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Abstract—The sampling rate of analog-to-digital converters is severely
limited by underlying technological constraints. Recently, Tropp et al.
proposed a new architecture, called a random demodulator (RD), that
attempts to circumvent this limitation by sampling sparse, bandlimited
signals at a rate much lower than the Nyquist rate. An integral part of
this architecture is a random bi-polar modulating waveform (MW) that
changes polarity at the Nyquist rate of the input signal. Technological
constraints also limit how fast such a waveform can change polarity,
so we propose an extension of the RD that uses a run-length limited
MW which changes polarity at a slower rate. We call this extension
a constrained random demodulator (CRD) and establish that it enjoys
theoretical guarantees similar to the RD and that these guarantees are
directly related to the power spectrum of the MW. Further, we put forth
the notion of knowledge-enhanced CRD in the paper. Specifically, we show
through simulations that matching the distribution of spectral energy of
the input signal with the power spectrum of the MW results in the CRD
performing better than the RD of Tropp et al.

I. INTRODUCTION

Analog-to-digital converters (ADCs) are the foundation of modern
signal processing. For example, acquiring a high fidelity represen-
tation of a guitar sound in the studio allows it to be processed
by any number of digital devices in post-processing. Two of the
defining characteristics of ADCs are sampling rate and resolution.
In general these two are in contention with each other. Increase the
rate and the resolution drops; increase the resolution and a drop
in rate is required. This is captured by the rule-of-thumb that a
doubling of the rate causes a one bit reduction in the resolution:
2B · fs = P where B is the effective number of bits (ENOB) –
a measure of ADC resolution, fs is the sampling rate, and the
constant P is a figure-of-merit determined by the choice of ADC
architecture. Unfortunately, this figure-of-merit advances at a much
slower pace than the pace of Moore’s law for microprocessors [1], [2],
and many current application are pushing the technology to the limit.
For example, a software-defined radio performing spectrum sensing
requires a sampling rate on the order of 1 GHz and can only sample
with resolution of 10 ENOB using current technology [1].

One possible solution to this problem is to exploit prior information
about the signal apart from the bandwidth. For example, if we have
prior knowledge that the signal has a sparse representation in some
basis, then we can use advanced techniques to sample the signal at a
lower rate. It has long been known that bandlimited signals that are
sparse in the frequency domain can be sampled at a much lower rate
than the Nyquist rate [3]. Recent theoretical advances in Compressed
Sensing (CS) [4] have reinvigorated the investigation of techniques
which exploit signal sparsity to sample at a rate much lower than the
Nyquist rate. Three architectures which seek to exploit these recent
developments in CS are Chirp Sampling [5], Xampling [6], and the
Random Demodulator [7]. In this paper we concentrate on signals
which can be well-approximated by a small number of frequency
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tones and the Random Demodulator (RD) architecture seems to be
an appropriate choice.

A. Our Contributions

In this paper, we emphasize two contributions to the RD architec-
ture. Both relate to a white-noise-like bipolar modulating waveform
(MW), a vital component of the RD. In the RD this waveform is
generated from a random binary sequence where each entry of the
sequence is generated independently. An important characteristic of
this sequence is that it changes polarity at the Nyquist rate of the input
signal. In [8], it is pointed out that hardware constraints can limit the
rate at which this waveform can change polarity while retaining high
fidelity. The proposed solution is to use run-length limited (RLL)
codes to generate sequences with two run constraints. These run
constraints limit the minimum, d, and maximum, k, fundamental time
units between transitions in the waveform and allow for the use of
waveforms that achieve higher fidelity for a given switching rate.
The resulting system is called a Constrained Random Demodulator
(CRD). Further, if there is a fundamental limit on the rate at which the
waveform can change polarity (due to the physics of the hardware),
then the CRD will have a higher operating bandwidth compared
to the RD [8]. This advantage does, however, come at a cost. The
dependence within the waveform causes a reduction in performance
guarantees for a given bandwidth. Our first contribution in this regard
is to expand on our earlier work on the CRD [8] and establish
the relationship between the choice of RLL MW and the resulting
performance guarantees.

Our second contribution is to show that the signal reconstruction
performance of the CRD can be made significantly better than the
RD through matching of the spectrum of the RLL MW with the
probabilistic distribution of signal energy in the spectral domain. We
call such a matched CRD a knowledge-enhanced CRD (or KECoRD),
in the vein of the DARPA KECoM program [9]. Heuristically, it
is easy to argue the superiority of the KECoRD over the RD.
The spectrum of the MW in the RD is flat and therefore it sends
energy from all frequencies to baseband with (on average) an equal
weighting. On the other hand, the MW used in the CRD is generated
from a statistically dependent sequence and has a characteristic, non-
flat power spectrum associated with it [10]. The CRD therefore favors
some frequencies over others during the modulation of the signal
energy to baseband. Consequently, the CRD performs better than the
RD whenever it samples signals with a probabilistic distribution of
spectral energy which matches that of the RLL MW.

We conclude this discussion by pointing out a related, independent
work carried out in [11], [12] to improve upon the performance of the
RD. The biggest difference with our work is that we focus on both a
rigorous mathematical understanding of the impact of the MW on the
performance guarantees and the ability of the RLL MW to perform
better for certain signal classes; [11], [12] limit themselves to perfor-
mance improvement without any theoretical guarantees concerning



the identifiability properties of input waveforms.

II. THE RANDOM DEMODULATOR ARCHITECTURE

We briefly review some key characteristics of the RD architecture
as they pertain to the sampling of sparse, bandlimited signals. We
refer the reader to [7] for a comprehensive overview.

The basic purpose of the RD is to take samples at a sub-Nyquist
rate and still be able to reconstruct signals that are periodic, limited
in bandwidth to W Hz, and are completely described by a total of
S � W tones. In other words, a signal f(t) being fed as an input
to the RD takes the parametric form

f(t) =
∑
ω∈Ω

aωe
−2πiωt, t ∈ [0, 1) (1)

where Ω ⊂ {0,±1, ...,±(W/2 − 1),W/2} is a set of S integer-
valued frequencies and {aω : ω ∈ Ω} is a set of complex-valued
amplitudes. In order to acquire this sparse bandlimited signal f(t),
the RD performs three basic actions as illustrated in Fig. 1. First, it
multiplies f(t) with a modulating waveform pm(t) that is given by

pm(t) =

W−1∑
n=0

εn1[ n
W
,n+1
W

)(t) (2)

where the discrete-time modulating sequence (MS) {εn} indepen-
dently takes values +1 or −1 with probability 1/2 each. Next, it
low-pass filters the continuous-time product f(t) · pm(t). Finally, it
takes samples at the output of the low-pass filter at a rate of R�W .

One of the major contributions of [7] is that it expresses the
actions of the RD on a continuous-time, sparse bandlimited signal
f(t) in terms of the actions of an R ×W matrix ΦRD on a vector
α ∈ CW that has only S nonzero entries. Specifically, let x ∈ CW
denote a Nyquist-sampled version of the continuous-time input signal
f(t). Then it is easy to conclude from (1) that x can be written as
x = Fα, where the matrix F = 1√

W

[
e−2πinω/W

]
(n,ω)

denotes a

(normalized) discrete Fourier transform matrix and α ∈ CW has only
S nonzero entries corresponding to the amplitudes of the nonzero
frequencies in f(t). Note that the effect of the modulating waveform
on f(t) in discrete-time is equivalent to multiplying a W × W
diagonal matrix D = diag(ε0, ε1, · · · , εW−1) with x = Fα. Further,
the effect of the low-pass filter on f(t) · pm(t) in discrete-time is
equivalent to multiplying an R × W matrix H , which has W/R
consecutive ones starting at position rW/R + 1 in the rth row of
H , with DFα.1 Therefore, if one collects R samples at the output
of the RD into a vector y ∈ CR, then it follows from the preceding
discussion that y = HDFα = ΦRD · α, where we have that the
random demodulator matrix ΦRD = HDF .

Given the discrete-time representation y = ΦRD · α, recovering
the continuous-time signal f(t) described in (1) is equivalent to
recovering the S-sparse vector α from y. In this regard, the pri-
mary objective of the RD is to guarantee that α can be recovered
from y even when the sampling rate R is far below the Nyquist
rate W . Fortunately, recent theoretical developments in the area of
compressed sensing have provided us with numerous greedy as well
as convex optimization based methods that are guaranteed to recover
α (or a good approximation of α) from y as long as the sensing matrix
ΦRD can be shown to satisfy certain geometrical properties [4]. The
highlight of [7] in this regard is that the RD matrix is explicitly shown
to satisfy the requisite geometrical properties as long as the sampling
rate R scales linearly with the number of frequency tones S in the
signal and (poly)logarithmically with the signal bandwidth W .

1Throughout this paper, we assume that R divides W .

Fig. 1. Block diagram of the (constrained) random demodulator [7].

III. CONSTRAINED RANDOM DEMODULATOR

Motivated by the desire to use a MS that switches at a rate lower
than the Nyquist rate, we introduce the CRD which uses an RLL
sequence with statistically dependent entries. The only change to
the RD architecture is a replacement of the independent MS by a
dependent MS. For the matrix representation, this means changing
the diagonal entries of the matrix D from an independent sequence
to an RLL sequence. We must, however, be careful when doing so.
The dependence in the RLL sequence causes a change in the structure
of the measurement matrix ΦRD . It turns out that if the correlation
structure of the sequence is sufficiently well-behaved (defined below)
then we enjoy guarantees that take only a slight hit over the RD.

A very important tool for studying the behavior of our measure-
ment matrix is the Restricted Isometry Property (RIP). The RIP of
order S with restricted isometry constant δS is satisfied for a matrix
Φ if

(1− δS)||x||22 ≤ ||Φx||22 ≤ (1 + δS)||x||22 (3)

or equivalently ∣∣∣∣‖Φx‖22 − ‖x‖22
‖x‖22

∣∣∣∣ ≤ δS (4)

with δS ∈ (0, 1) and ‖x‖0 ≤ S. It is convenient to use the ”triple-
bar” norm of [7] to describe the RIP condition. Given a matrix A,
this norm captures the largest magnitude eigenvalue of any S × S
principal submatrix of A: |||A||| = sup|Ω|≤S‖A|Ω×Ω‖. Therefore,
(3) is satisfied if and only if |||Φ∗Φ− I||| ≤ δS .

We have the following theorem describing the RIP for a CRD.

Theorem 1 (RIP for the CRD). Let ΦCRD be a R×W CRD matrix
using a MS with maximum dependence distance ` and matrix ∆ such
that |||∆||| < δ for a fixed δ ∈ (0, 1). Next, suppose that R satisfies

R ≥ `3(δ − |||∆|||)−2·C·S log6(W ) (5)

where C is a positive constant. Then with probability O(1−W−1)
the CRD matrix ΦCRD satisfies the RIP of order S with constant
δS ≤ δ.

The proof and a more detailed discussion will be presented in a
journal paper. The maximum dependence distance ` is the smallest
` such that any two entries in the MS separated by this distance
are independent; ∆ is a matrix that is determined by the correlation
properties of the MS. It has entries

∆αω =
∑
j 6=k

ηjkf
∗
jαfkωE[εjεk]

where ηjk = 〈hj , hk〉, hj is the jth column of H , fkω is the (k, ω)-
th entry of F , and ε = {εj} is the MS. We can further relate |||∆|||
to the power spectrum of the MS. We can show that

|||∆||| ≈ max
ω
|F̃ε(ω)| (6)

where F̃ε(ω) is referred to as the reduced spectrum of the MS and is
trivially related to the power spectrum Fε(ω) =

∑
mRε(m)e−

2π
W
mω
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Fig. 2. Spectrum of a rate-1/2 repetition-coded sequence. The spectrum rolls
off to zero at high frequencies.
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W=200, d=0

W=400, d=0

W=200, d=1

W=300, d=1

W=400, d=1

Fig. 3. Reconstruction comparison for a rate-1/2 RCS with R = 50. We
can see that for W = 200 and W = 400 the results are particularly bad.
This tells us that our theory is fairly tight given that the RCS does not satisfy
our criteria for the RIP.

by F̃ε(ω) = Fε(ω)−1. This means the RIP constant in Theorem 1 is
minimal for a flat spectrum (Fε(ω) = 1, produced by an independent
sequence) and is approximately equal to the largest deviation of the
power spectrum from a flat spectrum.

We now consider two example sequences to compare against the
RD. The first example is a repetition-coded sequence (RCS) – a
simple and naive choice. A RCS is generated by repeating each
element of an independent MS d times. The resulting sequence is not
stationary but cycle-stationary. The power spectrum is not defined for
such sequences; however, averaging over the period of the sequence
provides an adequate average power spectrum for our purposes. The
average power spectrum is shown in Fig. 2. It goes to zero at high
frequencies, and from (6) we see that |||∆||| ≈ 1 and Theorem 1
is not in force. To show that the theory is correct to exclude such
sequences, we perform numerical experiments reconstructing vectors
sampled with the CRD measurement matrix; the results are shown
in Fig. 3. For these experiments, and all subsequent, we generate
input vectors with S non-zero entries at random locations and
containing random complex numbers from the unit circle. For each of
1, 000 randomly generated realizations of the measurement matrix,
we sample a new randomly generated input vector and reconstruct
the input from the samples with the Basis Pursuit algorithm. The
probability of success corresponds to the ratio of successful trials.
The results are poor for the CRD with the RCS (d = 1 curve)
especially for W = 200 and W = 400. The dependence on W

Fig. 4. Spectrum of a (1, 20) RLL sequence. The spectrum gets smaller at
high frequencies, but never reaches zero. The two shaded regions show the
proportion of energy contained in the lower and higher frequencies.
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W=150, RD

W=200, RD

W=250, RD

W=200, RLL

W=300, RLL

Fig. 5. Reconstruction comparison of the RD and a (1, 20) RLL sequence
with R = 50 held constant.

can be attributed to the divisibility of W/R by (d+ 1).
The second example we consider is an RLL sequence generated

from a Markov chain and for which the correlation properties have
been well-studied [13]. Fig. 4 shows the power spectrum of a RLL
sequence with (d, k) = (1, 20). We see that while it decreases at
higher frequencies, it does not approach zero at any point; (6) tells
us that |||∆||| ≈ 0.9, and Theorem 1 is in effect. To verify this, we
again perform numerical experiments reconstructing signals sampled
with the CRD measurement matrix generated with an RLL sequence,
shown in Fig. 5. The CRD using the RLL MS results are much better
than the CRD with the RCS and comparable to the RD with only a
slight decrease in sparsity for the CRD at the same probability.

IV. KNOWLEDGE-ENHANCED CRD

Notice that (6) is a maximum over all frequencies of the spectrum
and tells us that the worst case in the spectrum determines the worst-
case performance for any sparse input signal. This is essentially con-
firming uniqueness of each tone’s signature within the baseband. In
practice, however, we are almost always concerned with the average-
case, rather than worst-case, reconstruction performance. Indeed, it is
infeasible to numerically evaluate the worst-case performance; even
the earlier experiments report only the average-case performance.

In this section, we argue that in the average case if we impose addi-
tional constraints on the distribution of signal energy across different
frequencies then we can perform better sampling and reconstruction
of these signals using a carefully chosen RLL MS. This insight is
motivated by the workings of the general architecture of Fig. 1;
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RD  − uniform input dist.

CRD − uniform input dist.

RD  − non−uniform input dist.

CRD − non−uniform input dist.

Fig. 6. The advantage of matching the spectrum of the MS with the statistics
of the input signal. These reconstructions were performed with R = 50 and
W = 300.

the RD/CRD modulates the input signal with the MW and low-pass
filters the resulting signal. Ignoring the identifiability aspects of the
problem, our intuition suggests that the reconstruction performance
will improve if more energy from the input signal can be modulated to
baseband. The RD of course is ill-suited for this since it sends every
spectral region to the baseband with (on average) equal weighting.
However, the CRD, because of the non-uniform spectrum of the
associated MW, is well-suited for knowledge-enhanced sampling of
signals. To show this, we impose a matching of the spectrum of
the RLL MW with the probabilistic distribution of signal energy in
the spectral domain. Doing so ensures that the modulated signal, on
average, contains a large amount of energy at baseband. Note that
recent investigations have looked at similar ideas [11], [12], but they
fail to rigorously analyze the associated identifiability aspects of the
problem that we have reported in Section III of this paper.

To examine the idea of KECoRD, we perform numerical exper-
iments with the RD and the CRD using a (d, k) = (1, 20) RLL
sequence. When generating the random input vectors, we use two
distributions over the input signal frequencies. The first distribution
is uniform over all frequencies; the second is non-uniform and places
an emphasis on lower frequencies as shown in Fig. 4. Here, each
tone has an 85% likelihood of falling in the lower half of the
spectrum and a 15% likelihood of falling in the upper half. For the
experiments we fixed R = 50 and show results for W = 300 in Fig.
6 and for W = 400 in Fig. 7. The curves marked as non-uniform
distribution use an input signal generated as described previously.
The performance of the RD, which has a flat spectrum, depends little
on the class of input signal. However, the performance of the CRD
depends highly on the class of input signal. For both values of W , the
CRD performs much better if the non-uniform input signal is sampled.
The CRD even performs better than the RD! The reconstruction
does depend on W/R and understanding this relationship needs to
be investigated. We conclude that the power spectrum of the RLL
sequence holds the key to understanding sampling and reconstruction
performance of the CRD; if the distribution of spectral energy of the
input signal matches the spectrum of the MS, then reconstruction
performance is improved. Providing a more detailed mathematical
understanding for this phenomena is currently underway.

V. CONCLUSION

In conclusion, we have introduced statistically dependent se-
quences into the RD architecture and have shown insight into how
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RD  − uniform input dist.

CRD − uniform input dist.

RD  − non−uniform input dist.

CRD − non−uniform input dist.

Fig. 7. These reconstructions were performed with R = 50 and W = 400.
The CRD seems to have larger dependence on W/R.

the statistics of the sequence affect the reconstruction performance
of the system. The first insight relates the power spectrum of the MS
to the RIP of the CRD measurement matrix. The “flatter” the power
spectrum, the smaller the RIP constant. Specifically, the RIP constant
depends on the largest deviation of the power spectrum from a flat
spectrum. The second insight is how to tailor the sampling system if
additional knowledge about the input is available. Here, we relate the
power spectrum of the MS to the spectrum of the input signal. If the
distribution of energy across frequencies in the input signal coincides
with the power spectrum of the MS, then signals sampled by such a
CRD can be reconstructed very well. Providing a predictive ability to
tailor the CRD for specific classes of input signals is currently under
investigation.
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