Published inProc. 13th IEEE Digital Signal Processing Workshop, Marstahd, FL, Jan. 4-7, 2009

SPARSE MULTIPATH CHANNELS: MODELING AND ESTIMATION

Waheed U. Bajwa, Akbar Sayeed, and Robert Nowak

Electrical and Computer Engineering, University of WissmnMadison

baj wa@ae. wi sc. edu,

ABSTRACT

Multipath signal propagation is the defining characterisfiterres-
trial wireless channels. Virtually all existing statigtianodels for
wireless channels are implicitly based on the assumptioricbf
multipath, which can be traced back to the seminal works dioBe
and Kennedy on the wide-sense stationary uncorrelatetesogt
model, and more recently to the i.i.d. model for multi-amzchan-
nels proposed by Telatar, and Foschini and Gans. Howewgsiqath
arguments and growing experimental evidence suggest hiyatqal
channels encountered in practice exhibit a sparse muitgiaicture
that gets more pronounced as the signal space dimensiotaggs
(e.g., due to large bandwidth or large number of antennasjhis
paper, we formalize the notion of multipath sparsity anduls ap-
plications of the emerging theory of compressed sensingffimient
estimation of sparse multipath channels.

1. INTRODUCTION

Multipath—signal propagation over multiple spatially trilsuted
paths—is the most salient feature of wireless channels and
cessitates statistical channel modeling due to the largebeu of
propagation parameters involved. Multipath propagat®badth a
curse and a blessing from a communications viewpoint [1].tl@&n
one hand, multipath propagation leads to sigading—fluctuations
in received signal strength—that severely impacts rediaiodmmu-
nication. On the other hand, research in the last decadehioasms
that multipath is also a source difversity—multiple statistically in-
dependent modes of communication—that can increase thamdt
reliability of communication. Multipath diversity manges itself in
various forms, including delay, Doppler, spatial and nusiér. The
impact of multipath fading versus diversity on performaadgcally
depends on the the amount of channel state information @&ll-
able to the system. For example, knowledge of instantan€&lisit
the receiver (coherent reception) enables exploitatiativarsity to
combat fading. Further gains in capacity and reliability possible
if (even partial) CSl is available at the transmitter as well
Statistical characteristics of a wireless channel depenthe
interaction between the physical multipath propagatiosiren-
ment and the signal space of the wireless transceivers. Bdem
wideband, multi-antenna transceivers, this interactiappens in
multiple dimensions of time, frequency and space. Teclyicéd
advances in RF front-ends, including frequency- and badidhwi
agility and reconfigurable antenna arrays, are enablingisgrand
exploitation of CSI at varying resolutions afforded by thEato-
temporal signal space. Accurate channel modeling and cteaira
zation in time, frequency and space, as a function of muhipad
signal space characteristics, is thus critical for stugiytime impact
and potential of such emerging agile wireless transceivierar-
ticular, while most existing models for wireless channeisume a
rich multipath environment, there is growing experimeetatience
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that physical channels exhibitsparsestructure even with a small
number of antennas and especially at wide bandwidths [2, 3].

In this paper, we use a virtual representation of physicdl mu
tipath channels that we have developed in the past seveaas ye
to present a framework for modeling sparse wireless charaned
to study the implications of multipath sparsity for chanestima-
tion. The virtual channel representation, discussed in 3esam-
ples the physical multipath in angle-delay-Doppler at algsn
commensurate with the signal space parameters, and thexaami
non-vanishing virtual channel coefficients charactertee dtatisti-
cally independent degrees of freedom (DoF) in the chanrdrs®
channels, discussed in Sec. 3, exhibit fewer DoF comparehan-
nels induced by rich multipath. We also introduce the conoép
channel sparsity patterim Sec. 3 that captures the configuration of
the sparse DoF in the angle-delay-Doppler domain and cotesi
the most important element of CSI. In Sec. 4, we discuss atitm
of sparse channels using the emerging theory of compressed s
ing. For the sake of this exposition, we focus only on estiomat
of time- and frequency-selective single-antenna chararalsblock-
fading narrowband multi-antenna channels. Our discudsicusses
on the nature of the waveforms used by the transmitter fob-pro
ing the channel, the algorithms used at the receiver foniegrthe
sparse channel, and quantification of the mean-squarediarthe
resulting channel estimate.

An important application of the modeling and estimatiomfea

work proposed in this paper is the emerging area of cogmiigl® in
which wireless transceivers sense and adapt to the wireteson-
ment for enhanced spectral efficiency and interference gaamant.
In particular, the channel estimation strategies discligsthis paper
can be leveraged for learning the network CSl—a criticahelet of
cognitive radio. In a related work [4], we have also studied fac-
curate knowledge of the CSI of a sparse channel can be exgbliojt
agile wireless transceivers for improved link performance

2. VIRTUAL MODELING OF PHYSICAL MULTIPATH
WIRELESS CHANNELS

Consider a time- and frequency-selective multi-antenniV(®)
channel corresponding to a transmitter with- antennas and a re-
ceiver with Nr antennas. For simplicity, we assume uniform linear
arrays (ULAs) of antennas and consider signaling over thésoel
using packets of duratiofi and (two-sided) bandwidthi”. In the
absence of noise, the transmitted and received signal latedeas
w/2 _
x(t)= [ " HEHSET o<t @
J—wy2

where x(¢) is the Nr-dimensional received signaB(f) is the
Fourier transform of theVr-dimensional transmitted signalt),
andH(t, f) is the N x Nt time-varying frequency response matrix
of the channel.



A physical multipath wireless channel can be accurately-modof resolvable Doppler shifts within the channel spreads:. riraxi-

eled as
Np
H(t, f) — Z ﬂnaR(eR’n)ag(eTyn)eJQTante*JQTrTnf @)
n=1

which represents signal propagation ovéy paths; hereg, de-
notes the complex path gaifiz, ., the angle of arrival (AoA) at the
receiverfr,, the angle of departure (AoD) at the transmitterthe
(relative) delay, and/,, the Doppler shift associated with theth
path. TheN7 x 1 vectorar (67) and theNg x 1 vectorar(6r) de-
note the array steering and response vectors, respecfioetyans-
mitting/receiving a signal in the directidiy /6 r and are periodic in
9 with unit period [5]* We assume that, € [0, Timaz] andv, €
[—Zmpe | Zmoz] wherer,.. denotes the delay spread angl... the
(two-sided) Doppler spread of the channel. The signalingmpa-
ters are chosen so that the channel is doubly-selecfivg;,, > 1
(time-selective) andV mq > 1 (frequency-selective). We as-
sume maximum angular spread®z ., 0r,n) € [—1/2,1/2] x
[-1/2,1/2], at critical @ = A/2) antenna spacing. Finally, we
assume that over the time-scales of interest, the physatal pa-
rameters 07, Or,n, T, Vn } remain fixed; the only variation in the
channel is due to variations in the amplitude and phasesipt,
which are assumed statistically independent across eiffgraths.

While accurate (non-linear) estimation of AoAs, AoDs, gsla
and Doppler shifts is critical in certain applications, lswas radar
imaging, it is not critical in a communications context grthe ulti-
mate goal is to reliably communicate information over tharetel.
As such, studying the key communication-theoretic charastics
of doubly-selective MIMO channels is greatly facilitateddovirtual

mum angular spreads$yr and Nr reflect the maximum number of
resolvable AoDs and AoAs. Note that due to the fixed angleydel
Doppler sampling, which defines the fixed basis function8)ntbe
virtual representation is Bnear channel representation character-
ized by the virtual channel coefficienfs{, (¢, k, £, m)}. Statistical
characterization of these virtual channel coefficientgitical from

a communication-theoretic viewpoint and is discussed.next

2.1. Channel Statistics: Virtual Path Partitioning

An important and insightful property of the virtual repre&gtion is
that its coefficients partition the physical propagatiothpanto ap-
proximately disjoint subsets. Specifically, define thedaihg sub-
sets of paths, associated with each coefficEnti, k, ¢, m), based
on the resolution in angle, delay and Doppler

SR,i {n:0rn € (i/Nr —1/2Ng,i/Nr + 1/2Ng]}
Srr = {n:0rn€ (k/Nr—1/2Nr,k/N7 +1/2N7]}
Sre = {n:mn € (/W —=12W ¢/W +1/2W]}

Som = {n:vp€(m/T—1/2T,m/T +1/2T)} . (7)

For example Sr,; denotes the set of paths whaseysicalAoAs lie
within the resolution bin of siz&0r centered around theth virtual
receive anglér = i/Nr in (3). Then, it can be shown that [5, 6]

H/U(i7k,£7 m) ~ /an

nE€SR ;NS kNS ¢NSu,m

8)

representatiorof the physical model (2) that we have developed inyyhere a phase and attenuation factor has been absorised fFhe

the past several years [5, 6]. The virtual representatidd @f f) is
essentially a four-dimensional Fourier series imposedbyspatio-
temporal signaling parametefg,(W, Nr, andNr) given by

Nr Nt L M

H(t, /)~ Y > Y Hy(i,k t,m)
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where (3) represents the expansiolHf, f) in terms of the spatio-

temporal Fourier basis functions, and the virtual repreegam is

completely characterized by the coefficiedtH, (i, k, £, m)} that

can be computed via (4). Comparing (2) and (3), we note that th

virtual representation corresponds to sampling the physmulti-
path environment in the angle-delay-Doppler domain ataunify
spaced virtual AoAs, AoDs, delays and Doppler shifts atlegsms
that are commensurate with the signal space parameters:

AOr =1/Nr , Abr=1/Nr (5)
Ar=1/W | Av=1/T. (6)

In (3), L = [WTnaz] > 1 denotes the maximum number of re-
solvable delays, and! = [Tvmaz/2] > 1 the maximum number

1The normalized angle variabiis related to the physical angle(mea-
sured with respect to array broadside)6as= dsin(¢)/X whered is the
antenna spacing andis the wavelength of propagation.

relation (8) states that eadl, (i, k, ¢, m) is approximately equal to
the sum of the complex gains of all physical paths whose angle
delays and Doppler shifts lie within aangle-delay-Doppler reso-
lution bin of size AOr x Afr x AT x Av centered around the
virtual sample pointér, 0, 7,v) = (i/Nr,k/Nr,£/W, m/T) in
the angle-delay-Doppler domain (see Fig. 1).

It then follows from (8) thatistinct H, (i, k, £, m)’s correspond
to approximatel{ disjoint subsets of paths and, hence, the virtual
channel coefficients aspproximatelystatistically independent (due
to independent path gains and phases). For simplicity, wenas
that the virtual channel coefficients are perfectly indejeen. For
Rayleigh fading,{H. (i, k, ¢,m)} are zero-mean, statistically in-
dependent (complex) Gaussian random variables, and thmeha
statistics are characterized by the power in the virtuaffimdents

(i, k,0,m) = E[|H,(i,k,{,m)|"]

>

n€SR ;NST xkNS+ ¢NSy,m

~
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E[|Bn|?] 9)

which is also a measure of the angle-delay-Doppler powertspa.
Thus, for Rayleigh fadingf., (i, k, £, m) ~ CN (0, ¥ (i, k, £,m)).
We note that the Rayleigh fading assumption is justified leycin-
tral limit theorem if there are sufficiently many physicatimscon-
tributing to eachH, (i, k, ¢, m) in (8). However, the virtual repre-
sentation (3) is not just limited to Rayleigh fading. Thetistical in-
dependence ofH, (i, k, £,m)}, due to path partitioning, facilitates
a wide range of statistical channel models via appropriatdating
of themarginal statisticof eachH,, (i, k, £, m).

2The approximation is due to the sidelobes induced by thefaiginaling
parameters and gets more accurate with incredsing’, Nz and Nr.
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Fig. 1. lllustration of the virtual channel representation (VCRpla
the channel sparsity pattern (SP). Each square represeetsla-
tion bin associated with a distinct virtual coefficient. Ttbeal num-

ber of squares equal3,..... The shaded squares represent the S

Sp, corresponding to thB < D, dominant coefficients, and the
dots represent the paths contributing to each dominanficiegt.
(a) VCR and SP in delay-DoppletH (¢, m)}s,, . (b) VCR and SP
in angle:{H,(i,k)}s,. (c) VCR and SP in angle-delay-Doppler:
{H,(i,k,¢,m)}s,. The paths contributing to a fixed dominan
delay-Doppler coefficientd, (¢,, m.), are further resolved in angle
to yield the conditional SP in angl¢H , (i, k, Lo, M0) } s, (00 ,me)-

2.2. Channel Degrees of Freedom

The number of dominant non-vanishigdf., (i, k, ¢, m)} represent
the statistically independemtegrees of freedorfDoF), D, in the
channel that govern its capacity and diversity.

Definition 1 (Degrees of Freedom)Let D {(i, k, £, m)

Ns.t+o = NpTW andreceive signal spacef dimensionN; ., =
NrTW. We note from (10) that for underspread channels, corre-
Sponding tOTmaaVmas K 1 [1]1 Doz = TmazVmaaNe <K Ne.

All existing models for doubly-selective MIMO channels arglic-

itly based on the assumption of wide-sense stationary veleded
scattering (WSSUS) [7, 8, 9, 10], which in turn impliesieh scat-
tering environment in which there are sufficiently many propagatio
paths so thaD = D,,., and the channel DoF scdi@early with

the channel dimension

Dr'ich = Dmacv = Tmacvl/ma:vNc = O(Nc) . (11)

In many physical channels encountered in practice, howtwer
number of paths may not be large enough to exBitg,. DoF, espe-
cially as we increase the channel dimension by increasiegtim-
ber of antennas, bandwidth, or signaling duration. This teen
supported by experimental measurement campaigns, baitidimor
MIMO channels (see, e.g., [3]), and ultrawideband singitsana
channels (see, e.g., [2]). Whéh < D4, we refer to such chan-
nels assparse multipath channel®Ve formalize this notion of spar-
sity in the following definition.

Definition 2 (Sparse Multipath Channelsl.et D denote the channel

,;DOF- A sparse multipath channel satisfies< D, and, further-

more, its DoF scalsub-linearlywith the channel dimension

lim 2—0.

D= O(Nc) - N¢— o0 Nc o

(12)

¢+ Remark 1. A variety of sub-linear scaling laws can be imposed on

D to capture the sparsity in the channel. As an example, censid

D DY, ..DR D

S,mazx~"T,mazx~ W,mazx

(NrNT) (TVmaz)?2 (W Tinaz)

(13)

for somedy, d2, 93 € [0, 1], whereDs maz = NrNr, Drmaz =
TVmaz aNd Dw,maz = W Tmas denote the maximum number of
DoF in the spatial, temporal and spectral dimension, resipety.
Here, the extreme case = 2 = d3 = 1 represents a rich multi-
path environment in whicl® scales linearly withV.. On the other

|¥ (i, k, £,m)| > €}| denote the number of dominant virtual channel extremeg, = > = §5 = 0 represents a very sparse environment in

coefficients for some appropriately chogen 0. ThenD—the num-
ber of independent virtual coefficients that significanthntribute
to channel power—reflects the number of statistically iedelent
DoF in the channel.

which D remains constant regardless Bf..

Sparse multipath channels represent a sparse distribofti@?
solvable paths in the angle-delay-Doppler domain. Sparséngle-
delay-Doppler leads toorrelationor coherencen space-frequency-

The value ofe in the above definition is nuanced and depends ortime due to the Fourier relation between the angle-delagpiy

the operating signal-to-noise ratio (SNR). An intuitiveoitie for e
is the operating received SNR per channel dimension, mgamity
channel coefficients with power above this threshold cbute to
the DoF. Note that the maximum number of DoF in a channel is

Doz = NRNT(L+ 1)(2M—|— 1) ~ TmazVmaz NRNTTW (10)

which corresponds to themaximum numbeof angle-delay-Doppler
resolutions bins in the virtual representation, and resléot max-
imum number ofresolvablepaths within the angular, delay and
Doppler spreads (see Fig. 1). By virtue of (8), we h&g,, < N,;
also,D < Dpag andD = Dy, if there are at leasV, > Diax

and space-frequency-time domains. Furthermore |dbations of
the D dominant virtual coefficients within th®,,... angle-delay-
Doppler resolution bins influence the nature of channeletation
in time, frequency and space. This information about thencbh
can be captured through the notion of t@nnel sparsity pattern

Definition 3 (Channel Sparsity Pattern}etSp = {(i, k,¢,m) :
|¥ (i, k, £,m)| > e}, for some appropriately chosen> 0, denote
the channel sparsity pattern. That iSp is the set of indices of the
D = |Sp| dominant virtual channel coefficients.

Essentially, the sparsity patteiv characterizes th®-dimensional

physical paths distributed in a way such that each angle-delaysybspace of théV.-dimensional channel space that is excited by the

Doppler resolution bin is populated by at least one path.

3. SPARSE MULTIPATH WIRELESS CHANNELS

D dominant and statistically independent virtual channeffidents
{H,(i,k,£,m)}s, representing the stochastic DoF in the channel
(see Fig. 1). This means that the statistical CSI of Rayléglng
sparsechannels is completely characterized oy (i, k, ¢, m)}s ),

Let N. = NgNrTW denote the dimension of the spatio-temporal whereas their instantaneous CSl is characterized by tlieatans

channel spaceinduced by theransmit signal spacef dimension

Of {HU(Z.7 k7 67 m)}SD :



4. ESTIMATION OF SPARSE MULTIPATH CHANNELS

One of the most popular and widely used approaches to lgpein
multipath wireless channel is to probe the channel with aigg
waveforms that are known to the receiver (referred to asihgi
waveforms) and process the corresponding channel outpestto
mate the channel parameters. The performance of suchngaini
based channel estimation methods is completely charaeteby
the number of signal space dimensions,., occupied by the train-
ing signals and the mean-squared-error (MSE) associatidtig
estimation of channel parameters. As such, there are tviensal
aspects to training-based estimation schemes, nasehgingand

DoF in a doubly-selective single-antenna channébjs.. = (L +
1)(2M + 1) = TmazVmaeTW, and we assume that the channel is
sparse in the delay-Doppler domain in the sensefhat |Sp| <
Dinao for agivenT andWW.

4.1.1. Orthogonal Short-Time Fourier Signaling

Signaling over orthogonal short-time Fourier (STF) (or Galba-
sis functions provides a very attractive approach for comigation
over sufficiently underspread doubly-selective chanriatsesappro-
priately chosen STF basis functions serve as approximgéatinc-
tions for such channels [20, 21]. A complete orthogonal S&F b

reconstruction Sensing corresponds to the design of training wave-sis for theT'W¥-dimensional signal space is generated via time and

forms used to probe a channel, while reconstruction is tbblpm
of processing of the corresponding channel output at theivecto
recover the channel response.

Training-based methods that are designed under the assampt assumed to have unit energly|g(t

of rich multipath scattering typically utiliz&Vy, = O(Dmaz) Sig-
nal space dimensions for channel sensing and employ lieean¥
struction strategies at the receiver for channel estimatisee, e.g.,
[11, 12, 13, 14, 15]. Traditional channel estimation schem&h as
these, however, lead to overutilization of the key commaition re-
sources of energy and bandwidth in sparse multipath chein@ein-
sequently, a number of alternative training-based methaus been
proposed in recent years for estimating single- and mauli@na
sparse multipath channels—see, e.g., [16, 17, 18, 19].

these and similar investigations either lack a quantiatieoretical
analysis of the performance of the proposed methods [1614]7,
or effectively assume perfect knowledge of the channelsiygrat-
tern [19]. In contrast, by leveraging key ideas from the tiieaf
compressed sensing (CS), we propose new training-basemalha
estimation methods in this section that are provably mdiieierfit
than the traditional schemes and do not rely on knowledgdef t
sparsity patterrSp. Our proposed methods utiliz¥y, O(D)
signal space dimensions for channel sensing, employ meaulire-
construction algorithms based on convex/linear programgrat the
receiver, and come within a logarithmic factor of the parfance of
an ideal channel estimator that has perfect knowledge aftthanel
sparsity pattern.

~
~

4.1. Estimation of Single-Antenna Channels: Sparsity in tk
Delay-Doppler Domain

In the case of a doubly-selective single-antenna charireephysical
channel model (2) and its virtual representation (3) redace

f) _ Z/@nej27r1/nt67j27r7'nf
n

~
~

L M
33 Holm)e Rl (14)

=0 m=—M

>

n€S, NSy, m

H,({,m) = Bn (15)

and the (complex) baseband signal at the receiver is given by

L
o
m)e?*" T s(t

— /W) +w(t). (16)

=0 m=—M

Here,s(t) represents the transmitted waveform ard) denotes the
zero-mean, circularly symmetric, complex additive whiteuSsian

frequency shifts of a fixed prototype pulgét): ~v;.x(t) = g(t —
iT,)el?™Wet (i k) € S ={0,1,...,Ny =1} x {0,1,..., Ny —
1}, whereN, = T/T, and Ny = W/Wo The prototype pulse is
)|?dt = 1, and completeness of
{7i,x } stems from the underlying assumption tiigi¥, = 1, which
results in a total ofV; N; = T'W basis element$.The transmitted
signal in this case can be represented as

Ny—1Ng—1

Z Z S'Lk’)/zkt

i=0 k=0

0<t<T (17)

where{s; 1 } represent th&' W symbols that are modulated onto
the STF basis waveforms. At the receiver, assuming thatakes b
parameterd’, andW, are matched to the channel parameters.
and v,,q. SO thaty; 's serve as approximate eigenfunctions[21],
projecting the (noisy) received signa(t) onto the STF basis wave-
forms yields

H;ksik +wik, (1,k) €S (18)

where (s,vi k) = [ s(t)y;,(t)dt and {w; .} corresponds to an
AWGN sequence. Here, thé. = TW channel coefficient§ H; ;. }
represent the underlying channel in the STF domain and &ede
to the physical channel aH;, ~ H(t, f) \(t Y= (o kW) [21].
Using the virtual representation (14), we can further witite STF
channel coefficients as

Jﬁik:(S ’Yik)f\N-'

ﬂ-_l —j2r-tk
’L k = Z Z H J2 e ’ - u}ikHUut}i
=0 m=—M
= (u;fl ® ufk)veo(Hl,) = (ufl ® ufk)h,u (19)

whereH, is the(L + 1) x

nel coefficients,uy x

(2M + 1) matrix of Dy,q. Virtual chan-
iom L Cion T
[1 632 ka e]2 fk] c
T
[67j2ﬂ1$—iz eJQW%i] €
C*M+1 andh, = veqH,) € CPmar 5
In training-based methodsy:, of the N. STF basis elements

are dedicated as “pilot tones” for learning the channel.tT$1ahe
STF training waveforns, (t) takes the form

&

1-1) ,

CL+1 N

(M—-1)
y Ut e g2

Str (t) =

> qk(t), 0<t<T  (20)

3Note that signaling over a complete orthogonal STF basibeahought
of as block orthogonal frequency division multiplexing (@) signaling
with OFDM symbol duratiori, and block lengthV; = T'/T5,.

4Two necessary matching conditions arer{i)az < To < 1/Vmaz and
(i) vmaz < Wo < 1/Tmaq; we refer the reader to [21] for further details.

5Under the assumption of STF basis parameters being matohéu t

noise (AWGN) at the receiver. From (14), the maximum numifer o channel parameters, we trivially hadé; > L + 1 andN; > 2M + 1.



where€ is the transmit energy budget available for training &ad
is the set of indices aiV,. pilot tones;S;. C S : |Sir| = Nip. At
the receiver, we can stack the received training symbols. } s, ..
into an N..-dimensional vectok to yield the following system of

equations
[ €
=4/ =— Ush,
x Nt'r ¢ + w

where theNy,. X Dyna. matrix Uy, is comprised of (u/, ® uf ) :
(i,k) € S} as its rows and the AWGN vectar is distributed as
CN(On,,,In,.). The goal then is to choose a set of pilot toes
and process the corresponding channel outgatobtain an estimate
h, that is close tch,, in terms of the MSE.

In many traditional training-based receivers, it is assuirat
the number of pilot tone®V;, > D, and linear reconstruction
schemes such as maximum likelihood (ML) estimators are tsed
recoverh, from x: h, = /N, /E(ULU,,) 'Ulx. It can be
shown in this case that, regardless of the choic8:pf the MSE in
the channel estimate is lower bounded as [12, 22]

(21)

N 2 D'maw
B[l - ho[3] > 25 . (22)
On the other hand, consider an ideal (nonrealizable) chastiena-
tor that has perfect knowledge of the sparsity pattgsrand assume
for the sake of this exposition that tm®n-dominantvirtual chan-
nel coefficients are identically zerd@ (¢, m) = 0V ({,m) ¢ Sp.
Then, as long as the number of pilot tom€s. > D, an ideal chan-
nel estimatéh;, can be obtained from by first forming arestricted
ML estimateh Nir [E(UfL s, Usrsp)” ' Ufl s, x, where
Uyr s, is the submatrix obtained by extracting thecolumns of
U, corresponding to the indices &b, and then settindy;, equal
tohs, on the indices infSp and zero on other locations. The MSE
of this ideal channel estimate can be lower bounded as [22]

D

T
The preceding discussion suggests that it might be postible
improve upon the performance of traditional training-tshskannel
learning methods by a factor of aba{ D,/ D), both in terms of
the minimum number of pilot tones needed for meaningfuhesti
tion and the MSE of the resulting channel estimate. And withiee
ideal channel estimatfie}, is impossible to construct in practice, we
now show that it is possible to obtain an estimatépfthat comes
within a logarithmic factor of the performance of the idestimator.

E[|lh} — ho|3] > (23)

Theorem 1. Let the number of pilot tone¥;, > ¢; - log® N - D
and chooseS:, to be a set ofV,, ordered pairs sampled uniformly
at random fromS. Pick A(€, Dinaz) = +/2E(1 + a) log Dpas for

The proof of this theorem, which uses some of the key resnlts i
CS, is given in [22]. The convex program (24) goes by the name
of Dantzig selector (DS) in the CS literature and is compoiat
ally tractable since it can be recast as a linear program [BB¢o-
rem 1 essentially states that our proposed DS-based chestirah-

tor comes remarkably close to matching the performancesafidal
estimator and can potentially reduce both the number ofgitmes
needed for channel estimation and the MSE in the resultitigate

by a factor of abouO(Dn.q-/D) when used as an alternative to
existing methods for learning single-antenna channels.

4.2. Estimation of Narrowband Multi-Antenna Channels: Spa-
sity in the Angular Domain

For block-fading narrowband MIMO channels (correspondiag
TVmaz aNdW e, < 1), the physical channel model (2) and its
virtual representation (3) reduce to

H =) Brar(Orn)at (0r,,) ~ ArH, A7 (26)
whereAr and Ar are Nr x Ng and Nr x Nr unitary discrete
Fourier transform (DFT) matrices, respectively. Theg: x Nr
beamspacenatrix H, couples the virtual AoAs and AoDs, and its
entries are given by the virtual channel coefficients

>

nESRViﬂST,k

H,(i, k) = 27)

From (26), the maximum number of DoF in a block-fading narrow
band MIMO channel i€, = NrNr, and we assume that: (i)
the channel is sparse in the angular domain in the sensdthat
|Sp| <€ Dmaz for a givenNr and Nz, and (ii) the non-dominant
virtual channel coefficients are zerd(i, k) =0V (i, k) € Sp.

4.2.1. Beamspace Signaling

SinceH and H,, are unitarily equivalent to each other, we focus
only on estimatingH, and assume without loss of generality that
signaling and reception take place in the beamspaee:A rs, and

x, = A x, wheres andx are the transmitted and received signals
in the antenna domain, respectively. To learn e = NgrNr-
dimensional matri¥,, training-based methods dedicate part of the
packet duratiorf” to transmit known signals to the receiver. Assum-
ing this training duration to b&3;,, we can stack théd/;, = T3, W
received (vector-valued) training symbols intofaf, x Nr matrix

X, to yield the following system of equations

&
Mtr'
wheref is the transmit energy budget available for trainiig,is the

X, = S,HY + W

(28)

anya > 0. Then the channel estimate obtained as a solution to theollection of My, (vector) training symbols stacked row-wise into an

convex program

h, = argmin ||h|:
EECDnlar

subject to H,/ £ UﬁrH <\ (29)
Ny oo

(25)

satisfies

~ D
by — hylf3 < c2 - 1og Diag - (g)

with probability> 1—2 max {2(y/7(1 + @) 10g Dinaz-D)%az)
C3N;c4}. Here,r in (24) is the N;,.-dimensional vector of residu-

als: r = x — \/§/N;, Us,h, and ¢y, ¢z, c3 and ¢4 are strictly
positive constants that do not depend&rD, ... Or Ne.

M, x Nt matrix with the constraint thdtS, |3 = M,,, andW is
an My, x Ngr matrix of unit-variance AWGN noise. The goal here
is to design the training matri®,, using fewest number of training
symbolsM:,- and process the received signal malXix to obtain an
estimatef, that is close td, in terms of the MSE.

To obtain a meaningful estimate @&f,, traditional estima-
tion schemes require the number of training symbols to fgatis
M. > Nr and typically employ ML-based estimators at the re-
ceiver:H, = /M, /€ (S7S,) 'SX, ° Regardless of the form
of S,, it can be shown in this case that the MSE in the channel

8Note that the conditiod/;, > Np means that a total a¥;,- > Dimax
receive signal space dimensions are dedicated to training.



estimate is lower bounded as [14, 15]

NT (NRNT) _ NT D'maw
& E '

On the other hand, given that there are oblyunknowns (albeit at
unknown locations) withirH,, it is arguable whether (29) is really
optimal. In fact, one could easily conceive estimators mguper-
fect knowledge of the channel sparsity pattéi that would yield
E[|H, — H,|%] = O(NrD/&). However, we now show that it is
possible to get within a logarithmic factor of this ideal MS&aling
withoutany knowledge of the sparsity pattern.

(5]

E[IH, - 1|} > 29 [

[7]
(8]
9]

Theorem 2. Leth!; and x.; denote thei-th row of H, and i- [10]

th column ofX,, respectively. Further, leD; denote the num-
ber of channel DoF contributed by each row #f,; that is,
D; = ||hy,llo (note thatZﬁiRi D; = D). Choose the number
of training symbolsM;. > c¢s5 - log(Nr/max; D;) - max; D;
and letS, be an i.i.d matrix of binary random variables taking
values+1/+/Nr or —1/+/Nr with probability 1/2 each. Pick

ME,Nr) = 1/2E(1 + a)(log Diaz)/Nr for anya > 0 and let
ho; = arg min h

subject to H,/ 2 sHy,
hE(CNT Mtr

wherer; = x,,; —/&/Mz S,h, i =

estimatefl, = [h,u’l

(11]

(12]

<A @0 [13]

1,..., Ng. Thenthe channel
T " [14]

h,, NR] satisfies

NTD>

Hﬁv - H'u||2F S Ce - logDmaz . (

with probability> 1 — 4 max { (/7(1 + @) 10g Doz - D2az)
e~ “™Mtr 1 Here,cs, ¢ ande; are strictly positive constants that do  [16]
not depend o, Nr or Nr.

(31) [19]

The proof of this theorem is given in [24]. It is clearly evide
from (31) that our proposed DS-based (row-by-row) MIMO chan
nel estimator (30) achieves near-optimal MSE performatted-
dition, sincemax; D; < Nr, it does so while potentially requir-
ing considerably fewer number of training symbols as comgbar [18]
to traditional schemes. In fact, if one assumes thatZthehan-

nel DoF are uniformly distributed across the angular spthad we
havemax; D; ~ D/Ngr and hence, the proposed estimator requires

(17]

My, =~ O(D/Ng) as opposed td/;, = O(Nr) for existing meth-  [19]
ods; in terms of the receive signal space dimensions dedidat
training, this translates int®/;,, =~ O(D) for the proposed channel
estimator versu®Vy, = O(Dmax) for ML-based estimators. [20]
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