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Abstract: Computational imaging based on compressed sensing (CS) has shown potential for 
outperforming conventional techniques in many applications, but challenges arise when 
translating CS theory to practical imaging systems. Here we examine such challenges in two 
physical architectures under coherent and incoherent illumination. We describe hardware 
alignment protocols that can be used to optimize system performance for each case. We found 
that an architecture using coded masks located at a conjugate image plane outperformed an 
identical architecture using masks at a Fourier plane, enabling recovery of images with up to 
64 times more resolvable points than pixels in the image sensor. We demonstrate and explain 
the basis for the tradeoff between achievable resolution and dynamic range of reconstructed 
CS images. Finally, we demonstrate that these principles can be applied beyond binary test 
targets by reconstructing a 480 × 480 image of a human tissue section from a 120 × 120 pixel 
sensor. These results provide a basis to further develop compressive imaging architectures for 
biomedical imaging and we also anticipate that these findings may be useful to investigators 
focused on translating CS theory to other real-world imaging applications. 
© 2017 Optical Society of America 
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1. Introduction 
Computational imaging has emerged as a technique that can overcome some of the limitations 
of traditional imaging methods. The approach involves indirectly imaging objects and 
integrating computational techniques in order to provide novel functionality or improve 
imaging performance [1,2]. Some computational imaging approaches use principles from the 
field of compressed sensing (CS), which provides a theoretical framework for reconstruction 
of signals from fewer samples than dictated by traditional Nyquist sampling, provided the 
signal is sparse in some known domain [3,4]. In the context of imaging, where signals are 
often sparse in wavelet domains, CS principles enable images to be recovered with more 
resolvable points than pixels in the physical sensor. This capability can allow for high quality 
imaging in applications where sensor size is constrained or where high pixel count 
CCD/CMOS arrays are expensive or unavailable [5]. 

Research in computational imaging based on the CS framework, or compressive imaging, 
has focused heavily on the formulation of mathematical CS models, and on development of 
efficient CS image reconstruction algorithms [6]. This focus is continually pushing the limits 
of CS theory, but practical limitations can easily be overlooked if theoretical concepts are not 
tested in hardware with consideration of end applications [7]. In this report, we focus on some 
challenges involved in practical implementation of CS theory in benchtop imaging hardware 
platforms, including challenges with alignment of optical components, determining the 
optimal mask element size relative to the sensor pixel size, dealing with optical aberrations, 
light coherence, light throughput, and dispersive behavior of spatial light modulators. We 
previously showed that the introduction of CS methods using spatially-coded intensity 
modulating masks at a conjugate image plane leads to a highly parallel version of the single 
pixel camera [8]. This earlier work used digitally-generated synthetic objects to examine 
challenges such as optical aberrations and alignment factors that arise in an experimental 
platform. We showed that by measuring and incorporating these real-world system 
imperfections into the mathematical model, the quality of reconstructed images can be 
improved. We extend this work here by reporting results from an experimental study imaging 
real objects in a benchtop platform. Our setup permits a direct comparison of two 
fundamental compressive imaging architectures, one with masks positioned at a conjugate 
image plane and the other with masks positioned at a Fourier (or aperture) plane. We extend 
our description of how to deal with practical issues and we examine the consequences of 
imaging under spatially coherent and incoherent illumination. We compare the two 
architectures under relaxed optical conditions in order to determine the advantages and 
disadvantages of each so we can further develop one candidate architecture in a later study. 

Our long term goal is to apply compressive imaging methods to biomedical imaging 
applications where sensor size is restricted and we limit the scope of this study to 
architectures with potential for use in this area. In particular, we believe applications in 
biomedical optics would benefit from compressive imaging approaches. For example, 
compressive imaging could have a particularly positive impact on the development of 
minimally invasive imaging devices that improve in vivo visualization of tissue in clinical 
settings. Conventional optical techniques for in vivo imaging are unable to produce images 
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with the required histopathology-level detail necessary for diagnosis because miniaturizing 
imaging devices places size constraints on imaging sensors. Compressive imaging approaches 
have shown to improve the resolution capabilities of an optical imaging system, including 
some biomedical applications [1], and could permit higher definition imaging for minimally 
invasive devices. Additionally, with the growing focus on portable, low-cost biomedical 
technologies for point of care diagnostics, computational imaging approaches can shift the 
focus from expensive hardware upgrades to computational advances, which improves device 
performance without dramatically increasing costs [9]. While our future plans involve 
translation to biomedical optics, we believe the challenges identified in this report will be of 
interest to the broader computational imaging community, as we present specific limitations 
in CS modeling and algorithms that should be considered for any hardware implementation. 

2. Compressive imaging architectures 
Many mathematical models have been developed for compressive imaging systems since the 
emergence of the single pixel camera, alongside new advancements in CS theory [10]. The 
implementation of CS-based imagers in hardware has also expanded to include several novel 
architectures, as reported in previously published reviews on compressive imaging [11–14]. 
To narrow down potential compressive imaging architectures for biomedical applications 
where sensor size is limited, we focus the following discussion on some example 
architectures from papers that have reported hardware platforms capable of improving spatial 
resolution of sensor arrays. Typically, these architectures use physical masks in the system to 
perform spatial multiplexing, a process by which coded low-resolution images are captured 
and processed to generate high-resolution images. Hardware implementation for this type of 
compressive imaging generally differs based on the action of the coded mask (modulating 
light amplitude and/or phase) and its location in the optical path (at a conjugate image plane, 
Fourier plane, or elsewhere). In each of these situations, coded masks are commonly 
implemented using an SLM rapidly switching between different patterns. The system may 
operate with spatially coherent or spatially incoherent light (we will refer to these simply as 
coherent and incoherent), with consequences for the mathematical forward model describing 
the image forming process (see Sec. 3.1). Under coherent illumination, such as laser light 
spatially filtered by a single-mode fiber or pinhole, the system is linear in complex amplitude, 
whereas under incoherent illumination, such as that provided by a diffuse or extended source, 
the system is linear in optical intensity [15]. Compressive imaging models that assume phase 
modulation is possible in the system are more appropriate for applications that image with 
coherent light [5]. While some biomedical optics applications do use wide field coherent 
illumination (such as coherent microscopy techniques, or laser speckle imaging), many image 
light that is inherently incoherent (such as light microscopy, fluorescence, or diffuse 
reflectance imaging) and therefore imposing phase modulation is more challenging [5]. 

Early CS-based imagers used amplitude-only SLMs placed at a conjugate-image plane 
within the imaging path to modulate an object’s intensity point-by-point [16]. In these image 
plane coding (IPC) architectures, the modulated light is integrated at a single photodetector or 
a focal plane array (Fig. 1(a)). An extensively studied variation of this architecture is the 
CASSI system and its offshoots [17]. This architecture uses CS for hyperspectral and 
temporal imaging along with super-resolution applications [18], typically using dispersive 
elements for spectral coding. Some CASSI developments are able to produce CS 
reconstructions in a single snapshot, using a single mask [19]. CASSI snapshot spectral 
imagers are efficient at improving spatial resolution, but multiple low-resolution 
measurements are required to attain this resolution improvement, which sacrifices imaging 
speed [19]. Other IPC systems have been developed to address this issue and achieve high-
speed imaging [20]. Other architectures use programmable apertures for Fourier plane coding 
(FPC), in which the SLM is placed at a conjugate Fourier plane (Fig. 1(b)). Here, the SLM 
modulates the spatial frequencies present in the object [21]. This configuration allows for 
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amplitude and/or phase modulation and provides the opportunity for superresolution from 
only a single measurement, therefore maintaining the possibility of high-speed imaging [22]. 
A common architecture for implementing phase modulation makes use of two masks for 
double random phase encoding (DRPE) [23]. DRPE, which was originally developed for 
optical security applications [24], has been modified for superresolution compressive imaging 
[25] (Fig. 1(c)). This technique also permits superresoultion with a single exposure and is 
suitable for diffraction-limited systems, or systems where pixel size limits image resolution 
[26]. 

 

Fig. 1. Computational imaging architectures for compressive optical imaging. (a) Image-plane 
coding (IPC) with the mask at a conjugate image plane. (b) Fourier-plane coding (FPC) with 
the mask at a Fourier plane in the imaging path. (c) Double random phase encoding uses 
separate random phase masks placed at object and Fourier planes. (d) Structured illumination 
architectures use image-plane coding with the mask at a conjugate image plane in the 
illumination path. (e) Fourier ptychography architectures use masks at a Fourier plane in the 
illumination path. (f) Lensless CS architectures use only a mask between the sensor and the 
object to modulate light emanating from the object. (g) Mask-based light field imaging 
architecture with the mask slightly in front of the sensor. 

Variations of these architectures can also implement CS imaging with the SLM in the 
illumination path. Structured illumination architectures (Fig. 1(d)) use an SLM at a conjugate-
image plane in the illumination path and follow the same generalized mathematical model as 
the IPC architecture [27]. Structured illumination microscopy techniques can even reach 
video rate imaging with better than diffraction limited resolution [28, 29]. Placing the SLM, 
or more commonly an LED array, at a Fourier plane in the illumination path (Fig. 1(e)) 
creates an architecture similar to Fourier Ptychography [30]. Compressive Fourier 
ptychography can achieve approximately an order of magnitude reduction in acquisition time 
over traditional sequential techniques [30]. Researchers are also investigating lensless CS 
systems [31–34] (Fig. 1(f)). In general, this architecture use the SLM as a coded aperture in 
the imaging path to modify the system’s point spread function, the impulse response of the 
imaging system, which is then exploited during the CS reconstruction process. A 
computational lensless microscopy platform has been developed for high resolution imaging 
of various biological samples, but the technique is limited to brightfield transmission imaging 
[34]. Compressed sensing has also theorized for use in light field imaging [35, 36] where, a 
microlens array is typically used to capture the light field emanating from a scene. Mask-
based designs for light field imaging have shown to achieve better image quality than 
microlens designs, when using an FPC architecture or coded mask placed just off the sensor 
plane [37] (Fig. 1(g)). 

Before considering a specific CS imaging architecture, it is important to establish the 
imaging restrictions imposed by the target application. With translation to in vivo biomedical 
imaging in mind, we can narrow down which architecture is best suited. Imaging fluorescent 
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dyes or proteins is often useful in biomedicine, but since fluorescent emissions are incoherent, 
architectures that use phase modulation in the illumination path are not good candidates [38]. 
Willett et al. have previously noted that phase modulation in the imaging path, as is done in 
DRPE architectures, is more appropriate for coherent imaging [5]. While in theory phase 
modulation in the imaging path with incoherent light is feasible [39], and hardware 
implementation has been demonstrated [21], masks with low light throughput are required in 
order to achieve sufficient diversity of observations for compressive imaging [21]. Therefore, 
we have chosen to investigate amplitude-only SLM since phase modulation is impractical in 
many biomedical applications, especially those in low light settings and/or requiring short 
sensor integration times. 

In addition to the amplitude or phase modulating nature of the mask element, the 
placement of this element within the imaging system can be restricted in some biomedical 
applications. Amplitude modulation at a conjugate image plane is independent of light 
coherence state and the same forward model can be used whether the modulation is 
introduced in the illumination or imaging path [15]. However, in an in vivo setting where 
trans-illumination is impractical, patterned illumination architectures can be more challenging 
to implement than using a transparent SLM in the imaging path [27]. With the SLM in the 
illumination path, the angle of incidence must be considered and stricter requirements are 
placed on the optics, including restricted F-number and the degree of telecentricity at the 
object plane [27]. Having the SLM in the imaging path at either a conjugate image or Fourier 
plane eliminates concerns about angle of incidence by maintaining co-axial alignment. While 
a lensless CS architecture is appealing for its simplicity, it is not well suited for 
miniaturization, which is often useful for in vivo imaging. Miniaturization requires reducing 
the distance between the mask and the sensor which in turn decreases the achievable 
resolution [40]. Furthermore, noise is amplified at higher spatial frequencies in lensless 
architectures [33]. Finally, the mask-based architectures used in compressive light field 
imaging have shown to be capable of slight resolution improvements [37], but this method is 
most commonly used to allow digital refocusing [41], rather than achieving better resolution 
than the imaging sensor. 

Based on the considerations discussed in this section, we chose to compare compressive 
imaging with image-plane coding (Fig. 1(a)) to Fourier-plane coding (Fig. 1(b)) to establish 
which architecture is the stronger candidate for use in biomedical imaging applications where 
sensor size is limited. Both of these architectures are theoretically capable of using magnitude 
only modulation and are not ruled out by the miniaturization restrictions discussed earlier. As 
previously mentioned, coherent and incoherent light is used in various biomedical 
applications, so we present results under both coherent and incoherent illumination. 

3. Methods 
In this section, we describe the mathematical forward models for IPC CS imaging and FPC 
CS imaging under coherent and incoherent illumination. We identify some practical hardware 
limitations and discuss how we compensate for them in our models. We describe the design 
and characterization of our experimental platform, which consists of separate IPC and FPC 
arms and we provide detailed discussion of SLM alignment methods for each arm. We 
conclude this section by showing that each arm exhibits the same baseline image quality, 
enabling a direct comparison of IPC and FPC CS imaging performance to be made. 

3.1 Mathematical models 

In this section, we derive separate forward models for the IPC and FPC arms. For each 
architecture, we condense the corresponding model to the format of a traditional CS problem 
(y = Ax) [42], which we solve for a vector representation of the object (x), using the known 
measurement matrix (A) and vectorized measured observations (y). The components of the 
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measurement matrix differ depending on the architecture and illumination used. We conclude 
this section with a figure that illustrates the key components for each of our models. 

3.1.1 Image plane coding 

The model for CS imaging with an image plane mask is effectively the same for coherent and 
incoherent illumination. The object intensity X is modified by mask iM  to produce a 

pointwise modulated version MiX of the object intensity, where  denotes elementwise 
multiplication of entries. This modulated version of the object is then imaged onto the low-
resolution sensor plane to provide an observation iY  with resolution lower than the original 

object. This is because multiple mask elements are mapped onto each sensor pixel in the 
sensor array. Under perfect system alignment, iY  depends only on the object, the mask 

pattern, and the mask element to sensor pixel ratio d, which represents the number of mask 
elements that are mapped onto a single pixel at the sensor plane. In mathematical terms, if the 

object intensity is represented by the matrix X, the mask by the n n×  matrix iM , and the 

observation by the m m×  matrix iY , then the forward model for an ideal IPC system with 

an element-to-pixel ratio d n m=  can be written as: 

 ( )i r i cY D H M X D= ⊗    (1) 

where ⊗ denotes linear convolution, and rD  and cD represent row and column downsampling 

by a factor of d , respectively. The matrix H is a d d×  matrix with all entries equal to 
1/ d , indicating an equal mapping of light from individual mask elements to the 
corresponding sensor pixel. The process of accumulating light from multiple mask elements 
onto each sensor pixel is represented by a convolution with the matrix H followed by 
downsampling in each dimension. This convolution with the matrix H is essentially blurring 
the masked object intensity and so each observation can be thought of as the blurred and 
downsampled version of the masked object intensity. Here, all non-integer issues are avoided 
when considering dimensional quantities. The mask pattern iM  is changed several times and 

the corresponding observations ( iY ’s) are used for reconstruction of the unknown object 

intensity X through CS inversion methods. Further discussion of CS reconstruction algorithms 
is beyond the scope of this paper and will be reported in a later study. 

In practice, optical aberrations, physical limitations in hardware, and misalignments 
between the mask and sensor all affect the measured observations. We previously showed that 
accounting for these non-idealities within the system model improves the quality of CS 
reconstructed images [8]. This is done by replacing the matrix H with a system specific 
convolution kernel in the forward model (Eq. (1)). More complex models for incorporating 
real-world imperfections can be formulated, but the model put forth here is fairly simple and 
can provide substantial improvements in the final reconstructions [8]. 

Under ideal conditions, H is a d d×  matrix, as noted before. In practice, however, H 
should be selected as a larger square matrix to account for contributions from any number of 
mask elements to individual sensor pixels. Our earlier report also outlined a method to 
calculate H for an IPC system by using training data collected with the imaging platform and 
objects of known intensity [8]. In the study reported here, H is estimated as a non-negative 
Gaussian low-pass filter whose parameters (size and variance) are selected empirically. 
Specifically, various parameter values are used to obtain reconstructions from real image data 
using a few observations and then the parameters that produce the best results upon visual 
inspection are selected. This method of selecting the H matrix produces results of similar 
quality to an H calculated using the method outlined in [8] for a system with well-aligned 
optics. 
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The model in Eq. (1) can be written in terms of vector entities to arrive at a form that is 
more recognizable for CS reconstruction methods [8]: 

ii H My DT x= Λ (2)

where iy  is the 1m×  vectorized observation, 
iMΛ is an n n×  matrix with mask elements on

the diagonal, HT  is an n n×  Toeplitz-structured two-dimensional convolution matrix with 

convolution kernel H as its Toeplitz blocks, and D is an m n×  matrix that combines row and 
column downsampling. For reconstruction purposes, different observations ( iy ’s) are 

concatenated lengthwise (to form a larger observation vector) and different 
iMΛ are appended

row-wise (to form a taller matrix) and thus a larger system of linear equations is solved for 
the unknown vectorized object intensity, x. 

3.1.2 Fourier Plane Coding With Coherent Light 

The preceding discussion for IPC also applies to the FPC arm, with the major difference 
being the mask placement at a conjugate Fourier plane. Mathematically, the model for FPC 
with coherent light can be written as: 

( ){ } 21
i r i cY D H M X D− = ⊗  

  (3)

Where   and 1−  represent forward and inverse Fourier transforms respectively 

represents entry-wise absolute values, and H again models the optical imperfections of the 
system and is estimated as a Gaussian kernel. To model coherent illumination, the mask is 
combined with the object field before the magnitude operation, since coherent light is linear 
in complex amplitude. The forward model for this FPC system can also be written in the 
traditional CS form by vectorizing the object intensity and the measured observations: 

( ){ } 2
1

ii H My DT x−= ΛF F (4)

WhereFand 1−F are the two-dimensional forward and inverse Fourier transforms, 
respectively, represented as matrix operations on vectors. As before, we can concatenate 
different observations to solve a larger system of equations for unknown object intensity, x. 

With the forward model put forth in Eq. (4), we are outside the domain of traditional CS 
imaging because the observations made ( iy ’s) provide only magnitude information, with 

phase information lost due to the magnitude operator. Thus, phase information must be 
recovered in addition to solving for the unknown object intensity. Hence, CS reconstruction 
for FPC imaging with coherent illumination requires phase retrieval coupled with the 
reconstruction in order to recover the unknown object intensity. 

3.1.3 Fourier Plane Coding With Incoherent Light 

In an incoherent Fourier optics setting where light is linear in intensity, the point spread 

function of the system is determined by the mask and can be expressed as ( ) 21
iM−  [5]. 

Therefore, the forward model for the FPC arm under incoherent light can be expressed as a 
convolution of the magnitude-squared of the inverse Fourier transform of the mask with the 
object: 

( ){ }21
i r i cY D H M X D− = ⊗ ⊗  

 (5)
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where H is again the system-specific convolution kernel, estimated by a similar Gaussian 
kernel to that used in Eq. (1). Vectorizing this model results in the following forward model: 

 
ii H My DT T x=  (6) 

where HT  and 
iMT  are the Toeplitz structured two-dimensional convolution matrices arising 

from H and from the magnitude-squared of the inverse Fourier transform of M, respectively. 
The model in Eq. (6) can also be appended to incorporate multiple observations for the 
reconstruction of the unknown object. 

Figure 2 provides a visual representation for the main mathematical components of each 
forward model discussed above. The positions of lenses in each architecture correspond to the 
diagrams in Fig. 1 where lens L1 converts the object (X) to the spectral domain and lens L2 
converts back to the image domain. The relay lenses image the modulated scene onto the 
sensor that captures a downsampled observation (Y). Note that the type of mask (M) used in 
the FPC model with incoherent light is not a random binary mask. The reasons for this choice 
are outlined in Sec. 3.2. 

 

Fig. 2. Illustration of CS forward models for a single observation. (Top row) Illustration of our 
IPC model as defined in Eq. (1). (Middle row) Illustration of our FPC model with coherent 
light as defined in Eq. (3). (Bottom row) Illustration of our FPC model with incoherent light as 
defined in Eq. (5). 

3.2 Mask design 

We performed software simulations of each architecture with different types of mask patterns 
to determine which to explore in hardware. For this purpose we chose the commonly used 
“Cameraman”, “Lena”, and USAF 1951 images as our test images. We perform all the 
simulations in Matlab by using the mathematical models of the imaging architectures 
described earlier. We pass the test images through these mathematical models, with ideal and 
non-ideal H matrices, and in the presence and absence of noise. The masks that produce better 
quality reconstructions, as dictated by having the lowest mean squared error, are the ones 
chosen for our experiments with the hardware setup. 

Random binary masks are commonly used for CS imaging because they provide sufficient 
observational diversity, meaning that multiple observations of the same object differ 
significantly for different masks. Our simulations corroborated this behavior with the IPC 
model and therefore binary masks were used for all IPC results in this study. 
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For FPC with incoherent light, random binary masks are poorly suited because the model 
requires taking the magnitude of the mask’s Fourier transform (see Sec. 3.1.3). For random 
binary mask, the magnitude of their Fourier transform is effectively a two-dimensional delta 
function because the central DC component is several orders-of-magnitude larger than all 
other components. This, combined with the non-negativity constraint intrinsic to an 
incoherent setting causes observational diversity to decrease as the number of non-zero 
elements in the mask increases [21]. However, in practice, a minimum number of non-zero 
elements must be included in the mask to achieve sufficient light throughput and signal-to-
noise ratio at the sensor [21]. This dictates that the masks suitable for FPC with incoherent 
light should have some notion of sparsity in order to achieve the observational diversity 
necessary for CS, but not so much that the light throughput is insufficient to produce enough 
signal at the detector. Therefore, we performed simulated experiments in Matlab using 
random masks (Fig. 3, top row), sparse random binary masks, masks with gratings of 
different frequencies and at different angles, masks with rings of varying widths and varying 
radii, and finally masks resembling Gabor filters (Fig. 3, middle and bottom rows). For 
random binary masks (Fig. 3, top row) the image domain equivalent of the mask that is 
convolved with the scene is close to an impulse, so there is low observational diversity from 
mask to mask. Gabor-like masks with few small impulses (Fig. 3, middle row) have high 
sparsity and maintained sufficient observational diversity. However, pixel intensity of 
observations is low due to the low light throughput of the masks. Increasing the throughput of 
Gabor masks (Fig. 3, bottom row) renders the image domain equivalent closer to an impulse 
and reduces the observational diversity across different masks, but is necessary to produce 
higher intensity observations It is important to balance this tradeoff when selecting masks for 
incoherent FPC imaging. From a practical standpoint, the masks that provided ample light 
through with some observational diversity were the masks resembling Gabor masks. 

 

Fig. 3. Masks for FPC with incoherent light. (Top row) Random binary masks displayed at the 
Fourier plane have corresponding image domain equivalents with very large DC components, 
which reduces observational diversity across different masks. (Middle row) Low-throughput 
Gabor masks contain few non-zero elements, which reduces the DC component in relation to 
other components and increases diversity of observations. (Bottom row) High-throughput 
Gabor masks behave closer to random binary masks and result in lower observational 
diversity. Images are scaled for visualization. 

For FPC with coherent light, phase masks are traditionally implemented using liquid 
crystal devices. However, as noted in Sec. 2, our design constraints lead us to focus only on 
amplitude modulation. These masks modulate the light amplitude in the Fourier domain and 
our simulations suggest they can provide ample observational diversity for exploiting CS 
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principles. In summary, the results presented throughout this paper use random binary {0,1} 
masks with a 50/50 pass/block ratio for all IPC results and for FPC with coherent light. For 
FPC with incoherent light, we use Gabor filter masks. 

3.3 Experimental platform 

We assembled a benchtop platform consisting of a common illumination arm and object 
stage, separate IPC and FPC arms and a third “witness camera” arm for ground truth imaging 
(Fig. 4). We use two identical digital micromirror devices (DMDs) (Texas Instruments, 
DLP® LightCrafter 6500 Evaluation Module) as SLMs that display two-dimensional 8-bit 
mask patterns. The DMDs are positioned at a conjugate image plane and a conjugate Fourier 
plane in the IPC and FPC arms, respectively. Two flip mirrors are used to direct light from 
the object through one of the three arms. Both CS imaging arms consist of identical lenses 
aligned in a 4f system where the focal length of L1 and L2 is 150 mm (Thorlabs, AC254-150-
A). Infinity-corrected microscope objectives L3 (Olympus, UPLFLN 10X2) image each 
modulated projection of the object onto a 14-bit CCD array with 1384 × 1036 pixels, each 
6.45 μm square (Point Grey Research, GRAS-14S5M-C). The witness arm contains a CMOS 
sensor with 3856 × 2764 pixels, each 1.67 μm square (The Imaging Source, DMK 24UJ003). 

 

Fig. 4. Photo of the benchtop compressive imaging platform displaying beam paths for the IPC 
arm (solid line) and the FPC arm (dashed line). The high-resolution “witness” camera takes 
ground truth images of the object for comparison to computationally reconstructed images 
(dotted line). 

We use three separate light settings for trans-illumination of the object: incoherent 
broadband, incoherent narrowband, and coherent. To generate an incoherent broadband light 
setting we use a cold white LED (Thorlabs MCWHL5). This produces negligible chromatic 
aberrations in the IPC arm, but the discrete, tilting mirrors of the DMD act as a blazed 
diffraction grating when placed at a conjugate Fourier plane [43]. This behavior results in a 
laterally blurred image at the camera under broadband illumination as different wavelengths 
exit the DMD at different angles, making FPC CS difficult under broadband incoherent 
illumination. However, FPC can still be evaluated under spatially incoherent light by reducing 
the bandwidth of the source, minimizing the dispersive behavior of the DMD. For a region of 
960 × 960 mirrors, the DMD acts as a blazed grating of N = 1920 lines with the highest power 
image appearing in the m = 6th diffraction order. A light source with a center wavelength of 
λ0 = 633 nm and bandwidth of Δλ = λ0/mN = 0.055 nm or greater would lead to significant 
dispersion, resulting in image features blurred along the direction of mirror tilt [44]. 
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Therefore, to generate an incoherent narrowband light setting we illuminate objects with 
collimated light from a single-mode fiber-coupled HeNe laser (λ0 = 633 nm, Δλ = 0.0006 nm) 
and transmit the beam through a spinning ground glass diffuser (Thorlabs, DG10-600-MD). 
This diffuser is simply removed to generate a coherent light setting. 

3.4 System alignment 

In a compressive imaging system, accurate alignment of the coded mask is necessary for peak 
performance of CS reconstruction algorithms. This can be difficult to attain in practice 
because mask elements in the SLM are demagnified at the sensor plane, making them smaller 
than the camera pixels. As a result, the low resolution image sensor is unable to resolve the 
high resolution mask elements, eliminating the ability to directly visualize mask elements on 
the camera for feedback. To address this challenge, we developed separate alignment methods 
for the IPC and FPC arms to ensure that the mask displayed on the DMD is laterally centered 
with the CCD (Fig. 5). Each DMD is mounted on a 3-axis translation stage to permit fine 
positioning. To align the IPC arm we first turn on only the central 4x4 mirrors in the DMD. 
We then acquire an image with the IPC arm to capture the CCD response. Under perfect 
alignment (Fig. 5(b)) with an element-to-pixel ratio of d = 4, the 4x4 mirrors should image 
exactly onto 2x2 CCD pixels. Thus, when the DMD is well aligned with the sensor array, the 
CCD response shows the center 4 pixels white and all others mostly black (Fig. 5(b)). If the 
DMD and CCD are misaligned (Fig. 5(a)) then the CCD response exhibits asymmetry for the 
center pixels, which can be reduced by adjusting the 3-axis positioning stage. Note that in the 
CCD response of the “well-aligned” system (Fig. 5(b)) the pixels adjacent to the center 4 
pixels are not perfectly black. This is an example of the “leakage” due to system specific 
imperfections discussed in Sec. 3.1 and which we account for with the H term in our model. 

 

Fig. 5. Alignment techniques for IPC and FPC imaging. (a,b) For IPC alignment, a central 
group of 16 mask elements is set in the “on” position and the DMD is translated until light is 
primarily confined to the central 4 CCD pixels (b). (c,d) For FPC alignment, a central group of 
mask elements are set in the “off” position and the DMD is translated until the mask produces 
a high-pass filter effect in the acquired image (d). 

The same alignment method cannot be used for the FPC arm because mask elements are 
not directly imaged onto the CCD. Rather, the mask acts as a spatial filter, passing and 
blocking certain Fourier components. Under coherent illumination, the Fourier transform of 
the object is visible at the Fourier plane and the DMD can be used as a high-pass filter by 
blocking low spatial frequencies at the center of the Fourier transform. As a result, the image 
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captured by the CCD will be dark with bright edges. We used coherent illumination and a 
transparent chrome-on-glass USAF 1951 resolution target to align the FPC arm of our system. 
We turn on all except the center 4 mirrors of the DMD, which are then aligned to block the 
DC component, resulting in a high-pass filtered image captured by the CCD in our FPC arm 
(Fig. 5(d)). If the DMD is misaligned (Fig. 5(c)), the image shows edges that are not 
highlighted as strongly and a background shifted to higher values. The system maintains 
alignment for incoherent illumination when the diffuser is removed. 

3.5 System characterization 

In order to make a direct comparison of IPC to FPC for CS imaging architectures, we used the 
same hardware components in each arm. In this section, we present images taken without 
using coded masks or application of CS algorithms to show that each system arm exhibits the 
same baseline resolution for a given illumination. These “no mask” images represent imaging 
with a conventional, non-CS imaging system and are taken with each DMD set to reflect light 
from all mask elements (essentially acting as a plane mirror). For all “no mask” images, we 
used a region of 120 × 120 CCD pixels to image a portion of the 1951 USAF resolution target 
with a field of view (FOV) of 7.3 mm × 7.3 mm. The ground truth images taken with the 
witness camera show the same field of view with a higher pixel density to visualize the true 
scene for comparison. Witness camera images provide evidence that the additional details 
resolved using our CS method do in fact match the true details of the tissue sample. 
Therefore, the witness camera is used solely for evaluation purposes and does not represent a 
“gold-standard” image for a specific application. 

 

Fig. 6. “No mask” images of a 1951 USAF resolution target with the witness camera, FPC, and 
IPC arms under coherent and incoherent illumination. The arrows in panels (a-c) indicate the 
origin of the intensity line profiles extending vertically across the group 3 elements for each 
image. Scale bar in (a) represents 1 mm for all images. 
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The top row in Fig. 6 shows images taken under coherent illumination. Vertical line 
profiles of measured pixel intensities across the group 3 elements (depicted by arrows) are 
provided in the right-hand column. Figure 6(a) is the high-resolution (2880 × 2880 pixel) 
ground-truth image from the witness camera. Note that the corresponding line profile (black) 
clearly resolves the line pairs within each element of group 3. When no CS is used, the raw 
images (120 × 120 pixels) taken with the FPC arm (Fig. 6(b)) and the IPC arm (Fig. 6(c)) are 
qualitatively similar, but with lower resolution than the ground truth image (Fig. 6(a)). Their 
corresponding line profiles (blue for FPC and red for IPC) show that the resolution is limited 
by the CCD pixel size in each arm. The resolution limit of both CS arms is similar under 
coherent illumination, each resolving three peaks for element 2 in group 3, which corresponds 
to a feature size of 55.68 μm. Our FPC arm resolved these features with 54.7% contrast and 
the IPC arm resolved the same features with 74.9% contrast. This experiment established that 
the two CS imaging arms achieve the same baseline imaging performance under coherent 
illumination. The middle row of Fig. 6 provides the corresponding images for incoherent 
narrowband illumination. Again, we see that images from the IPC and FPC arms are similar 
to each other but of lower quality than the ground truth image, with line profiles resolving 
three peaks for the 55.68 μm features in group 3 element 2. With incoherent narrowband 
illumination, our FPC arm and IPC arm resolve these features with 20.4% and 23.4% contrast 
respectively. Under incoherent broadband illumination (Figs. 6(g)–6(i)), the dispersive 
behavior of the DMD (see Sec. 3.3) results in blurring along the direction perpendicular to the 
tilt axis of the DMD in the FPC configuration (Fig. 6(h)). Due to this specific limitation 
arising from the use of a DMD as the masking device, we elected not to compare IPC to FPC 
for CS under incoherent broadband illumination. We will continue using incoherent 
broadband illumination in our IPC system arm for the following experiments as an additional 
example of IPC compressive imaging. The line profile for this configuration shows the 55.68 
μm features in group 3 element 2 are resolved with 47.8% contrast. 

Modulation transfer function (MTF) curves were also generated for each arm of the 
system by calculating the contrast for each line pair element in the images shown in Fig. 6. 
Third order polynomial fits were generated for each MTF data set (Fig. 7). For the witness 
arm (black curves), the image contrast is worse for incoherent narrowband illumination than 
the other two light settings because the spinning diffuser does not completely remove the 
laser speckle pattern [45]. Nevertheless, The MTF curves in Fig. 7 show that under coherent 
and narrowband incoherent illumination the IPC and FPC arms exhibit comparable imaging 
performance, allowing a direct comparison of computational imaging in these two 
architectures. The incoherent broadband curves (dot-dashed lines) are included to 
demonstrate the “best case” scenario for IPC with incoherent illumination. 

 

Fig. 7. Plots of the modulation transfer function (MTF) for each system arm; witness arm 
(black), IPC arm (red), FPC arm (blue). Line style indicates the illumination setting; coherent 
(solid), incoherent narrowband (dashed), or incoherent broadband (dot-dashed). 
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4. Results 
We compared our two CS imaging architectures to each other and to the common post-
processing image enhancement technique of bicubic interpolation. For both CS imaging arms, 
masks with m = 480 × 480 elements were used with a region of n = 120 × 120 CCD pixels 
used for acquiring observations with a 7.3mm × 7.3 mm FOV. CS reconstruction algorithms 
using 100 masked observations then generated images with N = m = 480 × 480 pixels, 
maximizing the resolution of reconstructed images. For the IPC arm, we used a reconstruction 
algorithm based on Nesterov's Proximal-Gradient (NPG) method [46]. This algorithm was 
chosen because it includes the non-negativity constraint required for our CS reconstruction 
problem, and it results in high-quality image reconstruction [8]. The FPC arm under coherent 
light requires phase retrieval to be coupled with the CS reconstruction. For this reason, we 
used the Reshaped Wirtinger Flow Algorithm [47]. Finally, for the FPC arm under incoherent 
illumination, we used the TwIST method [48], because it is less prone to error than the NPG 
method when working with low signal-to-noise observations (see discussion in Sec. 3.2). As 
for the computational time, for a maximum of 20 iterations NPG and TwIST both take around 
4 minutes on average for reconstruction when using 100 observations. RWF for coherent FPC 
takes around 8.5 minutes on average when run for 20 iterations with 100 observations. While 
these reconstruction times do not enable real-time processing of images, it should be noted 
here that optimizing the reconstruction algorithms for these architectures is not something we 
have focused on in this report. The purpose here is to use an appropriate off-the-shelf 
algorithms and run them in Matlab on a standard PC (Windows 10 64-bit, Core i7-3770 @ 
3.40 GHz, 16GB RAM). It has been documented that implementing these algorithms on 
GPUs can speed up computational time [49], but our main objective for this report is to test 
each CS architecture in hardware rather than optimize the reconstruction process. 

Figure 8 presents results from both CS arms under incoherent illumination. The bicubic 
interpolation images in the top row (Figs. 8(a), 8(d), and 8(g)) are generated by post-
processing the “no mask” images in Fig. 6. Examining the CS reconstructions in the middle 
row (Figs. 8(b), 8(e), and 8(h)), it is clear that the IPC architecture under both narrowband 
(Fig. 8(e)) and broadband illumination (Fig. 8(h)) recovers more detail than the respective 
images post-processed with bicubic interpolation (Figs. 8(d), and 8(g)). Specifically, the 
zoomed-in region around group 3 on the USAF target shows that the smaller line pairs and 
numbers that are not discernable in the “no-mask” or bicubic interpolation images are much 
clearer using CS reconstruction. Furthermore, the associated line profiles (Fig. 8(c), 8(f), and 
8(i)) show quantitatively that the IPC CS reconstructions (red lines) can resolve all elements 
in group 3, including the 35.08 μm group 3 element 6 with 51.4% contrast for narrowband 
and 56.7% contrast for broadband incoherent illumination. At its limit, the IPC arm resolves 
up to the 19.69 μm features in group 4 element 5 with 18.8% contrast for narrowband and 
29.8% contrast for broadband incoherent illumination. In comparison, we found the same 
system using bicubic interpolation (blue lines) instead of CS can only resolve up to the 55.68 
μm features in group 3 element 2 with 23.4% contrast narrowband and 47.8% contrast for 
broadband incoherent illumination. Therefore, our IPC compressive imaging architecture is 
able to resolve features that are nearly one-third the size of those that the same hardware 
without CS is able to resolve. Additionally, the lower baseline contrast that our incoherent 
narrowband illumination displayed in Figs. 6 and 7 is also seen in CS reconstructions when 
comparing IPC under narrowband (Fig. 8(f)) versus broadband (Fig. 8(i)) incoherent 
illumination. Reconstructions with broadband illumination have slightly higher contrast and 
more defined features than narrowband illumination. 
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Fig. 8. CS reconstructions vs. bicubic interpolation under incoherent illumination. Top row: 
Bicubic interpolation. Middle row: CS reconstructions. Bottom row: Line profiles across the 
group 3 elements. Outlined in red are digitally zoomed regions with arrows indicating the 
origin of vertical line profiles across the group 3 elements; blue corresponds to bicubic 
interpolation and red to CS reconstruction. Scale bar in (a) represents 1 mm for all images. 

Based on both visual and quantitative assessment, there appears to be no clear benefit to 
using FPC CS imaging over bicubic interpolation (Fig. 8(a)–8(c)). CS imaging results from 
the FPC arm did not resolve any USAF target line pairs beyond those resolved by bicubic 
interpolation, with CS reconstructed images no closer to the ground truth image in Fig. 6(d). 
These CS reconstructions resolve the 55.68 μm group 3 element 2 features with 16.5% 
contrast whereas the bicubic interpolation resolves the same features with 20.4% contrast. 
These data suggest that using a coded amplitude mask at a conjugate image plane improves 
CS image quality more than using the same masks at a Fourier plane, when incoherent 
illumination is used. The FPC architecture is less effective in part because we are limited to 
using amplitude-only masks. Specifically, achieving sufficient light throughput requires using 
amplitude masks with many non-zero elements, which, as noted in Sec. 3.2, makes the CS 
inverse problem more difficult to solve due to insufficient diversity between observations. 
Furthermore, we believe that any slight mismatch between how we mathematically model this 
system and the actual physical setup can lead to poor reconstruction quality. Specifically, we 
have noted that even minor misalignments cause image quality to degrade quickly. 

Results are shown in Fig. 9 for CS reconstructions under coherent illumination. As 
discussed in Sec. 3.1, the mathematical model for IPC is the same for coherent and incoherent 
illumination. Consequently, with IPC we see a similar result to the incoherent case shown in 
Fig. 8, where the CS reconstruction resolves more detail than bicubic interpolation (Fig. 9(d)–
9(f)). The CS reconstructions resolve the 35.08 μm features in group 3 element 6 with 23.6% 
contrast. While the line profile for the IPC CS reconstruction (Fig. 9(f), red) show improved 
resolution with all elements in group 3 resolved, the results provide just above half the 
contrast that IPC CS reconstruction with incoherent light provide for the same line pair 
elements (Fig. 8(f), and 8(i), red). This is potentially related to edge ringing with coherent 
light. Because the lenses, mirrors, and the DMD itself each have finite extent, the light 
passing through the system is band limited, meaning that the highest spatial frequency 
components of the object are cut off. Under coherent illumination, this causes the intensity 
near sharp edges to appear as a sinc function, with ringing artifacts around edges. 
Additionally, reflections from curved and flat lens surfaces can lead to interference patterns 
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under coherent illumination (see for example Fig. 6(a)), which may also contribute to lower 
contrast in the IPC CS reconstructions. 

 

Fig. 9. CS reconstructions vs. bicubic interpolation under coherent illumination. Outlined in 
red are digitally zoomed regions of the group 3 elements with arrows indicating the origin of 
vertical line profiles; blue for bicubic interpolation and red for CS reconstructions. Scale bar in 
(a) represents 1 mm for all images. 

In contrast to IPC, the FPC forward model differs for coherent and incoherent light. Using 
the model for FPC with coherent light outlined in Sec. 3.1.2, we see that CS reconstructions 
with our FPC arm are, again, no better than bicubic interpolation. In fact, CS reconstructions 
appear noisy with substantial artifacts. The line profiles show these CS reconstructions only 
resolve up to the 55.68 μm group 3 element 2 features with 30.2% contrast. We believe the 
poor quality of these reconstructions is primarily due to limitations in the phase retrieval 
algorithm because our numerical simulations of this architecture also failed to generate 
substantially better images than bicubic interpolation. 

To further evaluate the IPC and FPC compressive imaging architectures, we examined 
whether the number of coded mask elements mapped to each camera pixel (d) influenced the 
quality of CS reconstructions. For this, we used a region of 960 × 960 DMD mirrors to 
generate three different size masks: (i) 960 × 960, (ii) 480 × 480, and (iii) 240 × 240. For (i), 
each individual DMD mirror served as a single mask element. For (ii), groups of 2 × 2 DMD 
mirrors were binned (assigned the same value) and acted as a single mask element. For (iii), 
groups of 4 × 4 mirrors were binned. For all mask sizes, the same 120 × 120 pixel region of 
the CCD was used to acquire images, resulting in element-to-pixel ratios of d = 64, d = 16, 
and d = 4 for configurations (i), (ii), and (iii), respectively. CS reconstruction images were 
generated with the same dimensions as the mask size. The data presented in Fig. 10 are for 
incoherent narrowband illumination only, but similar trends were seen for incoherent 
broadband and coherent illumination. CS reconstructions with the FPC arm (Fig. 10, top row) 
appear to become less pixelated as d increases, but image quality and detail does not improve. 
For all three mask sizes evaluated, the FPC architecture did not produce images of higher 
quality than bicubic interpolation. 

For the IPC arm, more detail was recovered, but the average image intensity became 
lower as d increased (Fig. 10, bottom row, left to right). The digitally zoomed view of group 3 
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elements shows that the numbers and line pairs appear sharper as mask size increases. This is 
because the individual mask elements are smaller, offering higher resolution modulation of 
the object and recovery of smaller details. However, this improved resolution comes at the 
cost of image brightness, as demonstrated by the darker image produced from IPC CS 
reconstruction with 960 × 960 masks. All masks used have the same light throughput 
regardless of mask size, but individual observations through masks with larger numbers of 
elements appeared to exhibit reduced contrast. Large masks have more individual elements 
mapped onto each individual camera pixel, so the resulting average of random black or white 
elements trends toward a more homogeneous grey. This in turn reduces the diversity between 
observations, making the CS inverse problem more difficult to solve. Low diversity makes it 
more difficult for CS reconstruction algorithms to converge, which manifests as an overall 
darkening in reconstructed images. While the images could be digitally brightened in post-
processing for visualization purposes, this would not yield additional detail and would also 
make artifacts and noise more pronounced. Masks designed to avoid this “greying” could 
result in brighter reconstructed images in future studies. 

 

Fig. 10. CS reconstructions with different numbers of coded mask elements mapped to each 
camera pixel, for the FPC and IPC arms under incoherent narrowband illumination. Mask sizes 
of 240 × 240, 480 × 480, and 960 × 960 mapped to a 120 × 120 pixel region on the camera 
correspond to mask element to pixel ratios of 4, 16, and 64, respectively. 

Finally, we demonstrated the feasibility of applying these CS imaging principles to a 
biomedical problem by imaging an H&E stained histopathology section of human colon 
tissue (Fig. 11). We used the IPC arm of the system with incoherent broadband illumination 
because that combination was found to produce the best CS reconstructions for the USAF 
target object (Fig. 8). The same 120 × 120 region of sensor pixels was used with d = 16. A 
color camera (Point Grey Research, GRAS-14S5C-C) attached to a benchtop microscope was 
used to capture a ground truth image of the tissue section. We stitched together several 
smaller FOV images of the sample to construct the color image displayed in Fig. 11(a). This 
image provides visualization of the small tissue details for comparison. Figure 11(d) shows a 
digitally zoomed region of this image with individual crypts visible (the round features with 
purple stained borders). Imaging the same area with the low resolution (monochrome) camera 
in the IPC arm of our system without CS showed a loss of detail even when bicubic 
interpolation is used (Fig. 11(b)). Furthermore, individual crypts could no longer be 
distinguished (Fig. 11(e)). Using the IPC CS architecture with the same sensor resolution, we 
recovered much of the lost tissue detail (Fig. 11(c)), with individual crypts resolved (Fig. 
11(c), and 11(f)). 
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Fig. 11. Application of IPC CS to imaging biological tissue. (a) H&E stained histopathology 
section of the colon with digitally zoomed region (d). Scale bar in (a) represents 1 mm. (b) 
Image of the same tissue section from the IPC arm after bicubic interpolation, and 
corresponding digital zoom (e). 480 x 480 pixel IPC CS reconstruction from 120 x 120 pixel 
observations (d = 16) with corresponding zoomed region (f). All images were captured with 
incoherent broadband illumination. Scale bar in (a) represents 1 mm for images (a) – (c). 

5. Conclusions 
Two imaging architectures based on the CS framework were evaluated experimentally in a 
direct head-to-head comparison. Results indicated that the image plane coding architecture is 
more effective for reconstructing high resolution images than Fourier plane coding, under 
both incoherent (Fig. 8) and coherent illumination (Fig. 9). There are multiple potential 
explanations for these findings. Examination of our forward model for FPC under coherent 
illumination shows that the mask and object field are convolved prior to the magnitude 
operation. Solving the inverse problem thus requires knowledge of the phase. Adding a phase 
retrieval operation on top of solving the CS inverse problem makes the system even more 
difficult to solve accurately and can lead to lower quality reconstructions. Using a focal plane 
array sensor that can physically measure both amplitude and phase information, or employing 
better CS-phase-retrieval algorithms could potentially improve reconstruction accuracy of 
FPC under coherent illumination. In fact, our simulations indicated that with the availability 
of accurate phase information, the CS reconstruction can converge to a higher quality image. 

When implementing FPC in an incoherent light setting (which is linear in intensity rather 
than complex amplitude), phase retrieval is no longer necessary. However, with the 
incoherent FPC model, there is a tradeoff between light throughput and observational 
diversity, as discussed in Sec. 3.2. Because the object intensity is convolved with the mask at 
the Fourier plane, the mask must have relatively few non-zero elements in order to generate 
observations with sufficient diversity [21]. The use of coded masks with a small number of 
non-zero elements results in good diversity between observations, but poor light throughput, 
which can degrade the quality of reconstructed images. One reason that the FPC architecture 
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with incoherent illumination was unable to substantially improve image quality over bicubic 
interpolation could be that there was not sufficient observational diversity. Since our 
simulations of this architecture showed achieving higher observational diversity is possible if 
masks have very high sparsity, future studies could evaluate such masks experimentally. 
However, we found that the majority of light was blocked due to the low throughput of high 
sparsity masks. This limitation is especially concerning since we intend to further develop a 
CS architecture for biomedical applications where low light settings are common. 

We found that the IPC CS architecture was able to resolve 19.69 μm features, whereas a 
conventional imaging method without CS using the same hardware was limited by the size of 
CCD sensors and could only resolve up to 55.68 μm features (Fig. 8). Noticeable artifacts 
present in reconstructed images using our IPC CS architecture are (1) that CS reconstructions 
are generally darker than bicubic interpolation images and (2) that CS reconstructions appear 
to have a textured noise pattern throughout. Both of these artifacts are due to limitations of 
the reconstruction algorithm. Improved CS algorithms that reduce these artifacts would 
improve final image quality for this IPC CS architecture. 

With the IPC architecture, we found that increasing the number of elements in the 
modulating mask allows CS algorithms to reconstruct images with higher resolution, but at 
the expense of overall image brightness (Fig. 10). Beyond imaging the standard binary USAF 
test target, using IPC with 16 mask elements mapped to each sensor pixel, we showed that 
480 × 480 pixel images of biological tissue can be reconstructed from a 120 × 120 pixel 
sensor, resolving features that were indistinguishable when the same hardware is used for 
conventional imaging (Fig. 11). 

Future investigations should involve evaluating different optimization-based CS 
algorithms and modified models to better match the experimental system in order to reduce 
reconstruction artifacts. Optimizing mask design could minimize the number of masks needed 
to reconstruct images with the desired level of detail, which will potentially assist toward 
moving these CS-based systems to video rate imaging. 
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