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Abstract—Training-based channel estimation involves probing the receiver for learning the channel, and quantificatiothef
of the channel in time, frequency, and space by the transmiér  mean squared-error in the resulting channel estimate.
with known signals, and estimation of channel parameters Bm g rest of this paper is organized as follows. In Section I,
the output signals at the receiver. Traditional training-based - . .
methods, often comprising of maximum likelihood estimatos, a mOdefl'ng framework for MIMO Chan_nels IS rev'ewed_and
are known to be optimal under the assumption of rich multi- the notion of sparse MIMO channels is formally described.
path channels. Numerous measurement campaigns have shownSection IIl considers the problem of learning sparse nafrow
however, that physical multipath channels exhibit a sparse pand MIMO channels. Finally, Section IV discusses extamsio

structure in angle-delay-Doppler, especially at large sigal space ¢ the results of Section Il to learn sparse wideband MIMO
dimensions. In this paper, key ideas from the emerging thegr h | - i ier traini . |
of compressed sensing are leveraged to: (i) propose new metts  C1@NNEIS USING Mullicarrier training signais.

for efficient estimation of sparse multi-antenna channelsand (ii)
show that explicitly accounting for multipath sparsity in channel Il. MULTIPATH WIRELESS CHANNEL MODELING

estimation can result in significant performance improvemats Consider a MIMO channel corresponding to uniform linear

when compared with existing training-based methods. arrays of Ny transmit antennas and/r receive antennas.

Throughout the paper, we implicitly consider signaling ove

this channel using packets of duratidn and (two-sided)
Coherent communication over multi-antenna (MIMO) charbandwidth . In the absence of noise, the corresponding

nels requires knowledge of the channel state informati@i)C baseband transmitted and received signal are related as

at the receiver. In practice, however, communication sgyste W/2

have seldom access to the CSI and the channel needs to be x(t) :/ H(t, £)S(f)e?™df , 0<t<T (1)

first learned at the receiver to reap the benefits of coherent -w/2

communication. In this paper, we focus on learnsjarse \here x(t) is the Nz-dimensional received signa$(f) is
MIMO channels—channels with most of the multipath energye (element-wise) Fourier transform of thé--dimensional
localized to relatively small regions within the anglealel tgnsmitted signak(t), and H(t, f) is the Ng x Ny time-
Doppler spread of the channel. varying frequency response matrix of the channel.

One of the most popular and widely used approaches toone of the most salient characteristics of multipath wire-
learning a MIMO channel is to probe it with known signalingess channels is signal propagation over multiple spatiall

waveforms (referred to as training signals) and process tfitributed paths. A MIMO channel can be accurately modeled
corresponding channel output to estimate the channel paramterms of these physical paths as

eters. Almost all existing training-based channel esiiomat N
methods in the literature are based on the assumption of = ot
rich underlying multipath environment; the number of degreesaH(t’ f)=2_ Brar(Orn)af (Or,)e*™ e 27l (2)
of freedom in the MIMO channel are assumed to scale
linearly with the signal space dimensions. In contrast,sphy Which represents signal propagation ovéy paths; heref,
cal MIMO channels encountered in practice tend to exhig#€notes the complex path gaity , the angle of arrival (AoA)
impulse responses dominated by a relatively small numig the receiverfr, the angle of departure (AoD) at the
of dominant resolvable paths, especially when operating tansmitter,7,, the (relative) delay, and,, the Doppler shift
large bandwidths and signaling durations and/or with numb@ssociated with the:-th path. TheNr x 1 vector ar(f7)
of antennas [1], [2]. Traditional channel estimation sceemand the Nz x 1 vector ar(fr) denote the array steering
such as [3]-[6], however, lead to overutilization of the kefiNd response vectors, respectively, for transmittingivéng
communication resources of energy and bandwidth in spafséignal in the directior /6 and are periodic irf with
MIMO channels. In contrast, by leveraging key ideas from tH&it period [7]* We assume that, € [0, Timqs| and v, €
theory of compressed sensing, we propose new trainingdbabe“%*, “%*], where 7.,,, denotes the delay spread and
channel estimation methods in this paper that are provablyaz the (two-sided) Doppler spread of the channel. Further,
more efficient than the traditional schemes. Our discussion _ _ _ _

The normalized angle variablé is related to the physical anglé

focusse$ on the nature of the signals used by.the transm'EFﬁéasured with respect to array broadsidelas dsin(¢)/\ whered is
for probing a sparse MIMO channel, the algorithms used @t antenna spacing andis the wavelength of propagation.

|I. INTRODUCTION

n=1



the signaling parameters are chosen so that the channeinterspacings are smaller thai\0z, Afr, AT, Av). Sparse
doubly-selectiveT v, > 1 (time-selective) andV 7, > 1 MIMO channels, on the other hand, exhibit interspacings tha
(frequency-selective), and maximum angular spreads are ase larger tham\dg, A0, A7, and/orAv. Not every angle-
sumed at criticald = \/2) antenna spacingfg ,,0r,) € delay-Doppler bin of size\0r x Afr x AT x Av contains
[-1/2,1/2] x [-1/2,1/2]. a physical path in this case. In particular, since a virtual
. coefficient consists of the sum of gains of all paths falling
A. Virual Representation of MIMO Channels within its respective angle-delay-Doppler resolution, lsiparse
While the physical model (2) is highly accurate, it isMIMO channels tend to have far fewer thdh,,,, nonzero
difficult to analyze and learn owing to itsonlinear depen- channel coefficients at any fixed (but large enough) number
dence on a potentially large number of physical paramef antennas, signaling duration, and bandwidth. We forzeali
ters{(Bn, Or.n, 01,0, T, V) }. However, because of the finitethis notion of multipath sparsity as follows.
(transmit and receive) array apertures, signaling duraéad  Definition 1 (D-Sparse Multipath Wireless Channeld)et
bandwidth, the physical model can be well-approximated by, = {(i,k,¢,m) : |H,(i,k,¢,m)| > 0} denote the set of
linear (in parameters) counterpart, known agréual channel indices of nonzero virtual channel coefficients. We say that
mode] with the aid of a Fourier series expansion [7], [8]. a MIMO channel isD-sparse ifD = |Sp| < Dyaz, Where
The key idea behind virtual channel modeling is to provideB,,,,, = NNy L(2M + 1) is the total number of resolvable
low-dimensional approximation of (2) by uniformly samin paths (channel coefficients) within the angle-delay-Deppl
the multipath environment in the angle-delay-Doppler domaspread of the channel. Further, the corresponding set of
at a resolution commensurate with the signal space parenetghdicesSy is termed as thehannel sparsity pattetn

(AR, Abr, A7, Av) = (1/Ng, 1/Nr,1/W,1/T). That is, l1l. L EARNING SPARSENARROWBAND MIMO CHANNELS
Nr Npr L—-1 M

N . In the case of a narrowband MIMO channel (corresponding
H(t, f) ~ Z Z Z Z H,(i,k,£,m) to Wmaz < 1), the physical channel model (2) and its virtual

i=1 k=1 {=0 m=—M .
! " representation (3) reduce to

U\ (B pmpt—en s
ar <NR> ar (NT> 2Tt i2mw o (3) H= ZﬁnaR(9R,n)a¥(9T,n) ~ ApH,AY (5)
H, (i, k,t,m) ~ > Br 4) )

whereA p andAr are Ng x Ny and Ny x N unitary discrete
Fourier transform (DFT) matrices, respectively. TNg x Nt
where a phase and attenuation factor has been absorbe@damspacenatrix H, couples the virtual AoAs and AoDs, and
the ,’s in (4). In (3), Ng,Nr,L = [WTpa:| + 1, and jts entries are given by th®,,.. = NzxNr virtual channel
M = [Tvpas/2] denote the maximum number of resolvableoefficients{ H, (i, k) }. We further assume that the channel is
AoAs, AoDs, delays, and (one-sided) Doppler shifts Withi@-sparse in the angular domai (= |Sp| < Dmmaz) and it
the channel angle-delay-Doppler spread, respectivelg @u remains constant over the packet signaling durafiafblock-
the fixed angle-delay-Doppler sampling of (2), which definggding assumption corresponding T4, < 1).

the fixed basis functions in (3), the virtual representai®n  To learn theNy x N (antenna domain) matrid, training-

a linear channel representation completely characterized bysed channel estimation methods dedicate part of the packe
the virtual channel coefficientsH, (i, k, ¢, m)}. Further, the durationT to transmit known signals to the receiver. Assuming
relation (4) states that eacH, (i, k, ¢, m) is approximately this training duration to b&},., many traditional training-based
equal to the sum of the complex gains of all physical pathgceivers stack theélf;, = T;.W received (vector-valued)
whose angles, delays, and Doppler shifts lie withinazgle- training signals{x(n), n = 1,...,M,.} into an M, x Ng
delay-Doppler resolution binf size Adr x Afr x AT x Av matrix X to yield the following system of equations
centered around the virtual sample pdié ;, 07 «, 7e, Om) =

(i/Ng,k/Np, /W, m/T) in the angle-delay-Doppler domain; X =,/ £ SHT + W (6)
we refer the reader to [8] for further details. In essence, th My

virtual representation (3) effectively approximates agibgl Where £ is the total transmit energy budget available for
MIMO channel in terms of aD,,.,-dimensional parametertraining, S is the collection ofM;, training signal vectors

nESR,iﬂSTVkﬁSTyeﬂSV,m

comprising of the virtual channel coefficier{t&, (i, k,¢,m)}, {s(n), n=1,..., M} stacked row-wise into ai/; x Nr

whereD, 4. = NNy L(2M + 1). matrix with the constraint thatS||%2 = M;,, and W is an
M, x Nr matrix of unit-variance additive white Gaussian

B. Sparse MIMO Channels noise. The goal then is to design the training matfix

Channel measurement results dating as far back as 19878ihg fewest number of training vectoid;, and process the
and as recent as 2007 [2] suggest that multipath componemtseived signal matriX to obtain an estimat#l that is close
tend to arrive at the receiver in clusters. Based on the-intéo H in terms of the mean squared-error (MSE).
spacings between different multipath clusters within thgle- Conventionally, it is assumed that the number of training
delay-Doppler domain, MIMO channels can be characterizedctors M, > Nr and (assuming tha8 has full col-
as either “rich” or “sparse”. In a rich MIMO channel, theumn rank) linear reconstruction schemes such as maximum



likelihood (ML) estimators are used to recovHr from X: satisfies
H?T = /M, /€ (S”S)~!SHX. Regardless of the form of

0 2 2 2
S, it can be shown in this case that the MSE in the channel 16 = 6l2 < i -logp- 50 ©)
estimate is lower bounded as [3], [4] with probability at leastt — 2(7(1 + a)log p- p>*)~ /2. Here,
. ) N7 (NgNg) Ny Dpas the constant; = 4,/2(1+a)/ (1 — (V2 +1)das).
E [HH - HHF} > z =——% - (D _Inthe sequel, we will make use of the shorthand notation

Further, the requirement/,, > N, means that traditional & = PS(¥,, ) to denote a solution of the (linear) program
methods dedicate a total ¥, = NgMj, > D, receive (DS) that takes as inpul,y, and .

signal space dimensions for training. On the other han@, Estimation Scheme |: Antenna Domain Processing

given that sparse MIMO channels are completely charac-ye are now ready to state the training structure and the
terized by D < Dyq, parameters, it is arguable whethefggaciated DS-based reconstruction algorithm for our first
Nir = O(Dmq) and (7) are really optimal. In this regard,yonosed estimation scheme fbrsparse narrowband MIMO
we now propose two new training-based estimation schem@ginnels. The focus here is on receiver processing in the
for sparse narrowband MIMO channels that leverage key idegd$enna domain, and we refer to this particular scheme as
from the theory of compressed sensing to significantly redugge_aAP for NarrowBand Estimation-Antenna Processing

(i) the number of receive signal space dimensions needed fojge_ap Training LetS = {1,..., Nz} x{1,..., Nz} be
meaningful estimation, and/or (i) the MSE of the resulting,e set of indices of elements within the antenna domainixatr

channel estimate. Before proceeding further, however, Wg pyrther, let the number of receive signal space dimensions
briefly review some basic facts about compressed sensing.gedicated to trainingV,. > cs - 1og® Dynas - D for some

A. Review of Compressed Sensing constantc; > 0 and chooseS;, to be a set ofNV,, ordered

Compressed sensing (CS) is a relatively new area of theof@@rs sampled uniformly at random frash Define the number
ical research that lies at the intersection of signal prsiogs ©f (transmit) training vectors\i;, = [{k : (i,k) € Si-}|.
statistics, and computational harmonic analysis. One ef thne NBE-AP training strategy corresponds to measunifig
central tenets of CS theory is that a relatively small numbglements oft] at the receiver that are indexed by the Sgt
of (noisy) linear measurements of a sparse signal can apttitr = V&/Mir {H(i,k)}s,, + w. Here,x, € CVr s the
most of its salient information. In addition, recent thaimai Vector of received training data and ~ CA'(Ox,,., In,,. ).
results have established that the signal can be nearydeallNBE-AP ReconstructianLet vec ! denote the inverse of
reconstructed from these measurements by solving a lind3¢ vec operator (defined as the stacking of the columns of a
program, known as the Dantzig selector (DS) [10], providegatrix into a vector) and choose= (2£(1+a) log Dmar)ZQ
the collection of measurement vectors satisfy the soallfr @nya > 0, where& = ENy./ Dias My, Further, letar
restricted isometry propert{RIP). and aﬂ,i (_jenote thei-th row of A_*T and Ay, _respectl\{ely,

Definition 2 (Restricted Isometry Propertyfx matrix ¥ and consider anVy,. x Dy,q, Matrix Uy, that is comprised
having unit¢,-norm columns is said to satisfy RIP of ordgr ©f {(a}, ® aL;) : (i,k) € S} as its rows. The NBE-AP

with parameteds € (0,1) if for all z : ||z]o < S estimate ofH is obtained fromx,, as follows:
(1—=6s)zl3 < [[®z]3 < (1+65)|zl3 - (8)  H=Ag(vec!(DS(\/E/M, Up,xi, V) JAH.  (10)
T

Our approach to training-based estimation of sparse MIMO ) . _ -
channels is inspired by some of these recent advances “J]?emark L:As an illustrative example of NBE-AP training

the CS theory. By leveraging some of the analytical insighﬁ@d reconstruction, consider the case 6t-a5 MIMO system
provided in the related CS literature, such as in [10]-[12 ,'th Nip = 3 and letS;, = {(3.’ 2.)’(1’4)’(4’4)}' In_ this
we propose new channel estimation methods in this secti se,Mi; = 2 and the o training vectors are given by
that employnonlinear DS-based reconstruction algorithms s(1) = e2,8(2) = eq}, wheree; denotes the-th standard

. . s is element o V7. At the receiver, we first fornx,, by
the receiver, and which are provably more efficient than t SIs € . 4 tr
traditional schemes. It is therefore instructive to stdte tstacklng the third element of(1) = \/£/2 Hs(1)+w(1) and

reconstruction error performance of the DS. The foIIowingrSt and fourth elements 0f(2) = /£/2Hs(2) +w(2) into

theorem is a slight variation on [10, Th. 1.1]. veptor, and then r.econstrLHt using (10).
Theorem 1 (The Dantzig Selectol)ety — w6 + 7 € C" Finally, the following theorem states the MSE performance
be a vector of noisy measurements@f& C? : [|0]lo < S of NBE-AP for estimating narrowband MIMO channels.

wheren ~ CA(0,,021,,). Suppose that the x p measure- Theorem 2 (NBE-AP MSE)The NBE-AP e_zst_imate (20) of
ment matrix® has units-norm columns and it satisfies RIP of® D-sparse narrowband MIMO channel satisfies
order2S with d,s < v/2—1. Choose\ = (202(14-a) log p)'/? IH = H||% < c5 - 108 D - <NT D) _ <NRMtr) (11)
for any a > 0. Then the estimaté obtained as a solution to P = 630108 Hmaz £ Ny,
the optimization program with probability exceeding — 2 max {2(7(1 + a) log Dy -

6 = argmin |||, subject to| @7 (y — ¥8)|, < A (DS) D24 .)""/2 c4D;55 ). Here,cs, cq andes are strictly positive

max max

becr constants that do not depend 6nNgy or Nr.



Proof Sketch: Defineh = veqH) and h, = vedH,). H=Ax flu,l ﬁv_’NR TAZFI_ (12)
From (5), we have thdt = (A% ® Ag) h,. It is then easy to
see that NBE-AP training implies;, = \/€/M;, Uy h, +w, The following theorem states the MSE performance of
whereUy, is as defined earlier. Next, defiié = A%, ® Ay, NBE-BP for estimating narrowband MIMO channels.
which is a unitary matrix, and note that by constructidp. Theorem 3 (NBE-BP MSE)The NBE-BP estimate (12) of
corresponds to randomly sampliag,. rows of U. Therefore, & D-sparse narrowband MIMO channel satisfies
[12, Th. 3.3] implies that the matrix/ Ngr N7 /Ny, Uy, satis- . Ny D
fies RIP of orderD with §2p < v/2 — 1 with probability at IH — H|% < ¢7 - 10g Dinas - <T) (13)
leastl—c4 D;,.%5.. The theorem follows by noting that )l and
H, are unitarily equivalent to each other, and (i), ||o = D, With probability exceeding — 4 max { (7 (1 + a)10g Dyqz -
and combining these observations with Theorem 1. m D2 )~/? e~sM= 1} Here, ¢; and cs are strictly positive

A few remarks regarding the performance of the proposédnstants that do not depend 6n/Ny or Nr.

scheme are in order now. First, NBE-AP training structure Proof Sketch:By definitionx, ; = \/£/M;, SA%h, ; +
requires that the number of training vectarg, < Ny as Wi, Where|h, ;llo = D; andw, ; ~ CN'(Ouy,, 7IM,T) Next,
opposed tal/,, > Ny for traditional schemes. Second, MSHElefine D = max; D; and note that [11, Th. 5.2] implies that
scaling of the NBE-AP channel estimate given in (11) is lesg N1 /M;- SA}, satisfies RIP of orderD with 6,5 < v2—1
than that for traditional methods given in (7). Finally, anavith probability at leastl — 2e~s*-_ It can then be shown
perhaps most importantly, the number of receive S|gnalespatbrough a slight variation of the proof of [10, Th. 1.1] that
dimensions that NBE-AP dedicates to training\is. ~ O(D)  |[hy;i—h, ;[|3 = O(log Dpao- (522)) foralli = 1,..., Ng
as opposed tdV;,. = O(D,,4.) for conventional schemes. Th|sWIth probability exceeding — 4 max {(7(1 + a) log Dmam :
is significant from the perspective of multiuser MIMO syseemD?2%, )~'/2 e~¢sMt- 1 and the proof of th|s theorem follows

since these savings in the receive signal space dimensions sy noting the fact thaEiJ\iR1 D; =D. u
result in increased network spectral efficiency for appiadply Remark 2: The aforementioned scheme remains unchanged
designed cognitive/ad-hoc networks. if the random binary probing is carried out in the beamspace

instead of in the antenna domais(n) = Ars,(n), where
thes, (n)'s are now i.i.d. binary random vectors. The NBE-BP
We know from elementary estimation theory that at the vegstimation can also be carried out using a completely differ
minimum D measurements are needed to reasonably estimgée of training vectors without significantly altering ifieacy
a D-dimensional parameter. Therefore, NBE-AP performgs follows. LetS,, be a (sorted) set a¥/;, = 0(10g5(NT/D)-
near optimally in terms of the number of receive signa@) elements sampled uniformly at random frdmy ..., Ny}
space dimensions that it dedicates to training. However, thnd define thels,, training vectors to bgs(n) =e; : i €
same cannot be said of NBE-AP for the number of training,, }. Then the preceding analysis still follows through with the
vectorsM;, and the MSE. In fact, by appealing to the classigifference being that the second term in thex expression
“occupancy problem” [13], it can be shown thatlif > N7 in Theorem 3 is changed 10(N. O<1))
then the NBE-AP training strategy results i, = N7 with  The preceding discussion shows that NBE-BP achieves
high probability and hence, NBE-AP and traditional schemegar-optimal MSE performance. However, the other two per-
perform near identically in terms of the MSE and;. in formance metrics of interest, namely, the number of trgjnin
this case. We now present an alternative estimation scheraggtors (M,,) and the number of receive signal space di-
referred to as NBE-BP, that circumvents this problem byensions dedicated to trainin@v,,), vary with the channel
focusing on receiver processing in the beamspace and, agparsity pattern in this schemé,, ~ O(max; D;) and
result, achieves near-optimal MSE O{NrD/£). N ~ O(max; D;Ng). However, if one assumes that thie
NBE-BP Training Let h ; denote the-th row of H, and nonzero virtual coefficients are uniformly distributed @ss
define D; to be the number of nonzero virtual coefficients ithe channel angular spread then we havex; D; ~ D/Ng
each row ofH,; that is, D; = [/h, ;|lo. Choose the number and, in this case, NBE-BP requirdd;, ~ O(D/Ng) as
of training vectorsM;, > cg - log(Nr/ max; D;) - max; D;  opposed toM;, = O(Ny) for existing methods; in terms of
for some constants > 0 and let each training vectorthe receive signal space dimensions dedicated to traittifsy,
s(n),n = 1,..., M, be an i.i.d. vector of binary randomtranslates into near-optimal performanceéf. ~ O(D) for
variables takmg values-1/y/Nr or —1/y/Nr with probabil- NBE-BP versusN,, = O(D,,..) for ML-based estimators.
ity 1/2 each. At the receiver, all the received training signals
{x(n), n=1,..., My} are stacked into af/;, x N matrix IV. LEARNING SPARSEWIDEBAND MIMO CHANNELS
X (just like in the traditional training setup) to yield (6). In this section, we extend the results of Section Il to en-
NBE-BP ReconstructianFirst, defineX, = XA% and let compass sparse wideband MIMO channels (corresponding to
Xy,; denote thei-th column of X,. Next, fix somea > 0 W4 > 1). Because of space constraints, we limit ourselves
and pick A = (26(1 4 a)(log Dynaz)/Nr)'/2. Finally, define to block-fading channels (corresponding 1., < 1),
h,; = DS(\/(?/ o SAL %, 4, ) fori = 1,...,Ng. The and assume that the communication packet is comprised of
NBE-BP estimate oH is then given as foIIows: No = T/(Tf + Tmaz) > Nr orthogonal frequency division

C. Estimation Scheme II: Beamspace Processing




multiplexing (OFDM) vector-valued symbols and each OFDNpilot tones M;,. > c¢g - log(NrQ/ max; D;) - max; D; for
symbol consists of) = T/W > [W,,. | + 1 tones. Here, some constanty > 0. Define the pilot tonesP,, to be a
T; < T denotes the OFDM symbol duration and extensiorset of M, ordered pairs sampled uniformly at random from
of this to the case whei, = 1 (Ty ~ T), and to sparse {1,...,Nr} x{0,...,Q —1}, and the corresponding training
doubly-selective MIMO channels will be reported in a journavectors as{s(n,q) = e,, : (n,q) € P }. At the receiver, the

version of this paper currently under preparation. received signal$x(n, ¢)}»,, are stacked row-wise to yield an
For block-fading wideband MIMO channels, the virtualM/;, x Nr matrix X consisting ofx(n, g)’s as its rows.
channel representation (3) reduce to WBE-BP ReconstructiarFirst, define an\{y,, x Ny L ma-
L1 trix Uy, that is comprised of (u} , ® af.,,) : (n,q) € Pi,}
H(f)~ Y H(()e 727w/ (14) as its rows; heren}, = {e—j?”%o e—j?”%(L—l)}
=0

and aj,,, denotes then-th row of A%. Next, choosex =

where the (antenna domain matricdd)¢)'s are defined in (2£(1 + a)(log Diaz)/Nr)!'/? for anya > 0. Finally, define
terms of the beamspace matricddi(f) ~ AgzH,(/)AY. X, = XA} and letx,; denote the-th column ofX,. The
Here’ the channel frequency resporﬁéf) is Comp|ete|y WBE-BP estimate OHUJ'S is then given as follows:
characterized by thé,,,, = NrNrL virtual channel co- ﬁm_ — vec 1 (DS(\/E/M,, Uy, %y, \)) . 17
efficients {H, (i, k,£)}, out of which only D < Daz ’ (DS(VE/Mir Ui 0. ))_ ()
coefficients are assumed to be nonzero. To learnfhjs,- 1 heorem 4 (WBE-BP MSEJthe WBE-BP estimate of the
dimensional channel, training-based methods deditAteof virtual cha_nnel coefﬂments. of &-sparse wideband MIMO
the N,(Q OFDM tones as “pilot tones” and transmit knowrfhannel (given by (17)) satisfies

(vector-valued) training signals to the receiver over ¢tesies. az: E ['ﬁ”(i’ ke, 0) — H,(i, k,£)|2} — 0(10g Dy - (M22))
The transmitted and received training signals in this case &7

related to each other as _ . .
with probability exceeding — 2 max {2(7(1 + a)log Dpaq -
& H(q)s(n,q) + w(n,q), (n,q) € Py (15) D22, )~1/2 O(NyL)~9W}. Here, the scaling constants are
My, independent of, Ng, Nt or L.

where¢ is the transmit energy budget available for training, We omit the proof of this theorem for the sake of brevity.
the matrixH(q) = H(f)|s—q/7;, W(n,q) ~ CN(Ong, Ing), Note that: (i) WBE-BP achieves near-optimal MSE scaling
Pu C {1,...,N,} x {0,...,Q — 1} : |Psr| = M,,, and the of O(NpD/E), and (ii) it requires that the number of pilot
set of transmit training vectorgs(n, q)}»,, is designed such tonesMy. ~ O(max; D;) versusM, ~ NrL for traditional

X(?’L, Q) =

that Zpt Is(n,q)||3 = M. schemes—a significant improvement assuming uniformly dis-
Traditional training-based methods often assume that tiuted sparsity within the channel angle-delay spread.

number of pilot tones\/;, > N L and typically employ ML- REFERENCES
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