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Abstract—Efficient spectrum sensing is an important problem
given the large and increasing demand for wireless spectrum and
the need to protect incumbent users. We can more efficiently
use large swaths of underutilized spectrum by designing spec-
trum sensors that can quickly, and power-efficiently, find and
opportunistically communicate over unused (or underutilized)
pieces of spectrum, such as television bands. In this paper, we
concentrate on a particular sensing architecture, the Random
Demodulator (RD), and look at two aspects of the problem. First,
we offer fundamental limits on how efficiently any algorithm
can perform the sensing operation with the RD. Second, we
analyze a very simple, low-complexity algorithm called one-
step thresholding that has been shown to work near-optimally
for certain measurement classes in a low SNR setting or when
the non-zero input coefficients are nearly equal. We rigorously
establish that the RD architecture is well-suited for near-optimal
recovery of the locations of the non-zero frequency coefficients
in similar settings using one-step thresholding and perform
numerical experiments to offer some confirmation of our results.

I. INTRODUCTION

Spectrum sensing has received wide attention recently be-
cause of the growing demand for wireless spectrum. The
proliferation of mobile devices has increased the demand
on the wireless medium for communication, and caused a
push for more efficient use of spectrum. This has led to
the investigation of methods to more efficiently use wireless
spectrum. The so-called white-space devices are an exam-
ple that utilize unused television spectrum for opportunistic
communication transmissions. Efficiently utilizing the avail-
able spectrum has become an increasingly important topic
because of a complicated regulatory framework and the need
to protect legacy and primary users. Recently, the President’s
Council of Advisors on Science and Technology released a
report calling for the federal government to identify 1GHz of
spectrum for possible sharing with commercial and private
users in the near-term future [1]. This report argues that
the slow-moving regulatory process has created a need to
share spectrum with secondary users and, in turn, a need for
new technologies which more efficiently utilize large swaths
of spectrum. For example, cognitive radio and white-space
devices are being investigated to better utilize large swaths
of spectrum containing only a few television and wireless
microphone signals by actively sensing their environment and
searching for the unused portions of the spectrum. Military
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applications that require the monitoring of a large swath of
spectrum for the presence of enemy communications also
have many of the same requirements. Specifically, the devices
need to know which frequencies are currently accommodating
other communication (e.g., the Fourier coefficients at those
frequencies have non-zero magnitude) and which are unused.

When building spectrum sensing devices, we want to use
the best method to perform this sensing, or detection, of active
frequencies. Several criteria arise to describe what is meant
by the ‘best’ method. One such criterion is to minimize the
number of errors made when detecting active frequencies.
The reason is twofold: first, we do not want to interfere
with an existing user, and second, we do not want to miss
the opportunity to utilize unused pieces of spectrum. Proper
handling of these two situations is vital. A second criterion
is to minimize the resources (e.g., time and power) used
to conduct the sensing operation. The spectrum environment
is likely to be highly dynamic (frequencies are used for
a short period of time and then become silent again). We
therefore want to spend as little time as possible performing
the detection to avoid interference. The sensing device is also
likely running from a battery if it is a mobile device, so
computational resources cost power. We therefore want to use
the quickest and lowest complexity method possible.

Perhaps the simplest sensing method is to sweep over a
range of frequencies using a Fourier transform and compare
the Fourier coefficients to a threshold value. The problem is
that the complexity (i.e., the number of samples required)
scales with the bandwidth (i.e., number of frequencies) of
interest. Many times we may be interested in a very large
bandwidth, but we know that only a small number of fre-
quencies contain energy. Recently the Random Demodulator
(RD) [2] was proposed that can accomplish sensing with much
lower complexity in the case of wideband, underutilized spec-
trum. We consider the RD architecture and first analyze the
fundamental limits on spectrum sensing for any recovery algo-
rithm. Second, we know from [2] that several low-complexity
algorithms can recover the sampled signal. In the sensing
problem, however, we may only be interested in knowing
which frequencies contain the signal energy. We therefore
analyze how well an even lower-complexity algorithm can
recover the locations of the non-zero frequencies of the signal.
Lastly, we perform numerical experiments to confirm that this



algorithm does work well in recovering the locations of the
non-zero frequencies in certain cases. From [3], we know that
these cases include when the SNR is not too large and when
the size of the entries in 3 are nearly the same.

A. Fundamental Limits on Spectrum Sensing

The first main contribution we make in this paper is an
analysis on the fundamental limits afforded when using the
RD for sensing of wideband, underutilized spectrum. We build
off of work by Reeves and Gastpar [4] and extend it to the
case of the RD. Here, we concentrate on the scaling regime
where the number of (noisy) samples acquired and the number
of active frequencies both scale linearly with the bandwidth.
In the analysis, a small number of errors are allowed in the
recovery and the bandwidth is allowed to grow to infinity.
We quantify the ratio of samples to bandwidth beyond which
recovery of the locations of the non-zero frequencies with a
ratio of errors smaller than some parameter « is not possible.

B. Spectrum Sensing using Thresholding

Our second main contribution is to show that a simple
thresholding algorithm can recover the non-zero frequencies
with high probability if the number of samples scales loga-
rithmically with the bandwidth and linearly with the sparsity.
In [2], signals that are noisily sampled with the RD can be
recovered if the number of samples m satisfies m < k 1og6 n
where n is the total number of tones and k is the number
of non-zero tones. The recovery can be accomplished through
several low-complexity algorithms (e.g., CoSaMP [5], LASSO
[6]). In the wideband sensing problem, however, we are really
only interested in finding which frequencies contain energy in
the signal, not the values of the coefficients. To this end, a very
simple, low-complexity algorithm called one-step thresholding
(OST) (see Algorithm 1 in [3] or the description in Section
IV-B) is a potential choice. We show that OST can recover
the locations of the non-zero tones with high probability if
the number of samples scales as m = max{klogn,log®n}.
In particular, the OST algorithm performs near-optimally when
either the non-zero entries have nearly the same magnitude or
the signal-to-noise ratio (SNR) is not too large.

II. PROBLEM FORMULATION

In this paper, we are concerned with the measurement model
y=Xf+w (D

where X is an m X n (complex) RD matrix, S is a length n k-
sparse complex signal vector (||3||o < k'), and w is a length m
complex white Gaussian noise vector. We denote the sparsity
pattern, or locations of the non-zero entries, of the vector 3
with S = {1 < i < n: B; # 0}. The RD architecture is
shown in Fig. 1, and a key aspect of [2] is showing that the
architecture can be represented by the RD matrix X = HDF
where F is a unitary Fourier matrix, D = diag(e;) is a diagonal
matrix with a Rademacher sequence ¢; for ¢ = 1,...,n on the
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Fig. 1. Block diagram of the random demodulator [2]: The input signal

is multiplied by a random waveform generated from a Rademacher chipping
sequence, then low-pass filtered, and finally sampled at a sub-Nyquist rate
m < n where n is the bandwidth of f(¢).

diagonal, and H is a matrix with n/m consecutive 1’s in each
row with each row orthogonal. An example for H is

1 11
H= 1 11
1 11

The Rademacher sequence is a random sequence with inde-
pendent entries equally likely +1 and —1.

A key result from [2] that we will use tells us that the
columns of X are nearly unit-norm with high probability
provided m is large enough.

Theorem 1. [2, Theorem 8] Suppose m > c¢16 2 logn. Then
an m X n. RD matrix satisfies

P [max“\xng -1| > (5} <n!

th

where x; is the i*" column of X and ci is a constant.

In the next two sections, we first present our results on the
limits of recovery using an information-theoretic argument.
We then present thresholding as an achievable scheme and
discuss when this scheme is nearly optimal compared to the
information-theoretic limit.

III. INFORMATION-THEORETIC BOUND ON RELIABLE
SENSING

To examine some fundamental limits of the RD in the linear
scaling regime, we analyze the RD matrix in the setting of [4].
We begin with the measurement model (1) and also impose
the relation m = [pn] and k = |Qn] so that both m and
k are linear in the problem size n. In other words, p < oo
represents the sampling rate in the problem, and 0 < 2 < 1/2
represents the sparsity ratio. We also impose a distribution on
the non-zero entries of 3 denoted as F' with mean pup and
variance o%. We then define the variance of the vector 3 as
V(Q,F) = Q1 — Q)u? + Qo%. Further, each of the (})
realizations of S is equally likely. Finally, the distortion for
an estimate S of S is (as defined in [4])

d(S,5) = max(MDR(S, S), FAR(S, S))

with missed detection rate

MDR(S, ) = ﬁ Y 1(ieSigs)
1=1



and false alarm rate

n

Y igSied).

i=1
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FAR(S, S) =

5|
We then require that d(.S, S’) < «. Finally, we must rescale
the RD matrix so that the assumptions of [4] are satisfied,
namely that the rows of X are unit norm in expectation, i.e.,
E[trace(XX*)] = m where X denotes Hermitian transpose.
For the RD matrix,

Xx# = HDF(HDF)"” = HDFFEDAHH — Hu = "1,
m

and we therefore must scale the RD matrix by y/m/n to
satisfy this condition.
With this in mind, one of our main results is as follows.

Theorem 2. If X is a (scaled) m xn RD matrix and m/n — p
as n — oo, then in orderA to satisfy a distortion o for the
estimated sparsity pattern S, p must satisfy
2R(Q, )
P = log(1+V(Q,F))

where

H(Q) - QH(a)

~1-9Q)H(£Y), a<1-Q @
0, a>1-0Q

R(Q,a) =

and H(-) is the binary entropy function.

Proof: The important result that we use is Lemma 2
from [4]. It states that for a randomly generated vector f3,
as described above, the pair (p,«) is not achievable for a
sequence of m x n sampling matrices X if

1
lim sup gEXI(S; y) < R(Q, )

n—oo

where I(.S;y) is the mutual information between the sparsity
pattern S and the samples y. We bound this mutual information
with the mutual information between the noiseless samples and
the noisy samples using (1):

I(S;y) < I(XB;y).
Conditioned on the matrix X, we can bound

I(XB;y) <maxI(z;z+ w)

where z is a random vector satisfying E[zzf] =
V(Q, F)XX*. This maximization occurs for z a Gaussian
vector with the required covariance, so that

I(XBy) < %IOg L, + V(Q, F)XX"]|. 3)

Recall that for the scaled RD matrix, we have XX = L.,
and as a result:

I(XB;y) <

for any RD matrix X.
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Fig. 2. Plot of the lower bound (Theorem 2) for sparsity ratio 2 = 0.01
and distortion o = 0.1. For small SNR, starting around -10 dB, the sampling
rate p > 1 meaning that the number of measurements must be larger than the
size of (3 if too much noise is present.

Consequently, we also have that:
1(Siy) < 5 log (14 V(2. F)) o
and

limsup ~I(S: y) = - log (14 V(, F))

n—oo T

= glog(l +V(Q,F))

because we have * — p as n — co. Theorem 2 thus follows.
|
To illustrate Theorem 2, Fig. 2 shows a plot of the lower
bound on the sampling rate as a function of SNR in dB for
a sparsity ratio €2 = 0.01 and distortion a@ = 0.1. Here, SNR
is given by the power of the distribution of [, defined as
P(Q, F) = Q(p2% + 0%), because of the row normalization of
the scaled RD matrix X. The sampling rate grows very large
at small values of SNR. In particular, p > 1 for SNR smaller
than about —10dB, meaning that the number of measurements
needed is larger than the size of 3 if too much noise is present.
We also expect this bound to be loose at high SNR based on
the results of [4]. The apparent vanishing sampling rate at large
SNR seems to make this expectation reasonable. We also show
that this expectation holds true at least for the thresholding
algorithm considered in the next section.

IV. SUFFICIENT CONDITIONS FOR THRESHOLDING

We now show that we can recover the locations of the non-
zero tones of a sparse, wideband signal using the RD and the
thresholding algorithms in [3]. First, we must show that the
RD matrix satisfies the Coherence Property (CP). Let X be
an (unscaled) m x n RD matrix and and let z; denote the 4"
column of X. Theorem 1 tells us that X has nearly unit-norm



columns. In [3], the worst-case coherence is defined as

= maxj|<mi7xj)|, (5)

1,507,

the average coherence is defined as

1 max Z(xi,xj) , (6)

n—1 7 —
e

V=

and X is said to satisfy the CP if
0.1
P —
o= v2logn
and

v<

3

A. Worst-case and Average Coherence of the Random
Demodulator

To show that thresholding can recover the sparsity pattern
of signals sampled with the RD, we need a result from [2].

Theorem 3. [2, Theorem 9] Suppose m > 2logn. Then

leZCz,/logn} -
m

where co is a constant.

From this result, the requirement on g in the CP is satisfied
with high probability if m > cslog®n and cs is chosen
appropriately.

Turning to v, we have that:

(@i ws) =0ij+ Y evcatlrafiifs

TS TF£S

where 0;; is the Kronecker delta, f; is an entry of the (unitary)
Fourier matrix F, 7, is the inner product between columns
of the matrix H, and ¢; is the i*" entry of the Rademacher
sequence. To calculate (6), we start with

Z <xiv$j> = Z Z aTgsnr(sf:ifsj
jij#i JijFir,sir#£s
= Z E:T‘ESTIT‘Sf:i Z fsj
r,8:r#£S jij#i
= Z 5r5377rsf:iAsi (7)
r,8:r#£S
where
Asi = Z fsj
jiii
. \/ﬁ - fsia s=0
B _fsia S 7é 0
= _fsi + 55\/7;

and

s=0
s # 0.

h
0,

Substituting this back into (7):

Z <mi7mj>

J:gFi

= Z Ergsnrsf:i (_fsi) + Z€r€077r0f:i\/ﬁ

T8 TF£S r#0

S Z Ergsnrsf:ifsi +\/ﬁ ZETEOnTOf:i .
r#0

T,S:TFES

Finally, using this result in (6), we have:

1
max| Y (zi,2;)| <

n — 1 k3 —
JijF#e
* \/ﬁ *
—— max E Er€shrs frifsi + —~— max E €r€0Mro fri
—_— K3 bl 1
r,8:r#£s r#0

1
= —— max BZQ) + ﬂl max Bi@).

Lemma 6 of [2] tells us that if m > 2logn, then

at
maXBZ-(l) > ¢y ogn] <nl
1 m

Further, Lemma 5 of [2] also tells us that

maxBi(Q) >4/ 1010gn] <n L
i m

Again, if we require that m > c¢3log®n for an appropriately
chosen cs then we can ensure that v is sufficiently small to
satisfy the CP. Combining these results, we can say that as
long as n — 1 > m, then

P

P

v <

=R

with probability 1 — 2n~! where i is the upper bound on .

Finally taking a union bound over both of these conditions
holding, we have that the CP is satisfied with probably at
least 1 — 3n~!. Because the CP is satisfied, we can use (for
example) Theorem 1 of [3] to show that OST can be successful
in recovering the locations of the non-zero frequencies as long
as m > max {C5klog n, cg log? n} for appropriately chosen
cs and cg.

B. Numerical Experiments

To verify the results of Section IV-A, we performed numer-
ical experiments using the RD and the OST algorithm. The
OST algorithm only requires two steps. First, a signal proxy
g is formed

g=X"y.
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Fig. 3.  One-step thresholding results using the RD. The empirical success
rate is plotted against sampling rate and SNR in dB. The lower bound from
Theorem 2 is also shown as a reference and to highlight that OST is nearly
optimal for small values of SNR. For all these experiments, the sparsity ratio
Q2 =0.01.

Next, the locations of the non-zero coefficients are selected
via thresholding as follows:

S={1<i<n:l|g| >\

where ¢; is the i*" entry of g and X is an appropri-

ately chosen threshold (see [3]). Here, we used A =
max{20uv/nSNR, 21/2} /202 log n. We also note here that
for the RD, the first step is even less computationally intensive
than a matrix multiplication because of the special structure
of X. The results are presented in Fig. 3 along with the lower
bound from Theorem 2 (with 2 = 0.01 and o = 0.1). The
plot shows the empirical success rate as a function of the
sampling rate p and the SNR in dB. For each experiment a
new RD matrix was drawn as well as a new signal vector. The
signal vector had a constant sparsity ratio {2 = 0.01 (to match
the lower bound) and all the coefficients had the same value.
For each sampling rate and SNR pair 100 experiments were
performed.

The results confirm that the OST algorithm is nearly opti-
mal, relative to the lower bound, for small values of SNR (see
e.g., [3] or [7] for further details on this point). The gap grows
larger at higher SNR values.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed using the RD architecture
[2] for the sensing of wideband, underutilized spectrum. We
first analyzed the best performance we can get without consid-
ering a specific algorithm. If the number of measurements and
level of sparsity both scale linearly with the bandwidth, then in
the asymptotic regime recovery is not possible if the number
of measurements does not grow fast enough as the bandwidth
increases. Second, we analyzed a specific algorithm, OST, that
is very low-complexity and which works near-optimally if the
SNR is not too large and if the non-zero frequency coefficients
are all nearly the same. In the case of OST, recovery of the
locations of the non-zero coefficients succeeds if the number
of measurements 7 scales as m = max{klogn,log”n}. We
also performed numerical experiments to confirm that OST
can recover the sparsity pattern and confirmed that OST is
indeed near optimal if the SNR is small.

Some interesting directions for future work include improv-
ing the lower bound, especially in the large SNR regime, and
finding upper bounds for the RD. An upper bound could in-
clude analyzing thresholding in the asymptotic regime or other
achievable schemes that might perform better at larger SNR
values. Additionally, considering other a priori information,
such as a prior (non-uniform) distribution on S similar to
that explored in [8], we feel would lead to some useful and
interesting results.
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