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Abstract—Linear, time-varying (LTV) systems are operators
composed of time shifts, frequency shifts, and complex amplitude
scalings that act on continuous finite-energy waveforms. This
paper builds upon a novel, resource-efficient method previously
proposed by the authors for identifying the parametric de-
scription of such systems from the sampled response to linear
frequency modulated (LFM) waveforms. If the LTV operator
is probed with a sufficiently diverse set of LFM pulses, more
LFM pulses than reflectors, then the system can be identified
with high accuracy. The accuracy is shown to be proportional to
the uncertainty in the estimated frequencies and confirmed with
numerical experiments.

I. INTRODUCTION

Linear, time-varying (LTV) systems are systems that act on
input signals and produce an output signal that is time-shifted,
frequency-shifted, and scaled by a complex amplitude. LTV
systems easily lend themselves to a parametric description in
terms of the time and frequency shifts and amplitude scalings.
Identifying such systems involves recovering this parametric
description. LTV system identification has applications in
active sensing, such as radar or sonar, and channel estimation
for communication systems, among other areas. This paper
concentrates on the radar setting to make the ideas more con-
crete, but the reader should keep in mind that the framework
is more general.

A major challenge in LTV system identification, especially
in the active sensing application, is the efficient recovery of the
parametric description, i.e., the estimation of the time shifts,
frequency shifts, and amplitude scalings. We will focus on
two primary areas of performance: 1) estimation accuracy,
and 2) efficiency in terms of physical resource usage. For the
latter, we primarily focus on two physical resources: required
sampling rate of the receiver and the time-bandwidth resources
required of the probing waveform.

Several approaches have been proposed to solve the LTV
system identification problem. Traditional radar processing
uses a matched filter where the LFM returns are correlated
against a reference LFM waveform, or slight variations of this
process [1]. The primary advantage to such an approach is the
efficient implementation using FFT algorithms. The primary
disadvantage is the limited resolution offered due to the
inherent windowing in the FFT. More recent approaches have
proposed the use of compressed sensing and/or parametric
estimation techniques. One such approach discretizes the pa-
rameter space so that compressed sensing recovery techniques
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can be applied to a small number of acquired samples of the
system response [2]. Another pair of approaches use similar
parametric techniques that do not require discretizing the
parameter space. One uses phase-coded pulses as a probing
waveform and recovers the time shifts first, followed by the
frequency shifts [3]. The second uses frequency-stepped pulses
to recover the frequency shifts, followed by the time shifts [4].
We recently proposed the technique addressed in this paper
that uses linear frequency modulated (LFM) pulses and re-
covers the time shifts and frequency shifts simultaneously [5].

A. Our Contributions

The primary focus of this paper is on the design of the
probing waveform to make the time-bandwidth product small.
The LFM pulses we are using as probing waveforms are de-
scribed in Section II-A. To make the time-bandwidth product
small, we want to estimate the parameters of the LTV system
description using as few pulses as possible. Therefore, it is
important to understand how the choice of LFM waveforms
affects the parameter estimation. To that end, we provide two
results that show that a sufficiently diverse set of LEFM pulses
can unambiguously recover the parametric description. The
first result is asymptotic in nature and shows perfect recovery
if enough pulses are used. The second result shows that the
accuracy of the recovery with a finite number of pulses is on
the order of the variance of the frequency estimator as long as
a sufficient number of pulses are used with sufficiently diverse
LFM parameters.

II. RESPONSE OF LTV SYSTEMS TO LFM PULSES

An LTV system, shown in Fig. 1, is an operator that acts on
a probing waveform x(t) and consists of K amplitude-scaled
time shifts and frequency shifts. The response of the system
to a probing signal x(t) has the parametric description

K

y(t) = Z crx(t — 73,)e? 2Rt (1) (1)

k=1

for ¢ € [0,7] where T is the processing interval, during
which the parameters are assumed fixed. Each component of
the sum, indexed by k and referred to as a reflector return, is
parameterized by a distinct triplet (g, f, cx) corresponding to
the time shift, frequency shift, and complex amplitude of each
reflector. We assume that fi € (— fmax; fmax)s 7k € [0, Tmax),
and ¢, € C\ {0} Vk. The term £(¢) is a noise term corrupting
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Fig. 1: Block diagram of the LTV system (1). A probing signal
is time and frequency shifted prior to the addition of noise.
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Fig. 3: Time-frequency depiction of an LFM pulse with T}, =
0.1 and f™ = 2000. The frequency sweeps linearly with time.

the response. In this paper, this noise term will be assumed to

be additive white Gaussian noise (AWGN) with variance o2.

A. LFM Probing Waveform

Linear frequency modulated (LFM) pulses are constant
amplitude pulses with frequency that linearly sweeps across
some bandwidth. Consider a train of M such pulses

M—-1

with
() = P27 g (1)

and window function ¢(t) = 0 for ¢t ¢ [0,7,]. Each LFM
pulse sweeps across a bandwidth f"-T),, as shown in Fig. 3.
We also require that T' > T, so that there is a guard interval
of Ty = T — T, > Tmax between transmitted pulses. This
ensures that the returns from each pulses can be separated at
the receiver. See Fig. 4 for a graphical summary.
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Fig. 4: Timing diagram of a single LFM pulse. If T, = T" —
T, > Tmax and T}, > Ty, then the pulses do not overlap
and a measurement period T, = T}, — Tyax is guaranteed to
contain returns from each reflector.

B. Receiver Processing

We provide a brief summary of the receiver processing to
set the context of our main results. For a more thorough
explanation, please see [5]. Each received pulse is filtered,
dechirped, and sampled at a rate fs > 2(fimax + 2/ Tmax)
as shown in Fig. 2a. This procedure is similar to stretch
processing, a traditional radar processing technique [6]. The
resulting signal is a sum of sinusoids

K
gm[n] — Z Ckej2‘rr0,’;”ej2‘rru,’;”nT,g + é[n]
k=1
with frequencies
vt = fi = 2f" 7. 2)

The noise term £[n] consists of AWGN samples with vari-
ance o2.

The samples from each pulse g,,,[n] are used as input to a
spectral estimation algorithm. We stress that there is consid-
erable flexibility in the choice of algorithm, and a comparison
is beyond the scope of this paper. Some possible choices
include MUSIC, ESPRIT, or Fourier techniques, such as an
FFT followed by a peak detector. In the simulations provided
below, we chose the Kumaresan-Tufts (KT) algorithm [7].
After recovering the frequencies v}* from each pulse, these
frequencies are fed into a matching algorithm, as shown in
Fig. 2b. We describe the Matching Procedure block in the
next section.

III. RECOVERING THE LTV DESCRIPTION

The LTV system identification problem consists of two
separate pieces: the detection of (the number of) reflectors,
and the estimation of the reflector parameters. The distinction
between these two pieces can sometimes be blurred or these
can be performed simultaneously. In the context of parametric
recovery, the detection problem boils down to estimating K,
the number of reflectors. This problem has been addressed
extensively in the literature in the context of different algo-
rithms, e.g., [8]-[10]. The key insight is that the measurements
can be separated into a signal subspace and an orthogonal
noise subspace. For example, if the noise is not too large then
the eigenvalues or singular values will be separated into two
groups corresponding to these two subspaces. The details are
beyond the scope of this paper. With an estimate of K, or with
oracle knowledge of K, we use the KT algorithm to produce
frequency estimates 27" in the Spectral Estimation blocks.

To describe the matching algorithm, we first need to set up
some notation. The LTV parameters are collected into a vector

B:[f1,~~

The chirp rates are collected into a matrix, which captures the
constraints on the frequencies (2), and is given by
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Fig. 2: Processing block diagrams.

with the notation emphasizing the dependence on M. Note that
A (M) is full rank as long as all the chirp rates are not the
same. The recovered frequency from each pulse are collected
into a vector

~1 ~1

PM) = [0L,..., 0k, 9%, .., 0
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A block diagonal permutation matrix P(M) determines the
ordering of the recovered frequencies from each pulse. Each
block along the diagonal is a K x K permutation matrix. If
the frequency estimates 7;" are perfect and have no error, then
the reflector parameters S can be found via the solution to

A(M)B = P(M)p(M). )

Here, A(M) is the set of design parameters, 7(M) are the
inputs (derived from the measured response), and P (M) and
£ make up the search space for the solution. If M is large
enough, then there is a unique solution to (3) that determines
the reflector parameters.

A. Disambiguating Targets

In the case of noisy measurements, which lead to errors in
the recovered frequencies, a least-squares type of problem is
more appropriate. The reflector parameters can be recovered
via the following optimization

B(M) = argmin min [AM)E —PANEM)IE. @)

For a given permutation matrix P(M) and full rank A (M),
the MMSE parameter vector, i.e., the minimizer of (4) over
B, is given by the pseudoinverse (the M is dropped from the
notation when the context makes it apparent)

B(M,P) = (A*A)"'A*Po(M).

The permutation matrix P (M) that minimizes (4) will deter-
mine the correct set of reflector parameters if the correspond-
ing noiseless problem is not underdetermined. Otherwise, we
have ambiguous matchings.

Before stating our main results, we want to build intuition
into how the choice of pulse parameters f™ affects the solution
to (4). Consider Fig. 5 where we have plotted the constrains
that result from four pulses with chirp rates 2000 Hz/s
and £4000 Hz/s. The true reflector parameters are marked
with blue circles in both plots, and the constraints from the
positive chirp rates are plotted in black while the constraints
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(b) Line constraints for f. = 4000 Hz/s.

Fig. 5: Line constraints for two pulses.

from the negative chirp rates are plotted in red. Each set of
true reflector parameters are coincident with intersections of
the lines corresponding to these constraints. Notice in each
plot, however, that there are other solutions shown by black
triangles that satisfy the constrains from two pulses. If both
plots are considered together, the blue circles are the only
common solutions that satisfy all 4 constraints. In the case of
perfect frequency recovery, it is straightforward to show that
(3) has a unique solution if M > K.

If the frequency recovery contains errors due to noisy mea-



surements, then an additional requirement on the separation of
the chirp rates is required. This can be visualized by thinking
of the lines in the plots of Fig. 5 having some thickness
directly related to the uncertainty in the frequency estimates.
The problem no longer has a perfect solution, and hence the
need for the least-squares criterion. We state this formally in
the next subsection.

B. Choosing Sufficiently Diverse Pulse Parameters

We present two results that show we can disambiguate the
reflector returns if the frequency estimates are imperfect. In
each, we concentrate on the optimization (4). The first result
is asymptotic and shows that we can recover the parameters
with perfect accuracy if we choose every LFM pulse with a
different chirp rate fI".

Theorem 1 (Asymptotically Perfect Recovery). Fix 7,4, and
fmaz and choose f& # f° for a # b. Take the samples ¥, [n]
Jorm=1,...,M with fs > 2(fmax + 2 max,, (f7)Tmax) as
input to a frequency estimator to produce estimated frequen-
cies ;. The solution to

A(a1) = argmin min (|A(M)3 ~ P(M)#(M)]

converges in probability to the true parameters as M — oo,
ie.,

B(M) = B.

The proof is found in [5] and relies on the law of large
numbers. The second result says that if we choose the LFM
chirp rates with separation larger than the error from the
frequency estimator, and we have as many LFM pulses as
reflector detections K, then we can perfectly disambiguate
the detections and the estimation error is proportional to the
frequency estimation error.

Theorem 2 (Sufficient Diversity of LFM Pulses). Fix Ty,44
and fmaz and choose f* = fr=1 + C for m = 2,..., M.
Take the samples §m[n] for m = 1,....M with f; >
2(fmax+2 max,y, (f)Tmax) as input to an unbiased frequency
estimator that produces Gaussian distributed estimated fre-
quencies U;". If C > Var(9}]*), M > K, and M > 2, then the
solution to

A(a) = argmin min (|A(M)3 ~ P(M)#(M)]

satisfies
71
E||3(0) - B3 < BYE).

The constant B depends on the estimator used. We omit the
proof in the interest of space, but will provide it in a forthcom-
ing journal article. To build intuition on Theorem 2, consider
the constraints illustrated in Fig. 6. These are similar to all four
constraints shown in Fig. 5, but with the reflector parameters
changed slightly to illustrate an unresolved ambiguity. Here
we have 4 LFM pulses and 5 reflectors whose true parameters
are shown with blue circles. The reflector parameters and LFM
chirp rates were chosen in such a way that a set of parameters,
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Fig. 6: Line constraints for f. = 2000, 4000 Hz/s and 5 targets.

shown by the black star, also satisfy these 4 sets of constraints.
If M > K and M > 2, then there are only K such points
that satisfy all M constraints because there are not sufficient
degrees of freedom in the choice of reflector parameters.

As for intuition into the effect of the estimated frequency
uncertainty, consider the same scene as in Fig. 6 with estimated
five reflectors shown by the blue circles. The matching proce-
dure would recover these sets of parameters, but the estimator
uncertainty means that there is a region around each that is
likely to contain the true target parameters. The shape of this
region is an intersection of diamond shapes due to each pair
of constraints (given by the chirp rates). If two (or more) of
these regions are overlapping, then we cannot reliably separate
the two reflectors in the parameter space. As more pulses are
used to further constrain the problem, we are shrinking the
area covered by this uncertainty. The constant C ensures that
each area of uncertainty for each reflector is non overlapping.

IV. NUMERICAL EXPERIMENTS

To confirm that the optimization (4) produces accurate
estimates, we performed numerical experiments using the KT
algorithm [7] to perform the frequency recovery on measure-
ments corrupted with AWGN of variance 0 = 0.01. The
result is shown in Fig. 7 using four LFM pulses with chirp
rates f. = +2000, +4000. In addition, we performed Monte
Carlo simulations over 1000 random realizations of 5 sets of
reflector parameters and noise realizations for a range of noise
variances. The average error from these trials is shown in
Fig. 8 where the SNR is the ratio of the energy of each target
to the noise energy on a dB scale.

V. CONCLUSIONS

In conclusion, we have built upon the method proposed
in [5] and presented non asymptotic criteria for choosing
the number of pulses and the pulse parameters in order to
successfully identify an LTV system. The number of pulses
must be larger than the number of reflectors, and the chirp
rates of the pulses must be separated by at least the variance
of the frequency estimates. If this is the case, then the
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Fig. 7: Estimation of reflector parameters with AWGN ¢? =
0.01. The true reflector parameters are shown by a blue circle
while the recovered parameters are shown by a red x.

optimization (4) recovers the LTV system with an accuracy
that is proportional to the variance of the frequency estimates.
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Fig. 8: Recovery error from noisy measurements over 1000
Monte Carlo trials. Note the threshold at ~ 10 dB below which
the error increases rapidly. This effect is due to the parametric
frequency estimator.



