the limit. For example, a software-defined radio
performing spectrum sensing requires a sampling rate on the order
of 1 GHz and can only sample with resolution of 10 ENOB using
current technology [5]. An ADC sampling below the Nyquist rate of
the acquired signal offers higher resolution.

The Nyquist limit is overcome by exploiting prior information
about the signal other than the bandwidth, including prior knowledge
that the signal has a sparse representation in some basis. It has long

been known that bandlimited signals that are sparse in the frequency
domain can be sampled at rates much lower than the Nyquist rate
[8]. Recent advances in Compressed Sensing (CS) [9] have breathed
new life into the investigation of exploiting signal sparsity to sample
at much lower than Nyquist rates. Two architectures which exploit
these recent developments in CS are Xampling [10] and the Random
Demodulator [11], and both use modulation with bipolar waveforms
as a major piece of the architecture. In this paper we concentrate on
signals that are well-approximated by a small number of frequency
tones and on the Random Demodulator (RD) architecture.

The modulating sequences in the RD are random bipolar sequences
where each entry is generated independently, and transitions in the
polarity of the waveform occur at the Nyquist rate of the input
signal. In [4], RLL sequences are introduced into the RD to overcome
hardware constraints that can limit the rate at which the waveform
changes polarity while retaining high fidelity. The resulting system
is coined a Constrained Random Demodulator (CRD). The RLL
sequences also introduce a correlation structure and a characteristic
power spectrum. The primary benefit is realized when the spectrum of
the modulating sequence is tuned to the spectrum of the input signal, a
so-called Knowledge-Enhanced CRD (KECoRD). If the spectrum of
the random waveform is proportional to the probabilistic distribution
on the input tones, then the spectrum is considered matched to
the input signal. In this case, more energy is passed through the
CRD to the measurements, and signal reconstruction performance is
significantly improved [4]. The CRD favors some frequencies over
others and, consequently, performs better than the RD when sampling
signals with a matched distribution of spectral energy.

A. Our Contributions

The analysis in [4] concentrates on RLL sequences that limit
transitions in the modulating waveform (MW), i.e., d > 0. It does not
address how to shape spectra to match a given input signal, nor does
it offer a thorough analysis of the advantages of matching the MW to
input signal. This paper begins the analysis of shaping power spectra.
Our primary contribution is an analysis of the spectra of a family of
bipolar sequences and highlighting their utility in ADC architectures.
The MW is generated from a statistically dependent sequence and has
a characteristic, non-flat power spectrum associated with it [2], [3].
The design of sequences with arbitrary spectra is vital to matching
sequences with input signals of arbitrary spectral energy distribution.
However, it is also complex, and we focus on families of sequences
that are generated by tuning a particular Markov chain introduced
in [3] for analysis of RLL sequences. We simplify the analysis of
these sequences by limiting the analysis to a family of Markov chains
described by a single parameter. Despite the simplification, the family
of sequences generated from these simple Markov chains can be tuned
to cover the entire range of frequencies.



II. SPECTRA OF BIPOLAR SEQUENCES

Consider a bipolar sequence εi ∈ {+1,−1} for i = 0, ...,W −
1 generated by the Markov chain in Fig. 1. Nodes in the top row
produce the symbol +1, while those in the bottom row produce the
symbol −1. The number below each edge indicates the transition
probability between connected nodes. These transition probabilities
are denoted by pij . The symmetry of the block diagram ensures both
symbols are equally likely and the entries are not independent.

The transition probabilities can be collected into a matrix P =
[pij ], where P is a stochastic matrix. The stationary distribution of the
Markov chain is denoted as π and satisfies the relation πT = πTP.
Additionally, the symbols output from each state are collected into
the vector b = [+1 · · · + 1 − 1 · · · − 1] where k entries of +1 are
followed by k entries of −1. With these in hand, the autocorrelation
of a sequence generated from such a Markov chain is

Rε(m) = aTPmb (1)

where aT = bT · diag(π), diag(x) is a diagonal matrix with x on
the diagonal, and Rε(−m) = Rε(m) [12]. We can understand the
behavior of Rε(m) from the eigenvalues of P. Denote the eigenvalues
of P as λi for i = 1, ..., 2k and label them in descending order of
magnitude

|λ1| ≥ |λ2| ≥ · · · ≥ |λ2k|.

Since P is a stochastic matrix, λ1 = 1 (with a corresponding all
ones eigenvector), and |λ2| < 1. We can bound the autocorrelation
function [13, Theorem 8.5.1]

|Rε(m)| ≤ λm2

and see that the autocorrelation experiences geometric decay.
The autocorrelation is written explicitly in terms of the eigenvalues

through an eigen-decomposition of P as

Rε(m) = aTPmb = aTVΛmV−1b (2)

where Λ is a diagonal matrix with the eigenvalues of P and V has
columns containing the corresponding eigenvectors of P. Calculating
Pm is much easier with this formulation because Λ is diagonal.
The power spectrum of the sequence is the Fourier transform of the
autocorrelation function Fε(ω) =

∑
mRε(m)e−

2π
W
mω.

A. Single Parameter Markov Chains

Analysis of (2) for P corresponding to an arbitrary Markov chain
of the form in Fig. 1 is complex. We focus the discussion on a
Markov chain described by a single parameter p, which occurs when
k = d + 1. This family of Markov chains shows that varying p
and d allows us to place the spectral peak across the entire range of
frequencies.

We start with the Markov chain resulting from d = 0 and k = 1,
which has a four state diagram with transition probability matrix

P =


0 p 1− p 0
0 0 1 0

1− p 0 0 p
1 0 0 0

 (3)

where we have used the substitution p1 = p. The eigenvalues are
given by λ1 = 1, λ2 = −p, λ3 = − 1

2
(1 − p) +

√
1
4
(1− p)2 − p,

and λ4 = − 1
2
(1− p)−

√
1
4
(1− p)2 − p.

The spectra are plotted in Figs. 2-4 for a range of values of
p. Consideration of the extreme values of p = 0 and p = 1
provides intuition into these plots. In the case of p = 0, the
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Fig. 1. State diagram of the Markov chain generating an RLL sequence. The
transition probabilities are symmetric in the sense that p(i+k)(j+k) = pij
where the sum is taken modulo 2k. The top half outputs the symbol +1 while
the bottom half outputs -1. The symbols are shown above the edges connecting
nodes, while the transition probabilities are shown below the connecting edges.
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Fig. 2. Spectrum of a sequence with d = 0, k = 1, and p = 0.01.
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Fig. 3. Spectrum of a sequence with d = 0, k = 1, and p = 0.5.
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Fig. 4. Spectrum of a sequence with d = 0, k = 1, and p = 0.95.

Markov chain only visits two states, state 1 and state 3. The resulting
sequence consecutively alternates between +1 and −1. The spectrum
for this sequence is a dirac-delta function at frequency ±0.5, and
the spectrum in Fig. 2 is approaching a dirac-delta at ±0.5 for a
small value of p. On the other hand, if p = 1 the Markov chain
cycles through all four states in order. The resulting sequence always
contains symbols in alternating pairs, two symbols +1 followed by
two symbols −1. The spectrum is therefore a dirac-delta at frequency
±0.25, half the frequency of the previous sequence, and the spectrum
in Fig. 4 is approaching a dirac-delta at ±0.25 for a large value of p.
The spectrum for p = 0.5 contains a peak, with non-zero width, at a
frequency between ±0.25 and ±0.5. Such a sequence contains some
repeated symbols, but never more than a single repeated symbol, and
as a result low-frequency content is suppressed.

We can produce spectra with more low-frequency energy by
increasing d but keeping k − d = 1. We retain a single parameter
Markov chain, and as p ranges between p = 0 and p = 1,



the spectrum contains a peak that moves between two limiting
frequencies. The upper limit is given by 1

2(d+1)
, and the lower limit

is given by 1
2(k+1)

.

III. APPLICATION: SUB-NYQUIST SAMPLING OF

FREQUENCY-SPARSE SIGNALS

Armed with the family of sequences generated from single param-
eter Markov chains, we build a tunable ADC that can be matched to
a priori knowledge about the input signal. We show the benefits in
the context of the RD architecture, and briefly review its key aspects
while referring the reader to [11] for a comprehensive overview.

A. Review of the Constrained Random Demodulator

The basic purpose of the RD is sampling at a sub-Nyquist rate
while retaining the ability to reconstruct signals that are periodic,
limited in bandwidth to W Hz, and completely described by a total
of S �W tones. In other words, a signal f(t) input to the RD takes
the parametric form

f(t) =
∑
ω∈Ω

aωe
−2πiωt, t ∈ [0, 1) (4)

where Ω ⊂ {0,±1, ...,±(W/2 − 1),W/2} is a set of S integer-
valued frequencies and {aω : ω ∈ Ω} is a set of complex-valued
amplitudes. To acquire f(t), the RD performs three basic actions
as illustrated in Fig. 5. First, it multiplies f(t) with a modulating
waveform pm(t) consisting of a train of shifted square pulses
with amplitudes determined by a modulating sequence (MS) {εn}
independently taking values +1 or −1 each with probability 1/2.
Next, it low-pass filters the continuous-time product f(t) · pm(t).
Finally, it takes samples at the output of the filter at a rate of R�W .

A major contribution of [11] is showing that the actions of the
RD on f(t) are expressed in terms of the actions of an R × W
matrix ΦRD on a vector α ∈ CW that has only S nonzero entries.
Let x ∈ CW denote a Nyquist-sampled version of the continuous-
time input signal f(t). Then x is written as x = Fα, where
the matrix F = 1√

W

[
e−2πinω/W

]
(n,ω)

denotes a (normalized)

discrete Fourier transform matrix and α ∈ CW has only S nonzero
entries corresponding to the amplitudes of the nonzero frequencies
in f(t). The effect of the modulating waveform on f(t) in discrete-
time is equivalent to multiplying a W ×W diagonal matrix D =
diag(ε0, ε1, · · · , εW−1) with x = Fα. The effect of the low-pass
filter on f(t) · pm(t) in discrete-time is equivalent to multiplying
an R ×W matrix H , which has W/R consecutive ones starting at
position rW/R+ 1 in the rth row of H , with DFα.1 If R samples
are collected at the output of the RD into a vector y ∈ CR, then it
follows that y = HDFα = ΦRD · α, where we have the random
demodulator matrix ΦRD = HDF .

Given the discrete representation y = ΦRD · α, recovering f(t)
described in (4) is equivalent to recovering the S-sparse vector α
from y. In this regard, the primary objective of the RD is to guarantee
that α can be recovered from y even when the sampling rate R is
far below the Nyquist rate W . Recent theoretical developments in
CS provide a rich array of greedy and convex optimization based
methods that are guaranteed to recover α (or a good approximation
of α) from y as long as the sensing matrix ΦRD is shown to satisfy
certain geometrical properties [9]. One such property is the Restricted
Isometry Property (RIP). The RIP of order S with restricted isometry
constant δS is satisfied for a matrix Φ with unit-norm columns if

(1− δS)||x||22 ≤ ||Φx||22 ≤ (1 + δS)||x||22 (5)

1Throughout this paper, we assume that R divides W .

Fig. 5. Block diagram of the (constrained) random demodulator [11].

with δS ∈ (0, 1) and ‖x‖0 ≤ S. The notation of [11] com-
pactly describes the RIP. For a matrix A, the norm |||A||| =
sup|Ω|≤S‖A|Ω×Ω‖ captures the largest singular value of any S × S
principal submatrix of A, and (5) is satisfied if and only if |||Φ∗Φ−
I||| ≤ δS . A highlight of [11] is that the RD matrix is explicitly
shown to satisfy the RIP as long as the sampling rate R scales
linearly with the number of frequency tones S in the signal and
(poly)logarithmically with the signal bandwidth W .

Motivated by the desire to use a MS that switches at a rate lower
than the Nyquist rate, [4] introduced the CRD using an RLL sequence
with statistically dependent entries. The only change to the RD
architecture is a replacement of the independent MS by a dependent
one. For the matrix representation, the diagonal entries of the matrix
D are changed from an independent sequence to an RLL sequence. If
the correlation structure of the sequence is sufficiently well-behaved,
then the CRD enjoys RIP guarantees that take only a slight hit over
the RD. An R×W CRD satisfies RIP with high probability if

R ≥ `3(δ − |||∆|||)−2·C·S log6(W ) (6)

where C is a positive constant [4, Theorem 1]. The maximum
dependence distance ` is the smallest integer such that any two entries
in the MS separated by ` are independent. The matrix ∆ is determined
by the correlation properties of the MS and has entries

∆αω =
∑
j 6=k

ηjkf
∗
jαfkωE[εjεk]

where ηjk = 〈hj , hk〉, hj is the jth column of H , fkω is the (k, ω)-
th entry of F , and ε = {εj} is the MS. The quantity |||∆||| is related
to the power spectrum of the MS by

|||∆||| ≈ max
ω
|F̃ε(ω)| (7)

where F̃ε(ω) = Fε(ω) − 1 and Fε(ω) =
∑
mRε(m)e−

2π
W
mω

is the power spectrum. This means the RIP constant δ is minimal
for a flat spectrum (produced by an independent sequence) and is
approximately the largest deviation of the power spectrum from a
flat spectrum. For the RIP, it is important that 0 < Fε(ω) < 2.

Fig. 6 shows the power spectrum of an RLL sequence with (d, k) =
(1, 20). We see that while it decreases at higher frequencies, it does
not approach zero at any point; |||∆||| ≈ 0.9, and [4, Theorem 1] is
applicable.

B. Knowledge-Enhanced CRD and Spectra of Bipolar Sequences

The RD relies on two principles to recover sparse input signals:
1) identifiability of each tone and 2) sufficient energy capture of
each tone. Notice that (7) is a maximum over all frequencies and
tells us that the worst case in the spectrum determines the worst-case
performance for any sparse input signal. This is essentially confirming
uniqueness of each tone’s signature within the baseband. In practice,
however, we are almost always concerned with the average-case,
rather than worst-case, reconstruction performance. Indeed, it is
infeasible to numerically evaluate the worst-case performance.



Fig. 6. Spectrum of a (1, 20) RLL sequence. The spectrum gets smaller at
high frequencies, but never reaches zero. The two shaded regions show the
proportion of energy contained in the low and high frequency regions.

We argue that, in the average case, imposing additional constraints
on the signal energy distribution across frequencies improves the
sampling and reconstruction performance for these signals if carefully
crafted modulating sequences are used in the CRD. This insight
is motivated by the workings of the architecture of Fig. 5; the
RD modulates the input signal with the MW and low-pass filters
the resulting signal. Setting aside the identifiability aspects of the
problem, intuition suggests that the reconstruction performance will
improve if more energy from the input signal is modulated to
baseband. The RD sends every spectral region to baseband with (on
average) equal weighting, and is ideal if no additional knowledge
about the signal is available. However, a correlated sequence with
a non-flat spectrum will favor some tones over others in the input
signal. To show this, we match the spectrum of the RLL sequence
with the probabilistic distribution of signal energy in the spectral
domain. This ensures that the modulated signal, on average, contains
a large amount of energy at baseband. The family of sequences
described in Section II-A allows the tuning of modulating sequences
to match the input signals with a single peak in the spectrum.

To verify the idea of KECoRD, we perform numerical experiments
with the RD and CRD. When generating the random input vectors,
the occurrence of tones has a distribution proportional to the spectrum
in Fig. 3. If the spectrum of the random sequence matches the
distribution of spectral energy in the input signal, as in Fig. 7,
then reconstruction performance is improved over the RD. The
performance of the RD, which has a flat spectrum, is shown in Fig. 8.
The 50% recovery line is shown in blue. The number of tones at this
50% line is improved by roughly 5% for the CRD over the RD.

IV. CONCLUSIONS

We have motivated the need for sub-Nyquist sampling in spec-
trum sensing applications and the usefulness of shaping the power
spectrum of bipolar sequences used in sub-Nyquist architectures. We
have shown that we can shape the spectra of sequences and place
energy in a peak at frequencies across the entire band of interest.
Additionally, we show the utility of spectrum shaping by showing
improved performance when spectra are matched to prior knowledge
about the class of input signals. An interesting direction for future
work is the systematic analysis of a more complicated Markov chain
with more than one degree of freedom to allow the shaping of more
complicated multimodal spectra.
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