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Abstract—This paper presents a novel, resource-efficient method of
identifying the parametric description of linear, time-varying (LTV)
systems, consisting of time shifts, frequency shifts, and complex amplitude
scalings. Linear Frequency Modulation (LFM) waveforms are used to
probe the system, and the returns are used to identify the parametric
description. The number of samples required for perfect recovery is
shown to scale linearly in the number of descriptive parameters K,
and the sampling rate required is sub-Nyquist when compared to the
bandwidth of the LFM waveforms. The time-bandwidth product of
the LFM waveforms scales quadratically in K. Numerical examples
demonstrate perfect recovery of closely spaced targets in the delay-
Doppler space.

I. INTRODUCTION

Identification of linear time-varying (LTV) systems has immediate
application in radar and communication systems, among other areas.
The identification is typically carried out by probing an LTV sys-
tem with a known signal and processing the corresponding system
output, which consists of several amplitude-scaled copies of the
probing signal that are shifted in both time (delay) and frequency
(Doppler). Traditional radar signal processing then employs matched
filters which correlate the received signal against time and frequency
shifts of the probe signal. Matched filtering (MF) is the maximum
likelihood estimator for a single target (i.e., copy or return) in white
Gaussian noise [1] but is limited by the spreading of the target peaks
in the case of multiple targets. This spreading is captured in the
ambiguity function (i.e., 2-D autocorrelation) of the probe signal and
limits the resolution in the delay-Doppler space as targets in close
proximity cannot be resolved due to the uncertainty principle.

Recent works have attempted to overcome the suboptimal nature
of MF-based recovery, e.g., [2]–[5]. Many implicitly assume the time
and frequency shifts lie on a discretized grid [2], [3]. Recently, [4] and
[5] have proposed novel methods for identification of LTV systems
that do not rely on the discretization of the parameters. Both utilize a
two-stage procedure for recovery, which first recovers the time shifts
and then uses that information to recovery the frequency shifts [5],
or vice versa [4]. The sequential nature is a drawback because errors
in the first stage can propagate to subsequent stages, as discussed in
[4], [5]. In this paper, we revisit the problem of parametric recovery
of LTV systems that neither relies on discretization of parameters nor
uses a two-stage recovery procedure.

A. Our Contributions

For the probing waveform, our technique utilizes linear frequency
modulated (LFM) waveforms, i.e., linear chirps that have the form

x(t) = ej2π(fct
2+f0t)g(t)

where g(t) = 0 ∀t 6∈ [0, Tp] and is a unit-amplitude prototype
pulse. The response of the LTV system to these waveforms, after
some pre-processing, is a superposition of sinusoids with frequencies

xm(t) - h(τ, f) -⊕?
ε(t)

- ym(t)

Fig. 1. Block diagram of the LTV system (1). A probing signal is time and
frequency shifted prior to the addition of noise. In this paper ε(t) ≡ 0.

and phases determined by the time and frequency shifts describing
the LTV system. If we also probe the system with a negative
LFM waveform, i.e., with a negated exponent, then the time and
frequency shifts can be recovered perfectly, in the absence of noise1,
through recovery of the frequencies and phases. In addition and in
contrast to [5], we explicitly state the number of samples required
for perfect recovery in the absence of noise, and show that the
sampling rate is sub-Nyquist compared to direct sampling of the LFM
waveform. We further show that the time-bandwidth product of the
probing waveform needs to scale quadratically with the number of
time/frequency shifts for perfect recovery.

II. PARAMETRIC DESCRIPTION OF AN LTV SYSTEM

An LTV system, shown in Fig. 1, is an operator consisting of K
amplitude-scaled time shifts and frequency shifts. The response of
the system to a probing signal x(t) is

y(t) =

K∑
k=1

ckx(t− τk)ej2πfkt (1)

for t ∈ [0, T ] where T is the processing interval (during which the
parameters are assumed fixed). Each component of the sum, indexed
by k and referred to as a reflector return (referring to the physical
interpretation), is parameterized by a distinct triplet (τk, fk, ck) corre-
sponding to the time shift, frequency shift, and complex amplitude of
each reflector. We assume that fk ∈ (−fmax, fmax), τk ∈ [0, τmax),
and |ck| > 0 ∀k.

III. IDENTIFICATION OF AN LTV SYSTEM

Our goal is to identify an LTV system, i.e., recover the K triplets
(τk, fk, ck), by processing the sampled response of the system to
the probing signal x(t) as efficiently as possible. Efficient recovery
includes limiting the number of samples, the size of the processing
interval T , and the time-bandwidth product of x(t).

A. Probing Waveform: Linear Frequency Modulation Pulses

In order to identify LTV systems, we propose the use of a train of
LFM pulses, i.e., time-limited waveforms, as the probing waveform

x(t) =

M−1∑
m=0

xm(t−mT ) =
M−1∑
m=0

(
x+m(t−mT ) + x−m(t−mT )

)
1Analysis of the noisy case will appear in a forthcoming journal paper.
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Fig. 2. Time-frequency plot of the LFM waveform with f0 = 50 Hz, fc =
2000 Hz/s, and Tp = 0.1 s.
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Fig. 3. Timing diagram of a pulse including the measurement and guard
periods. We require that the guard period and pulse duration satisfy Tg =
T − Tp ≥ τmax and Tp > τmax. The measurement period Tm has a lower
bound that depends on the number of targets K.

where each pulse has a positive and negative component

x±m(t) = e±j2π(f
m
c t2+fm0 t)g(t)

and

g(t) =

{
1, 0 ≤ t ≤ Tp
0, otherwise

is a square pulse function of duration Tp and pulse repetition interval
T . For the mth pulse, fmc is the chirp rate, and fm0 is the constant
frequency offset. A time-frequency plot is shown in Fig. 2.

The received signal in the case of LFM pulses is

y(t) =

K∑
k=1

M−1∑
m=0

ckxm(t− τk −mT )ej2πfkt =
M−1∑
m=0

ym(t)

where

ym(t) =

K∑
k=1

ckxm(t− τk −mT )ej2πfkt

is the received signal for the mth pulse.
We require T ≥ Tp+τmax to ensure the received pulses ym(t) and

ym+1(t) do not overlap. No signal is transmitted during the guard
interval of duration Tg = T − Tp. An equivalent requirement for
non-overlapping received pulses is Tg ≥ τmax. We also restrict the
measurements to the interval t ∈ [mT + τmax,mT + Tp] to ensure
all returns from the mth pulse, and only those from the mth pulse,
are present. We term this interval the measurement interval, Tm =
Tp − τmax. Fig. 3 provides a summary of the timing requirements.

Let ym(t) = y+m(t) + y−m(t) where y+m(t) results from x+m(t) and
y−m(t) results from x−m(t). Expanding the positive component yields

y+m(t) =

K∑
k=1

cke
j2π{θm+

k
+νm+

k
t+(fmc t2+fm0 t)}g(t− τk)

where

θm+
k = fmc τ

2
k − fm0 τk, (2)

νm+
k = fk − 2fmc τk (3)

are the phase offset and frequency of a sinusoid determined by the
time and frequency shift of the kth reflector. The negative component
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Fig. 4. The analog receiver processing filters, de-chirps, and samples the
received signal prior to digital processing.

is expanded similarly with phase and frequency

θm−k = −fmc τ2k + fm0 τk = −θm+
k , (4)

νm−k = fk + 2fmc τk. (5)

The pure chirp part, (fmc t2 + fm0 t), does not depend on any target.

B. Analog Processing and Sampling

Notice that y+m(t) and y−m(t) can be separated with appropriate
filtering if fm0 > fmax. A high-pass filter passes y+m(t), and a low-
pass filter passes y−m(t). The receiver processing chain is shown in
Fig. 4 where filtering is the first operation. For clarity of exposition,
we concentrate on the positive component, with equal applicability
to the negative component. After filtering, the received signal is de-
chirped to remove the pure chirp component. The de-chirped signal
is a sum of sinusoids with phases θm+

k and frequencies νm+
k :

ỹ+m(t) = e−j2π(f
m
c t2+fm0 t)y+m(t) =

K∑
k=1

cke
j2πθm+

k ej2πν
m+
k

tg(t−τk).

(6)
This signal is then sampled over the measurement interval

ỹ+m[n] = ỹ+m(nTs) =

K∑
k=1

cke
j2πθm+

k ej2πν
m+
k

nTs (7)

for n = 0, ..., N − 1, and Ts is the sampling period. The Nyquist
criterion (to prevent aliasing) requires 2Ts· (fmax+2fmc τmax) ≤ 1,
or equivalently for the sampling rate fs = 1

Ts

fs ≥ 2(fmax + 2fmc τmax). (8)

Note that this Nyquist criterion is not related to the bandwidth of the
LFM waveform, but to the size of the rectangle in the plane of time
and frequency shifts determined by fmax, τmax, and fmc .

IV. PARAMETRIC RECOVERY OF AN LTV SYSTEM

Given the filtered, de-chirped, and sampled measurements (7), we
first recover the frequencies and phases of the sinusoids and then
extract the time and frequency shifts from the sinusoid frequencies
and phases. We first ensure that the time shifts are unambiguously
preserved in the phases of the sinusoids.

A. Ambiguous Phase Terms

The time shift-phase mapping (2) is a function of τk, so we write
θm+
k (τk) to highlight this. In order to invert θm+

k (τk), it must 1) be
bijective over 0 ≤ τk ≤ τmax and 2) have a range contained in an
interval of size at most 1 to prevent wrapping around the complex



unit circle. The following lemma provides necessary and sufficient
conditions to prevent ambiguities. It applies to θm−k (τk) through (4).

Lemma 1 (Ambiguous Phase Terms). Let 0 ≤ τk ≤ τmax and
fmc > 0. The function θm+

k (τk) = fmc τ
2
k − fm0 τk is bijective and

−1 ≤ θm+
k (τk) ≤ 0 if and only if

fm0 τmax − 1

τ2max
≤ fmc ≤

1

2

fm0
τmax

(9)

and
fm0 ≤

2

τmax
. (10)

Proof. We know that a function is bijective on an interval if and
only if it is strictly increasing or decreasing on that interval. We
must ensure θm+

k (τk) ∈ [a, b] with |b− a| ≤ 1, and its derivative is
non-negative (or non-positive) on 0 ≤ τk ≤ τmax. The rest of the
proof is straightforward and omitted due to space constraints.

B. Recovery Procedure for Time Shifts and Frequency Shifts

The need for the positive and negative chirp components is evident
upon careful examination of (7). We can write ck = |ck|ejφk and

ỹ+m[n] =

K∑
k=1

|ck|ejψ
m+
k ej2πν

m+
k

nTs (11)

with ψm+
k = φk + 2πθm+

k . Recovering ψm+
k and νm+

k is not
sufficient to determine τk and fk due to φk. However, the positive
chirp paired with the negative chirp is sufficient. Using (4) and (5),
we can write the received signal from the negative chirp similarly.
The phases and frequencies of ỹ+m[n] and ỹ−m[n] are

ψm+
k = φk + 2π(fmc τ

2
k − fm0 τk),

ψm−k = φk − 2π(fmc τ
2
k − fm0 τk),

νm+
k = 2π(fk − 2fmc τk), (12)

νm−k = 2π(fk + 2fmc τk).

To recover the τk’s and fk’s, we first recover the frequencies and
phases (12) and then match the frequency–phase pairs from each pro-
cessing chain. We finally invert the mapping (τk, fk) 7→ (νm+

k , νm−k )
given by (3) and (5).

C. Frequency and Phase Recovery

We first recover the frequencies and phases from the samples (11);
ψm+
k and νm+

k are recovered from ỹ+m[n] while, in parallel, ψm−k and
νm−k are recovered from ỹ−m[n]. We recover ν̂m+

k and ν̂m−k using the
Kumaresan-Tufts (KT) algorithm [6], but other parametric techniques
such as MUSIC [7] or ESPRIT [8] would suffice.

The KT algorithm calculates the coefficients of a predictor filter

H(z) = zL + h[1]zL−1 + · · ·+ h[L− 1]z + h[L]

with coefficients h[a] for a = 1, ..., L where L is the filter pre-
dictor order. Collecting the coefficients into a vector h, we have
h = −R−1r where R is the data correlation matrix, and r is the
data correlation vector. These are computed as follows.

For clarity, we denote generic measurements by y[n] (for either
ỹm+[n] or ỹm−[n]). Build the forward predictor (Toeplitz) matrix

Yf =


y[L] y[L− 1] · · · y[1]

y[L+ 1] y[L] · · · y[2]
...

...
...

...
y[N − 1] y[N − 2] · · · y[N − L]

 ,

backward predictor (Hankel) matrix

Yb =


y∗[2] y∗[3] · · · y∗[L+ 1]
y∗[3] y∗[4] · · · y∗[L+ 2]

...
...

...
...

y∗[N − L+ 1] y∗[N − L+ 2] · · · y∗[N ]

 ,
and the forward and backward data vectors

yf = [y[L+ 1]y[L+ 2] · · · y[N ]]T ,

yb = [y∗[1]y∗[2] · · · y∗[N − L]]T .

Finally, the forward-backward predictor matrix and vector are

Y =

[
Yf

Yb

]
and y =

[
yf

yb

]
.

The prediction equation is y+Yh = 0. Solving for h yields h =
−(YHY)−1YHy = −R−1r where R = YHY and r = YHy.
The prediction filter H(z) has L roots with K on the unit circle and
L − K inside. Let ẑk denote the K roots recovered from the unit
circle. The recovered frequencies ν̂k are found from ẑk = ej2πν̂kTs .

The phases ψ̂k and amplitudes |ĉk| are recovered by least-squares.
Let Fν be a Fourier matrix for frequencies ν̂k and defined by
[Fν ]n,k = ej2πν̂knTs . Collecting the data into a vector ỹ =
[ỹ[0], ..., ỹ[N − 1]]T , the least-squares solution is defined as

β̂ = argmin
β
||Fνβ − ỹ||22

and the optimal solution β̂ has entries

β̂k = |ĉk|ejψ̂k . (13)

The procedure is summarized in Algorithm 1. The outputs (ψ̂+
k , ψ̂−k ,

ν̂+k , and ν̂−k ) are input to the time and frequency shift recovery.

Algorithm 1 Recovery of the frequency and phase of the sinusoids

1: Data: ym+[n] and ym−[n]
2: for r = {+,−} do
3: Calculate the predictor coefficients h = −R−1YHy
4: Find the K roots of the prediction filter H(z) with |ẑk| = 1.
5: Calculate the frequencies ν̂rk = Ts

2π
arg(ẑk) from the roots ẑk.

6: Calculate the phases ψrk and amplitudes |ck| from (13).
7: end for

D. Recovery of Time Shifts and Frequency Shifts

Recall that, due to the unknown phase term φk, knowledge of
ψm+
k and νm+

k alone is not sufficient to determine τk and fk.
However, inclusion of the frequency and phase from the negative
component provides sufficient information. Recovery of (12) provides
K frequency-phase pairs from each processing chain. Each pair
(ψ̂m+
k , ν̂m+

k ) must be matched with its counterpart from the other
processing chain (ψ̂m−k , ν̂m−k ) for k = 1, ...,K.

To match the pairs, note the two relations

ν+k − ν
−
k

−8πfc
= τk, (14)

ψ+
k − ψ

−
k

4π
= fcτ

2
k − f0τk (15)

where both quantities only depend on τk. Select two pairs indexed by
k and `, one from each processing chain, and compute a hypothesized
delay from (14):

τh(k, `) =
ν+k − ν

−
`

−8πfc
. (16)



We then check if τh(k, `) satisfies (15) for k and `, and if it does,
we declare the positive pair k matched with the negative pair `.
Otherwise, we continue checking. This procedure is summarized in
lines 1-10 of Algorithm 2.

With matched frequency-phase pairs from each processing chain,
the recovered time and frequency shifts are

f̂k =
ν̂+k + ν̂−k

4π
and τ̂k =

ν̂+k − ν̂
−
k

−8πfc
. (17)

The complex amplitude is recovered via (13):

φ̂k =
ψ̂+
k + ψ̂−k

2
and |ĉk| = |β̂k|. (18)

Algorithm 2 Recovery of the time and frequency shifts

1: Data: ν̂+k , ψ̂+
k , ν̂−k , and ψ̂−k

2: Match frequency-phase pairs from each processing chain:
3: for k = 1, ...,K do
4: for ` = 1, ...,K do
5: Calculate delay hypothesis (16).

6: if fcτh(k, `)2 − f0τh(k, `) =
ψ+
k
−ψ−

`
4π

then
7: Declare k matched with ` and exit.
8: end if
9: end for

10: end for
11: Detect and resolve ambiguous phases.
12: Calculate the time and frequency shifts (17) and amplitudes (18).

E. Sufficient Conditions for Recovery of Time and Frequency Shifts

The astute reader will note that the unknown phase terms φk
can cause ambiguities in the recovery procedure, specifically in the
matching of frequency-phase pairs. The following theorem establishes
perfect recovery of the time and frequency shifts if a second pulse
is transmitted, i.e., M = 2, to resolve these ambiguities.

Theorem 1 (Perfect Recovery of Time and Frequency Shifts). For
a given τmax and fmax and M = 2, choose f0

c = −f1
c = fc, f0

0 >
fmax and f1

0 = f0
0 + fc·Tp satisfying Lemma 1. If fs satisfies (8)

and the number of samples N satisfies N ≥ K+1, then Algorithms
1 and 2 perfectly recover the time shifts τk, frequency shifts fk, and
amplitudes ck from the samples ỹm+

m [n] and ỹm−m [n].

We omit the proof due to space constraints and will provide it in a
journal version. Fig. 5 shows the recovery, to machine precision, of
a radar scene using the approach described in this paper including a
magnified look at two closely spaced targets.

V. DISCUSSION

A. Resource Usage

We highlight the advantages in resource usage of our approach,
concentrating on 1) the rate and number of samples required for
recovery and 2) the time-bandwidth product of the probing waveform.

1) Sampling rate and number of samples: To avoid aliasing, the
sampling rate must satisfy the Nyquist condition (8), which is smaller
than the rate required to sample an unprocessed LFM pulse (i.e.,
without de-chirping). An LFM pulse has bandwidth W ≈ 1

Tp
+fcTp,

and processing this signal directly (e.g., MF processing) requires a
sampling rate of at least 2W . In contrast, our approach requires the
sampling rate (8). Recall that Tm = Tp−τmax meaning Tp > τmax.
Generally, fmax < 1

Tp
as well, so our approach requires a lower

sampling rate than a direct sampling of the LFM pulse.
Additionally, the KT algorithm requires a minimum number of

samples, captured in Theorem 1, to recover the K frequencies,

specifically N ≥ K + 1 samples. Recall that the measurements are
acquired over time Tm, so we have the lower bound

Tm ≥
N

fs
. (19)

Further, Tp and T are determined by Tm. For a Tm satisfying (19),
Tp = Tm + τmax ≥ N

fs
+ τmax and T = Tp + Tg ≥ N

fs
+ 2τmax

where Tg ≥ τmax is the guard interval. The total processing time T
needed for M pulses is T =M ·T .

2) Time-bandwidth Product: Given the preceding discussion on T
and W , the time-bandwidth product, T ·W , of the LFM pulses is

T ·W ≈M ·T ·
(

1

Tp
+ fcTp

)
,

and T ·W must scale with 1 +K2.

B. Comparison to Other Parametric Techniques

Both [5] and [4] use sequential processing for recovery. In [5], the
time shifts are first recovered followed by frequency shifts at each
time shift, and vice-versa in [4]. In contrast, our approach requires
only one recovery stage so errors do not propagate. Both [5] and [4]
also require the transmission of a series of pulses. For [4], these pulses
are stepped-frequency pulses, quite similar to an LFM pulse. The use
of sequential processing requires an assumption on the maximum
number of time shifts associated with any single frequency shift,
which also affects the number of required samples for recovery. As
a worst-case scenario, if there are K reflectors, then the minimum
number of samples needed by [4] to recover the description is on
the order of K2. In contrast, the approach described in this paper
requires the minimum number of samples to be on the order of K.

Fig. 5. Recovery of time and frequency shifts using the approach in this paper.
The circles are the true shifts, and the crosses show the recovered shifts, which
are recovered to machine precision. The zoom view shows recovery of two
reflectors with the same time shift and very closely spaced frequency shifts.
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