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ABSTRACT

Multipath signal propagation is the defining characteristic of terres-
trial wireless channels. Virtually all existing statistical models for
wireless channels are implicitly based on the assumption ofrich
multipath, which can be traced back to the seminal works of Bello
and Kennedy on the wide-sense stationary uncorrelated scattering
model, and more recently to the i.i.d. model for multi-antenna chan-
nels proposed by Telatar, and Foschini and Gans. However, physical
arguments and growing experimental evidence suggest that physical
channels encountered in practice exhibit a sparse multipath structure
that gets more pronounced as the signal space dimension getslarge
(e.g., due to large bandwidth or large number of antennas). In this
paper, we formalize the notion of multipath sparsity and discuss ap-
plications of the emerging theory of compressed sensing forefficient
estimation of sparse multipath channels.

1. INTRODUCTION

Multipath—signal propagation over multiple spatially distributed
paths—is the most salient feature of wireless channels and ne-
cessitates statistical channel modeling due to the large number of
propagation parameters involved. Multipath propagation is both a
curse and a blessing from a communications viewpoint [1]. Onthe
one hand, multipath propagation leads to signalfading—fluctuations
in received signal strength—that severely impacts reliable commu-
nication. On the other hand, research in the last decade has shown
that multipath is also a source ofdiversity—multiple statistically in-
dependent modes of communication—that can increase the rate and
reliability of communication. Multipath diversity manifests itself in
various forms, including delay, Doppler, spatial and multiuser. The
impact of multipath fading versus diversity on performancecritically
depends on the the amount of channel state information (CSI)avail-
able to the system. For example, knowledge of instantaneousCSI at
the receiver (coherent reception) enables exploitation ofdiversity to
combat fading. Further gains in capacity and reliability are possible
if (even partial) CSI is available at the transmitter as well.

Statistical characteristics of a wireless channel depend on the
interaction between the physical multipath propagation environ-
ment and the signal space of the wireless transceivers. For modern
wideband, multi-antenna transceivers, this interaction happens in
multiple dimensions of time, frequency and space. Technological
advances in RF front-ends, including frequency- and bandwidth-
agility and reconfigurable antenna arrays, are enabling sensing and
exploitation of CSI at varying resolutions afforded by the spatio-
temporal signal space. Accurate channel modeling and characteri-
zation in time, frequency and space, as a function of multipath and
signal space characteristics, is thus critical for studying the impact
and potential of such emerging agile wireless transceivers. In par-
ticular, while most existing models for wireless channels assume a
rich multipath environment, there is growing experimentalevidence

that physical channels exhibit asparsestructure even with a small
number of antennas and especially at wide bandwidths [2, 3].

In this paper, we use a virtual representation of physical mul-
tipath channels that we have developed in the past several years
to present a framework for modeling sparse wireless channels and
to study the implications of multipath sparsity for channelestima-
tion. The virtual channel representation, discussed in Sec. 2, sam-
ples the physical multipath in angle-delay-Doppler at a resolution
commensurate with the signal space parameters, and the dominant
non-vanishing virtual channel coefficients characterize the statisti-
cally independent degrees of freedom (DoF) in the channel. Sparse
channels, discussed in Sec. 3, exhibit fewer DoF compared tochan-
nels induced by rich multipath. We also introduce the concept of
channel sparsity patternin Sec. 3 that captures the configuration of
the sparse DoF in the angle-delay-Doppler domain and constitutes
the most important element of CSI. In Sec. 4, we discuss estimation
of sparse channels using the emerging theory of compressed sens-
ing. For the sake of this exposition, we focus only on estimation
of time- and frequency-selective single-antenna channelsand block-
fading narrowband multi-antenna channels. Our discussionfocusses
on the nature of the waveforms used by the transmitter for prob-
ing the channel, the algorithms used at the receiver for learning the
sparse channel, and quantification of the mean-squared-error in the
resulting channel estimate.

An important application of the modeling and estimation frame-
work proposed in this paper is the emerging area of cognitiveradio in
which wireless transceivers sense and adapt to the wirelessenviron-
ment for enhanced spectral efficiency and interference management.
In particular, the channel estimation strategies discussed in this paper
can be leveraged for learning the network CSI—a critical element of
cognitive radio. In a related work [4], we have also studied how ac-
curate knowledge of the CSI of a sparse channel can be exploited by
agile wireless transceivers for improved link performance.

2. VIRTUAL MODELING OF PHYSICAL MULTIPATH
WIRELESS CHANNELS

Consider a time- and frequency-selective multi-antenna (MIMO)
channel corresponding to a transmitter withNT antennas and a re-
ceiver withNR antennas. For simplicity, we assume uniform linear
arrays (ULAs) of antennas and consider signaling over this channel
using packets of durationT and (two-sided) bandwidthW . In the
absence of noise, the transmitted and received signal are related as

x(t) =

Z W/2

−W/2

H(t, f)S(f)ej2πftdf , 0 ≤ t ≤ T (1)

where x(t) is the NR-dimensional received signal,S(f) is the
Fourier transform of theNT -dimensional transmitted signals(t),
andH(t, f) is theNR×NT time-varying frequency response matrix
of the channel.



A physical multipath wireless channel can be accurately mod-
eled as

H(t, f) =

NpX
n=1

βnaR(θR,n)aH
T (θT,n)ej2πνnte−j2πτnf (2)

which represents signal propagation overNp paths; here,βn de-
notes the complex path gain,θR,n the angle of arrival (AoA) at the
receiver,θT,n the angle of departure (AoD) at the transmitter,τn the
(relative) delay, andνn the Doppler shift associated with then-th
path. TheNT ×1 vectoraT (θT ) and theNR×1 vectoraR(θR) de-
note the array steering and response vectors, respectively, for trans-
mitting/receiving a signal in the directionθT /θR and are periodic in
θ with unit period [5].1 We assume thatτn ∈ [0, τmax] andνn ∈
[− νmax

2
, νmax

2
], whereτmax denotes the delay spread andνmax the

(two-sided) Doppler spread of the channel. The signaling parame-
ters are chosen so that the channel is doubly-selective:Tνmax > 1
(time-selective) andWτmax > 1 (frequency-selective). We as-
sume maximum angular spreads,(θR,n, θT,n) ∈ [−1/2, 1/2] ×
[−1/2, 1/2], at critical (d = λ/2) antenna spacing. Finally, we
assume that over the time-scales of interest, the physical path pa-
rameters{θT,n, θR,n, τn, νn} remain fixed; the only variation in the
channel is due to variations in the amplitude and phases of{βn},
which are assumed statistically independent across different paths.

While accurate (non-linear) estimation of AoAs, AoDs, delays
and Doppler shifts is critical in certain applications, such as radar
imaging, it is not critical in a communications context since the ulti-
mate goal is to reliably communicate information over the channel.
As such, studying the key communication-theoretic characteristics
of doubly-selective MIMO channels is greatly facilitated by avirtual
representationof the physical model (2) that we have developed in
the past several years [5, 6]. The virtual representation ofH(t, f) is
essentially a four-dimensional Fourier series imposed by the spatio-
temporal signaling parameters (T , W , NR, andNT ) given by

H(t, f) ≈
NRX
i=1

NTX
k=1

LX
ℓ=0

MX
m=−M

Hv(i, k, ℓ, m)
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where (3) represents the expansion ofH(t, f) in terms of the spatio-
temporal Fourier basis functions, and the virtual representation is
completely characterized by the coefficients{Hv(i, k, ℓ, m)} that
can be computed via (4). Comparing (2) and (3), we note that the
virtual representation corresponds to sampling the physical multi-
path environment in the angle-delay-Doppler domain at uniformly
spaced virtual AoAs, AoDs, delays and Doppler shifts at resolutions
that are commensurate with the signal space parameters:

∆θR = 1/NR , ∆θT = 1/NT (5)

∆τ = 1/W , ∆ν = 1/T . (6)

In (3), L = ⌈Wτmax⌉ ≥ 1 denotes the maximum number of re-
solvable delays, andM = ⌈Tνmax/2⌉ ≥ 1 the maximum number

1The normalized angle variableθ is related to the physical angleφ (mea-
sured with respect to array broadside) asθ = d sin(φ)/λ whered is the
antenna spacing andλ is the wavelength of propagation.

of resolvable Doppler shifts within the channel spreads. For maxi-
mum angular spreads,NT andNR reflect the maximum number of
resolvable AoDs and AoAs. Note that due to the fixed angle-delay-
Doppler sampling, which defines the fixed basis functions in (3), the
virtual representation is alinear channel representation character-
ized by the virtual channel coefficients{Hv(i, k, ℓ, m)}. Statistical
characterization of these virtual channel coefficients is critical from
a communication-theoretic viewpoint and is discussed next.

2.1. Channel Statistics: Virtual Path Partitioning

An important and insightful property of the virtual representation is
that its coefficients partition the physical propagation paths into ap-
proximately disjoint subsets. Specifically, define the following sub-
sets of paths, associated with each coefficientHv(i, k, ℓ, m), based
on the resolution in angle, delay and Doppler

SR,i = {n : θR,n ∈ (i/NR − 1/2NR, i/NR + 1/2NR]}
ST,k = {n : θT,n ∈ (k/NT − 1/2NT , k/NT + 1/2NT ]}
Sτ,ℓ = {n : τn ∈ (ℓ/W − 1/2W, ℓ/W + 1/2W ]}

Sν,m = {n : νn ∈ (m/T − 1/2T, m/T + 1/2T ]} . (7)

For example,SR,i denotes the set of paths whosephysicalAoAs lie
within the resolution bin of size∆θR centered around thei-th virtual
receive angleθR = i/NR in (3). Then, it can be shown that [5, 6]

Hv(i, k, ℓ, m) ≈
X

n∈SR,i∩ST,k∩Sτ,ℓ∩Sν,m

βn (8)

where a phase and attenuation factor has been absorbed inβn. The
relation (8) states that eachHv(i, k, ℓ, m) is approximately equal to
the sum of the complex gains of all physical paths whose angles,
delays and Doppler shifts lie within anangle-delay-Doppler reso-
lution bin of size∆θR × ∆θT × ∆τ × ∆ν centered around the
virtual sample point(θR, θT , τ, ν) = (i/NR, k/NT , ℓ/W,m/T ) in
the angle-delay-Doppler domain (see Fig. 1).

It then follows from (8) thatdistinctHv(i, k, ℓ,m)’s correspond
to approximately2 disjoint subsets of paths and, hence, the virtual
channel coefficients areapproximatelystatistically independent (due
to independent path gains and phases). For simplicity, we assume
that the virtual channel coefficients are perfectly independent. For
Rayleigh fading,{Hv(i, k, ℓ, m)} are zero-mean, statistically in-
dependent (complex) Gaussian random variables, and the channel
statistics are characterized by the power in the virtual coefficients

Ψ(i, k, ℓ, m) = E[|Hv(i, k, ℓ, m)|2]
≈

X
n∈SR,i∩ST,k∩Sτ,ℓ∩Sν,m

E[|βn|2] (9)

which is also a measure of the angle-delay-Doppler power spectrum.
Thus, for Rayleigh fading,Hv(i, k, ℓ, m) ∼ CN (0, Ψ(i, k, ℓ, m)).
We note that the Rayleigh fading assumption is justified by the cen-
tral limit theorem if there are sufficiently many physical paths con-
tributing to eachHv(i, k, ℓ, m) in (8). However, the virtual repre-
sentation (3) is not just limited to Rayleigh fading. The statistical in-
dependence of{Hv(i, k, ℓ, m)}, due to path partitioning, facilitates
a wide range of statistical channel models via appropriate modeling
of themarginal statisticsof eachHv(i, k, ℓ,m).

2The approximation is due to the sidelobes induced by the finite signaling
parameters and gets more accurate with increasingT , W , NR andNT .
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Fig. 1. Illustration of the virtual channel representation (VCR) and
the channel sparsity pattern (SP). Each square represents aresolu-
tion bin associated with a distinct virtual coefficient. Thetotal num-
ber of squares equalsDmax. The shaded squares represent the SP,
SD, corresponding to theD < Dmax dominant coefficients, and the
dots represent the paths contributing to each dominant coefficient.
(a) VCR and SP in delay-Doppler:{Hv(ℓ, m)}SD

. (b) VCR and SP
in angle: {Hv(i, k)}SD

. (c) VCR and SP in angle-delay-Doppler:
{Hv(i, k, ℓ, m)}SD

. The paths contributing to a fixed dominant
delay-Doppler coefficient,Hv(ℓo, mo), are further resolved in angle
to yield the conditional SP in angle:{Hv(i, k, ℓo, mo)}SD(ℓo,mo).

2.2. Channel Degrees of Freedom

The number of dominant non-vanishing{Hv(i, k, ℓ, m)} represent
the statistically independentdegrees of freedom(DoF), D, in the
channel that govern its capacity and diversity.

Definition 1 (Degrees of Freedom). Let D = |{(i, k, ℓ, m) :
|Ψ(i, k, ℓ, m)| > ǫ}| denote the number of dominant virtual channel
coefficients for some appropriately chosenǫ > 0. ThenD—the num-
ber of independent virtual coefficients that significantly contribute
to channel power—reflects the number of statistically independent
DoF in the channel.

The value ofǫ in the above definition is nuanced and depends on
the operating signal-to-noise ratio (SNR). An intuitive choice for ǫ
is the operating received SNR per channel dimension, meaning only
channel coefficients with power above this threshold contribute to
the DoF. Note that the maximum number of DoF in a channel is

Dmax = NRNT (L+1)(2M +1) ≈ τmaxνmaxNRNT TW (10)

which corresponds to themaximum numberof angle-delay-Doppler
resolutions bins in the virtual representation, and reflects the max-
imum number ofresolvablepaths within the angular, delay and
Doppler spreads (see Fig. 1). By virtue of (8), we haveDmax ≤ Np;
also,D ≤ Dmax andD = Dmax if there are at leastNp ≥ Dmax

physical paths distributed in a way such that each angle-delay-
Doppler resolution bin is populated by at least one path.

3. SPARSE MULTIPATH WIRELESS CHANNELS

Let Nc = NRNT TW denote the dimension of the spatio-temporal
channel space, induced by thetransmit signal spaceof dimension

Ns,tx = NT TW and receive signal spaceof dimensionNs,rx =
NRTW . We note from (10) that for underspread channels, corre-
sponding toτmaxνmax ≪ 1 [1], Dmax = τmaxνmaxNc ≪ Nc.
All existing models for doubly-selective MIMO channels areimplic-
itly based on the assumption of wide-sense stationary uncorrelated
scattering (WSSUS) [7, 8, 9, 10], which in turn implies arich scat-
teringenvironment in which there are sufficiently many propagation
paths so thatD = Dmax and the channel DoF scalelinearly with
the channel dimension

Drich = Dmax = τmaxνmaxNc = O(Nc) . (11)

In many physical channels encountered in practice, however, the
number of paths may not be large enough to exciteDmax DoF, espe-
cially as we increase the channel dimension by increasing the num-
ber of antennas, bandwidth, or signaling duration. This hasbeen
supported by experimental measurement campaigns, both forindoor
MIMO channels (see, e.g., [3]), and ultrawideband single-antenna
channels (see, e.g., [2]). WhenD ≪ Dmax, we refer to such chan-
nels assparse multipath channels. We formalize this notion of spar-
sity in the following definition.

Definition 2 (Sparse Multipath Channels). LetD denote the channel
DoF. A sparse multipath channel satisfiesD ≪ Dmax and, further-
more, its DoF scalesub-linearlywith the channel dimension

D = o(Nc)←→ lim
Nc→∞

D

Nc
= 0 . (12)

Remark 1. A variety of sub-linear scaling laws can be imposed on
D to capture the sparsity in the channel. As an example, consider

D = Dδ1
S,maxDδ2

T,maxDδ3
W,max

= (NRNT )δ1(Tνmax)δ2(Wτmax)δ3 (13)

for someδ1, δ2, δ3 ∈ [0, 1], whereDS,max = NRNT , DT,max =
Tνmax and DW,max = Wτmax denote the maximum number of
DoF in the spatial, temporal and spectral dimension, respectively.
Here, the extreme caseδ1 = δ2 = δ3 = 1 represents a rich multi-
path environment in whichD scales linearly withNc. On the other
extreme,δ1 = δ2 = δ3 = 0 represents a very sparse environment in
whichD remains constant regardless ofNc.

Sparse multipath channels represent a sparse distributionof re-
solvable paths in the angle-delay-Doppler domain. Sparsity in angle-
delay-Doppler leads tocorrelationor coherencein space-frequency-
time due to the Fourier relation between the angle-delay-Doppler
and space-frequency-time domains. Furthermore, thelocationsof
the D dominant virtual coefficients within theDmax angle-delay-
Doppler resolution bins influence the nature of channel correlation
in time, frequency and space. This information about the channel
can be captured through the notion of thechannel sparsity pattern.

Definition 3 (Channel Sparsity Pattern). Let SD = {(i, k, ℓ, m) :
|Ψ(i, k, ℓ, m)| > ǫ}, for some appropriately chosenǫ > 0, denote
the channel sparsity pattern. That is,SD is the set of indices of the
D = |SD| dominant virtual channel coefficients.

Essentially, the sparsity patternSD characterizes theD-dimensional
subspace of theNc-dimensional channel space that is excited by the
D dominant and statistically independent virtual channel coefficients
{Hv(i, k, ℓ, m)}SD

representing the stochastic DoF in the channel
(see Fig. 1). This means that the statistical CSI of Rayleighfading
sparsechannels is completely characterized by{Ψ(i, k, ℓ, m)}SD

,
whereas their instantaneous CSI is characterized by the realizations
of {Hv(i, k, ℓ, m)}SD

.



4. ESTIMATION OF SPARSE MULTIPATH CHANNELS

One of the most popular and widely used approaches to learning a
multipath wireless channel is to probe the channel with signaling
waveforms that are known to the receiver (referred to as training
waveforms) and process the corresponding channel output toesti-
mate the channel parameters. The performance of such training-
based channel estimation methods is completely characterized by
the number of signal space dimensions,Ntr, occupied by the train-
ing signals and the mean-squared-error (MSE) associated with the
estimation of channel parameters. As such, there are two salient
aspects to training-based estimation schemes, namely,sensingand
reconstruction. Sensing corresponds to the design of training wave-
forms used to probe a channel, while reconstruction is the problem
of processing of the corresponding channel output at the receiver to
recover the channel response.

Training-based methods that are designed under the assumption
of rich multipath scattering typically utilizeNtr = O(Dmax) sig-
nal space dimensions for channel sensing and employ linear recon-
struction strategies at the receiver for channel estimation—see, e.g.,
[11, 12, 13, 14, 15]. Traditional channel estimation schemes such as
these, however, lead to overutilization of the key communication re-
sources of energy and bandwidth in sparse multipath channels. Con-
sequently, a number of alternative training-based methodshave been
proposed in recent years for estimating single- and multi-antenna
sparse multipath channels—see, e.g., [16, 17, 18, 19]. However,
these and similar investigations either lack a quantitative theoretical
analysis of the performance of the proposed methods [16, 17,18]
or effectively assume perfect knowledge of the channel sparsity pat-
tern [19]. In contrast, by leveraging key ideas from the theory of
compressed sensing (CS), we propose new training-based channel
estimation methods in this section that are provably more efficient
than the traditional schemes and do not rely on knowledge of the
sparsity patternSD. Our proposed methods utilizeNtr ≈ O(D)
signal space dimensions for channel sensing, employ non-linear re-
construction algorithms based on convex/linear programming at the
receiver, and come within a logarithmic factor of the performance of
an ideal channel estimator that has perfect knowledge of thechannel
sparsity pattern.

4.1. Estimation of Single-Antenna Channels: Sparsity in the
Delay-Doppler Domain

In the case of a doubly-selective single-antenna channel, the physical
channel model (2) and its virtual representation (3) reduceto

H(t, f) =
X

n

βnej2πνnte−j2πτnf

≈
LX

ℓ=0

MX
m=−M

Hv(ℓ, m)ej2π m
T

te−j2π ℓ
W

f (14)

Hv(ℓ, m) ≈
X

n∈Sτ,ℓ∩Sν,m

βn (15)

and the (complex) baseband signal at the receiver is given by

x(t) ≈
LX

ℓ=0

MX
m=−M

Hv(ℓ, m)ej2π m
T

ts(t− ℓ/W ) + w(t). (16)

Here,s(t) represents the transmitted waveform andw(t) denotes the
zero-mean, circularly symmetric, complex additive white Gaussian
noise (AWGN) at the receiver. From (14), the maximum number of

DoF in a doubly-selective single-antenna channel isDmax = (L +
1)(2M + 1) ≈ τmaxνmaxTW , and we assume that the channel is
sparse in the delay-Doppler domain in the sense thatD = |SD| ≪
Dmax for a givenT andW .

4.1.1. Orthogonal Short-Time Fourier Signaling

Signaling over orthogonal short-time Fourier (STF) (or Gabor) ba-
sis functions provides a very attractive approach for communication
over sufficiently underspread doubly-selective channels since appro-
priately chosen STF basis functions serve as approximate eigenfunc-
tions for such channels [20, 21]. A complete orthogonal STF ba-
sis for theTW -dimensional signal space is generated via time and
frequency shifts of a fixed prototype pulseg(t): γi,k(t) = g(t −
iTo)e

j2πkWot, (i, k) ∈ S = {0, 1, . . . , Nt − 1} × {0, 1, . . . , Nf −
1}, whereNt = T/To andNf = W/Wo. The prototype pulse is
assumed to have unit energy,

R
|g(t)|2dt = 1, and completeness of

{γi,k} stems from the underlying assumption thatToWo = 1, which
results in a total ofNtNf = TW basis elements.3 The transmitted
signal in this case can be represented as

s(t) =

Nt−1X
i=0

Nf−1X
k=0

si,kγi,k(t), 0 ≤ t ≤ T (17)

where{si,k} represent theTW symbols that are modulated onto
the STF basis waveforms. At the receiver, assuming that the basis
parametersTo andWo are matched to the channel parametersτmax

andνmax so thatγi,k’s serve as approximate eigenfunctions[21],4

projecting the (noisy) received signalx(t) onto the STF basis wave-
forms yields

xi,k = 〈s, γi,k〉 ≈ Hi,ksi,k + wi,k, (i, k) ∈ S (18)

where 〈s, γi,k〉 =
R

s(t)γ∗
i,k(t)dt and {wi,k} corresponds to an

AWGN sequence. Here, theNc = TW channel coefficients{Hi,k}
represent the underlying channel in the STF domain and are related
to the physical channel asHi,k ≈ H(t, f)

��
(t,f)=(iTo,kWo)

[21].
Using the virtual representation (14), we can further writethe STF
channel coefficients as

Hi,k =

L−1X
ℓ=0

MX
m=−M

Hv(ℓ,m)e
j2π m

Nt
i
e
−j2π ℓ

Nf
k

= u
T
f,kHvut,i

= (uT
t,i ⊗ u

T
f,k)vec(Hv) = (uT

t,i ⊗ u
T
f,k)hv (19)

whereHv is the(L + 1)× (2M + 1) matrix ofDmax virtual chan-

nel coefficients,uf,k =
h
1 e

−j2π 1
Nf

k
. . . e

−j2π L
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C
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−j2π M
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e
−j2π

(M−1)
Nt

i
. . . e

j2π M
Nt

i
iT

∈
C

2M+1, andhv = vec(Hv) ∈ C
Dmax .5

In training-based methods,Ntr of the Nc STF basis elements
are dedicated as “pilot tones” for learning the channel. That is, the
STF training waveformstr(t) takes the form

str(t) =

r
E

Ntr

X
(i,k)∈Str

γi,k(t), 0 ≤ t ≤ T (20)

3Note that signaling over a complete orthogonal STF basis canbe thought
of as block orthogonal frequency division multiplexing (OFDM) signaling
with OFDM symbol durationTo and block lengthNt = T/To.

4Two necessary matching conditions are: (i)τmax ≤ To ≤ 1/νmax and
(ii) νmax ≤ Wo ≤ 1/τmax; we refer the reader to [21] for further details.

5Under the assumption of STF basis parameters being matched to the
channel parameters, we trivially haveNf ≥ L + 1 andNt ≥ 2M + 1.



whereE is the transmit energy budget available for training andStr

is the set of indices ofNtr pilot tones;Str ⊂ S : |Str| = Ntr. At
the receiver, we can stack the received training symbols{xi,k}Str

into anNtr-dimensional vectorx to yield the following system of
equations

x =

r
E

Ntr
Utrhv + w (21)

where theNtr ×Dmax matrixUtr is comprised of{(uT
t,i⊗u

T
f,k) :

(i, k) ∈ Str} as its rows and the AWGN vectorw is distributed as
CN (0Ntr , INtr ). The goal then is to choose a set of pilot tonesStr

and process the corresponding channel outputx to obtain an estimatebhv that is close tohv in terms of the MSE.
In many traditional training-based receivers, it is assumed that

the number of pilot tonesNtr ≥ Dmax and linear reconstruction
schemes such as maximum likelihood (ML) estimators are usedto
recoverhv from x: bhv =

p
Ntr/E(UH

trUtr)
−1

U
H
trx. It can be

shown in this case that, regardless of the choice ofStr, the MSE in
the channel estimate is lower bounded as [12, 22]

E

h
‖bhv − hv‖22

i
≥ Dmax

E . (22)

On the other hand, consider an ideal (nonrealizable) channel estima-
tor that has perfect knowledge of the sparsity patternSD and assume
for the sake of this exposition that thenon-dominantvirtual chan-
nel coefficients are identically zero:Ψ(ℓ, m) = 0 ∀ (ℓ, m) 6∈ SD.
Then, as long as the number of pilot tonesNtr ≥ D, an ideal chan-
nel estimateh∗

v can be obtained fromx by first forming arestricted
ML estimateh∗

SD
=
p

Ntr/E(UH
tr,SD

Utr,SD
)−1

U
H
tr,SD

x, where
Utr,SD

is the submatrix obtained by extracting theD columns of
Utr corresponding to the indices inSD, and then settingh∗

v equal
to h

∗
SD

on the indices inSD and zero on other locations. The MSE
of this ideal channel estimate can be lower bounded as [22]

E
�
‖h∗

v − hv‖22
�
≥ D

E . (23)

The preceding discussion suggests that it might be possibleto
improve upon the performance of traditional training-based channel
learning methods by a factor of aboutO(Dmax/D), both in terms of
the minimum number of pilot tones needed for meaningful estima-
tion and the MSE of the resulting channel estimate. And whilethe
ideal channel estimateh∗

v is impossible to construct in practice, we
now show that it is possible to obtain an estimate ofhv that comes
within a logarithmic factor of the performance of the ideal estimator.

Theorem 1. Let the number of pilot tonesNtr ≥ c1 · log5 Nc · D
and chooseStr to be a set ofNtr ordered pairs sampled uniformly
at random fromS . Pickλ(E ,Dmax) =

p
2E(1 + a) log Dmax for

anya ≥ 0. Then the channel estimate obtained as a solution to the
convex programbhv = arg min

h̃∈CDmax

‖h̃‖1 subject to



r E

Ntr
U

H
tr r





∞

≤ λ (24)

satisfies

‖bhv − hv‖22 ≤ c2 · log Dmax ·
�

D

E

�
(25)

with probability≥ 1−2max
�
2
�p

π(1 + a) log Dmax ·D a
max

�−1
,

c3N
−c4
c

	
. Here,r in (24) is theNtr-dimensional vector of residu-

als: r = x −
p
E/Ntr Utrh̃, and c1, c2, c3 and c4 are strictly

positive constants that do not depend onE ,Dmax or Nc.

The proof of this theorem, which uses some of the key results in
CS, is given in [22]. The convex program (24) goes by the name
of Dantzig selector (DS) in the CS literature and is computation-
ally tractable since it can be recast as a linear program [23]. Theo-
rem 1 essentially states that our proposed DS-based channelestima-
tor comes remarkably close to matching the performance of the ideal
estimator and can potentially reduce both the number of pilots tones
needed for channel estimation and the MSE in the resulting estimate
by a factor of aboutO(Dmax/D) when used as an alternative to
existing methods for learning single-antenna channels.

4.2. Estimation of Narrowband Multi-Antenna Channels: Spar-
sity in the Angular Domain

For block-fading narrowband MIMO channels (correspondingto
Tνmax andWτmax ≪ 1), the physical channel model (2) and its
virtual representation (3) reduce to

H =
X

n

βnaR(θR,n)aH
T (θT,n) ≈ ARHvA

H
T (26)

whereAR andAT areNR × NR andNT × NT unitary discrete
Fourier transform (DFT) matrices, respectively. TheNR × NT

beamspacematrix Hv couples the virtual AoAs and AoDs, and its
entries are given by the virtual channel coefficients

Hv(i, k) ≈
X

n∈SR,i∩ST,k

βn. (27)

From (26), the maximum number of DoF in a block-fading narrow-
band MIMO channel isDmax = NRNT , and we assume that: (i)
the channel is sparse in the angular domain in the sense thatD =
|SD| ≪ Dmax for a givenNR andNT , and (ii) the non-dominant
virtual channel coefficients are zero:Ψ(i, k) = 0 ∀ (i, k) 6∈ SD.

4.2.1. Beamspace Signaling

SinceH and Hv are unitarily equivalent to each other, we focus
only on estimatingHv and assume without loss of generality that
signaling and reception take place in the beamspace:s = AT sv and
xv = A

H
R x, wheres andx are the transmitted and received signals

in the antenna domain, respectively. To learn theNc = NRNT -
dimensional matrixHv, training-based methods dedicate part of the
packet durationT to transmit known signals to the receiver. Assum-
ing this training duration to beTtr, we can stack theMtr = TtrW
received (vector-valued) training symbols into anMtr ×NR matrix
Xv to yield the following system of equations

Xv =

r
E

Mtr
SvH

T
v + W (28)

whereE is the transmit energy budget available for training,Sv is the
collection ofMtr (vector) training symbols stacked row-wise into an
Mtr ×NT matrix with the constraint that‖Sv‖2F = Mtr, andW is
anMtr ×NR matrix of unit-variance AWGN noise. The goal here
is to design the training matrixSv using fewest number of training
symbolsMtr and process the received signal matrixXv to obtain an
estimatebHv that is close toHv in terms of the MSE.

To obtain a meaningful estimate ofHv, traditional estima-
tion schemes require the number of training symbols to satisfy
Mtr ≥ NT and typically employ ML-based estimators at the re-
ceiver: bHv =

p
Mtr/E (SH

v Sv)−1
S

H
v Xv.6 Regardless of the form

of Sv, it can be shown in this case that the MSE in the channel

6Note that the conditionMtr ≥ NT means that a total ofNtr ≥ Dmax

receive signal space dimensions are dedicated to training.



estimate is lower bounded as [14, 15]

E

h
‖ bHv −Hv‖2F

i
≥ NT (NRNT )

E =
NT Dmax

E . (29)

On the other hand, given that there are onlyD unknowns (albeit at
unknown locations) withinHv, it is arguable whether (29) is really
optimal. In fact, one could easily conceive estimators having per-
fect knowledge of the channel sparsity patternSD that would yield
E[‖bHv −Hv‖2F ] = O(NT D/E). However, we now show that it is
possible to get within a logarithmic factor of this ideal MSEscaling
withoutany knowledge of the sparsity pattern.

Theorem 2. Let hT
v,i and xv,i denote thei-th row of Hv and i-

th column ofXv, respectively. Further, letDi denote the num-
ber of channel DoF contributed by each row ofHv; that is,
Di = ‖hv,i‖0 (note that

PNR
i=1 Di = D). Choose the number

of training symbolsMtr ≥ c5 · log(NT / maxi Di) · maxi Di

and let Sv be an i.i.d matrix of binary random variables taking
values+1/

√
NT or −1/

√
NT with probability 1/2 each. Pick

λ(E ,NT ) =
p

2E(1 + a)(log Dmax)/NT for anya ≥ 0 and letbhv,i = arg min
h̃∈C

NT

‖h̃‖1 subject to



r E

Mtr
S

H
v ri





∞

≤ λ (30)

whereri = xv,i−
p
E/Mtr Svh̃, i = 1, . . . , NR. Then the channel

estimatebHv =
hbhv,1 . . . bhv,NR

iT

satisfies

‖ bHv −Hv‖2F ≤ c6 · log Dmax ·
�

NT D

E

�
(31)

with probability≥ 1− 4max
��p

π(1 + a) log Dmax ·D a
max

�−1
,

e−c7Mtr
	

. Here,c5, c6 andc7 are strictly positive constants that do
not depend onE ,NR or NT .

The proof of this theorem is given in [24]. It is clearly evident
from (31) that our proposed DS-based (row-by-row) MIMO chan-
nel estimator (30) achieves near-optimal MSE performance.In ad-
dition, sincemaxi Di ≤ NT , it does so while potentially requir-
ing considerably fewer number of training symbols as compared
to traditional schemes. In fact, if one assumes that theD chan-
nel DoF are uniformly distributed across the angular spreadthen we
havemaxi Di ≈ D/NR and hence, the proposed estimator requires
Mtr ≈ O(D/NR) as opposed toMtr = O(NT ) for existing meth-
ods; in terms of the receive signal space dimensions dedicated to
training, this translates intoNtr ≈ O(D) for the proposed channel
estimator versusNtr = O(Dmax) for ML-based estimators.
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