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Abstract—Training-based channel estimation involves probing
of the channel in time, frequency, and space by the transmitter
with known signals, and estimation of channel parameters from
the output signals at the receiver. Traditional training-based
methods, often comprising of maximum likelihood estimators,
are known to be optimal under the assumption of rich multi-
path channels. Numerous measurement campaigns have shown,
however, that physical multipath channels exhibit a sparse
structure in angle-delay-Doppler, especially at large signal space
dimensions. In this paper, key ideas from the emerging theory
of compressed sensing are leveraged to: (i) propose new methods
for efficient estimation of sparse multi-antenna channels,and (ii)
show that explicitly accounting for multipath sparsity in channel
estimation can result in significant performance improvements
when compared with existing training-based methods.

I. I NTRODUCTION

Coherent communication over multi-antenna (MIMO) chan-
nels requires knowledge of the channel state information (CSI)
at the receiver. In practice, however, communication systems
have seldom access to the CSI and the channel needs to be
first learned at the receiver to reap the benefits of coherent
communication. In this paper, we focus on learningsparse
MIMO channels—channels with most of the multipath energy
localized to relatively small regions within the angle-delay-
Doppler spread of the channel.

One of the most popular and widely used approaches to
learning a MIMO channel is to probe it with known signaling
waveforms (referred to as training signals) and process the
corresponding channel output to estimate the channel param-
eters. Almost all existing training-based channel estimation
methods in the literature are based on the assumption of a
rich underlying multipath environment; the number of degrees
of freedom in the MIMO channel are assumed to scale
linearly with the signal space dimensions. In contrast, physi-
cal MIMO channels encountered in practice tend to exhibit
impulse responses dominated by a relatively small number
of dominant resolvable paths, especially when operating at
large bandwidths and signaling durations and/or with number
of antennas [1], [2]. Traditional channel estimation schemes
such as [3]–[6], however, lead to overutilization of the key
communication resources of energy and bandwidth in sparse
MIMO channels. In contrast, by leveraging key ideas from the
theory of compressed sensing, we propose new training-based
channel estimation methods in this paper that are provably
more efficient than the traditional schemes. Our discussion
focusses on the nature of the signals used by the transmitter
for probing a sparse MIMO channel, the algorithms used at

the receiver for learning the channel, and quantification ofthe
mean squared-error in the resulting channel estimate.

The rest of this paper is organized as follows. In Section II,
a modeling framework for MIMO channels is reviewed and
the notion of sparse MIMO channels is formally described.
Section III considers the problem of learning sparse narrow-
band MIMO channels. Finally, Section IV discusses extensions
of the results of Section III to learn sparse wideband MIMO
channels using multicarrier training signals.

II. M ULTIPATH WIRELESSCHANNEL MODELING

Consider a MIMO channel corresponding to uniform linear
arrays of NT transmit antennas andNR receive antennas.
Throughout the paper, we implicitly consider signaling over
this channel using packets of durationT and (two-sided)
bandwidth W . In the absence of noise, the corresponding
baseband transmitted and received signal are related as

x(t) =

∫ W/2

−W/2

H(t, f)S(f)ej2πftdf , 0 ≤ t ≤ T (1)

where x(t) is the NR-dimensional received signal,S(f) is
the (element-wise) Fourier transform of theNT -dimensional
transmitted signals(t), and H(t, f) is the NR × NT time-
varying frequency response matrix of the channel.

One of the most salient characteristics of multipath wire-
less channels is signal propagation over multiple spatially
distributed paths. A MIMO channel can be accurately modeled
in terms of these physical paths as

H(t, f) =

Np∑

n=1

βnaR(θR,n)aH
T (θT,n)ej2πνnte−j2πτnf (2)

which represents signal propagation overNp paths; here,βn

denotes the complex path gain,θR,n the angle of arrival (AoA)
at the receiver,θT,n the angle of departure (AoD) at the
transmitter,τn the (relative) delay, andνn the Doppler shift
associated with then-th path. TheNT × 1 vector aT (θT )
and theNR × 1 vector aR(θR) denote the array steering
and response vectors, respectively, for transmitting/receiving
a signal in the directionθT /θR and are periodic inθ with
unit period [7].1 We assume thatτn ∈ [0, τmax] and νn ∈
[− νmax

2 , νmax

2 ], where τmax denotes the delay spread and
νmax the (two-sided) Doppler spread of the channel. Further,

1The normalized angle variableθ is related to the physical angleφ
(measured with respect to array broadside) asθ = d sin(φ)/λ where d is
the antenna spacing andλ is the wavelength of propagation.
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the signaling parameters are chosen so that the channel is
doubly-selective:Tνmax ≥ 1 (time-selective) andWτmax ≥ 1
(frequency-selective), and maximum angular spreads are as-
sumed at critical (d = λ/2) antenna spacing:(θR,n, θT,n) ∈
[−1/2, 1/2]× [−1/2, 1/2].

A. Virtual Representation of MIMO Channels

While the physical model (2) is highly accurate, it is
difficult to analyze and learn owing to itsnonlinear depen-
dence on a potentially large number of physical parame-
ters{(βn, θR,n, θT,n, τn, νn)}. However, because of the finite
(transmit and receive) array apertures, signaling duration, and
bandwidth, the physical model can be well-approximated by a
linear (in parameters) counterpart, known as avirtual channel
model, with the aid of a Fourier series expansion [7], [8].

The key idea behind virtual channel modeling is to provide a
low-dimensional approximation of (2) by uniformly sampling
the multipath environment in the angle-delay-Doppler domain
at a resolution commensurate with the signal space parameters:
(∆θR, ∆θT , ∆τ, ∆ν) = (1/NR, 1/NT , 1/W, 1/T ). That is,

H(t, f) ≈
NR∑

i=1

NT∑

k=1

L−1∑

ℓ=0

M∑

m=−M

Hv(i, k, ℓ, m)

aR

(
i

NR

)
aH

T

(
k

NT

)
ej2π m

T
te−j2π ℓ

W
f (3)

Hv(i, k, ℓ, m) ≈
∑

n∈SR,i∩ST,k∩Sτ,ℓ∩Sν,m

βn (4)

where a phase and attenuation factor has been absorbed in
the βn’s in (4). In (3), NR, NT , L = ⌈Wτmax⌉ + 1, and
M = ⌈Tνmax/2⌉ denote the maximum number of resolvable
AoAs, AoDs, delays, and (one-sided) Doppler shifts within
the channel angle-delay-Doppler spread, respectively. Due to
the fixed angle-delay-Doppler sampling of (2), which defines
the fixed basis functions in (3), the virtual representationis
a linear channel representation completely characterized by
the virtual channel coefficients{Hv(i, k, ℓ, m)}. Further, the
relation (4) states that eachHv(i, k, ℓ, m) is approximately
equal to the sum of the complex gains of all physical paths
whose angles, delays, and Doppler shifts lie within anangle-
delay-Doppler resolution binof size∆θR ×∆θT ×∆τ ×∆ν
centered around the virtual sample point(θ̂R,i, θ̂T,k, τ̂ℓ, ν̂m) =
(i/NR, k/NT , ℓ/W, m/T ) in the angle-delay-Doppler domain;
we refer the reader to [8] for further details. In essence, the
virtual representation (3) effectively approximates a physical
MIMO channel in terms of aDmax-dimensional parameter
comprising of the virtual channel coefficients{Hv(i, k, ℓ, m)},
whereDmax = NRNT L(2M + 1).

B. Sparse MIMO Channels

Channel measurement results dating as far back as 1987 [9]
and as recent as 2007 [2] suggest that multipath components
tend to arrive at the receiver in clusters. Based on the inter-
spacings between different multipath clusters within the angle-
delay-Doppler domain, MIMO channels can be characterized
as either “rich” or “sparse”. In a rich MIMO channel, the

interspacings are smaller than(∆θR, ∆θT , ∆τ, ∆ν). Sparse
MIMO channels, on the other hand, exhibit interspacings that
are larger than∆θR, ∆θT , ∆τ , and/or∆ν. Not every angle-
delay-Doppler bin of size∆θR × ∆θT × ∆τ × ∆ν contains
a physical path in this case. In particular, since a virtual
coefficient consists of the sum of gains of all paths falling
within its respective angle-delay-Doppler resolution bin, sparse
MIMO channels tend to have far fewer thanDmax nonzero
channel coefficients at any fixed (but large enough) number
of antennas, signaling duration, and bandwidth. We formalize
this notion of multipath sparsity as follows.

Definition 1 (D-Sparse Multipath Wireless Channels):Let
SD = {(i, k, ℓ, m) : |Hv(i, k, ℓ, m)| > 0} denote the set of
indices of nonzero virtual channel coefficients. We say that
a MIMO channel isD-sparse ifD = |SD| ≪ Dmax, where
Dmax = NRNT L(2M + 1) is the total number of resolvable
paths (channel coefficients) within the angle-delay-Doppler
spread of the channel. Further, the corresponding set of
indicesSD is termed as thechannel sparsity pattern.

III. L EARNING SPARSENARROWBAND MIMO CHANNELS

In the case of a narrowband MIMO channel (corresponding
to Wτmax ≪ 1), the physical channel model (2) and its virtual
representation (3) reduce to

H =
∑

n

βnaR(θR,n)aH
T (θT,n) ≈ ARHvA

H
T (5)

whereAR andAT areNR×NR andNT ×NT unitary discrete
Fourier transform (DFT) matrices, respectively. TheNR×NT

beamspacematrixHv couples the virtual AoAs and AoDs, and
its entries are given by theDmax = NRNT virtual channel
coefficients{Hv(i, k)}. We further assume that the channel is
D-sparse in the angular domain (D = |SD| ≪ Dmax) and it
remains constant over the packet signaling durationT (block-
fading assumption corresponding toTνmax ≪ 1).

To learn theNR×NT (antenna domain) matrixH, training-
based channel estimation methods dedicate part of the packet
durationT to transmit known signals to the receiver. Assuming
this training duration to beTtr, many traditional training-based
receivers stack theMtr = TtrW received (vector-valued)
training signals{x(n), n = 1, . . . , Mtr} into an Mtr × NR

matrix X to yield the following system of equations

X =

√
E

Mtr
SHT + W (6)

where E is the total transmit energy budget available for
training, S is the collection ofMtr training signal vectors
{s(n), n = 1, . . . , Mtr} stacked row-wise into anMtr × NT

matrix with the constraint that‖S‖2
F = Mtr, and W is an

Mtr × NR matrix of unit-variance additive white Gaussian
noise. The goal then is to design the training matrixS

using fewest number of training vectorsMtr and process the
received signal matrixX to obtain an estimatêH that is close
to H in terms of the mean squared-error (MSE).

Conventionally, it is assumed that the number of training
vectors Mtr ≥ NT and (assuming thatS has full col-
umn rank) linear reconstruction schemes such as maximum
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likelihood (ML) estimators are used to recoverH from X:
ĤT =

√
Mtr/E (SHS)−1SHX. Regardless of the form of

S, it can be shown in this case that the MSE in the channel
estimate is lower bounded as [3], [4]

E

[
‖Ĥ− H‖2

F

]
≥ NT (NRNT )

E =
NT Dmax

E . (7)

Further, the requirementMtr ≥ NT means that traditional
methods dedicate a total ofNtr = NRMtr ≥ Dmax receive
signal space dimensions for training. On the other hand,
given that sparse MIMO channels are completely charac-
terized byD ≪ Dmax parameters, it is arguable whether
Ntr = O(Dmax) and (7) are really optimal. In this regard,
we now propose two new training-based estimation schemes
for sparse narrowband MIMO channels that leverage key ideas
from the theory of compressed sensing to significantly reduce
(i) the number of receive signal space dimensions needed for
meaningful estimation, and/or (ii) the MSE of the resulting
channel estimate. Before proceeding further, however, we
briefly review some basic facts about compressed sensing.

A. Review of Compressed Sensing

Compressed sensing (CS) is a relatively new area of theoret-
ical research that lies at the intersection of signal processing,
statistics, and computational harmonic analysis. One of the
central tenets of CS theory is that a relatively small number
of (noisy) linear measurements of a sparse signal can capture
most of its salient information. In addition, recent theoretical
results have established that the signal can be near-ideally
reconstructed from these measurements by solving a linear
program, known as the Dantzig selector (DS) [10], provided
the collection of measurement vectors satisfy the so-called
restricted isometry property(RIP).

Definition 2 (Restricted Isometry Property):A matrix Ψ

having unitℓ2-norm columns is said to satisfy RIP of orderS
with parameterδS ∈ (0, 1) if for all z : ‖z‖0 ≤ S

(1 − δS)‖z‖2
2 ≤ ‖Ψz‖2

2 ≤ (1 + δS)‖z‖2
2 . (8)

Our approach to training-based estimation of sparse MIMO
channels is inspired by some of these recent advances in
the CS theory. By leveraging some of the analytical insights
provided in the related CS literature, such as in [10]–[12],
we propose new channel estimation methods in this section
that employnonlinearDS-based reconstruction algorithms at
the receiver, and which are provably more efficient than the
traditional schemes. It is therefore instructive to state the
reconstruction error performance of the DS. The following
theorem is a slight variation on [10, Th. 1.1].

Theorem 1 (The Dantzig Selector):Let y = Ψθ + η ∈ C
n

be a vector of noisy measurements ofθ ∈ Cp : ‖θ‖0 ≤ S,
whereη ∼ CN (0n, σ2In). Suppose that then × p measure-
ment matrixΨ has unitℓ2-norm columns and it satisfies RIP of
order2S with δ2S <

√
2−1. Chooseλ = (2σ2(1+a) log p)1/2

for any a ≥ 0. Then the estimatêθ obtained as a solution to
the optimization program

θ̂ = arg min
θ̃∈Cp

‖θ̃‖1 subject to‖ΨH(y − Ψθ̃)‖∞ ≤ λ (DS)

satisfies

‖θ̂ − θ‖2
2 ≤ c2

1 · log p · S · σ2 (9)

with probability at least1− 2(π(1+ a) log p · p2a)−1/2. Here,
the constantc1 = 4

√
2(1 + a)/

(
1 − (

√
2 + 1)δ2S

)
.

In the sequel, we will make use of the shorthand notation
θ̂ = DS(Ψ,y, λ) to denote a solution of the (linear) program
(DS) that takes as inputΨ,y, andλ.

B. Estimation Scheme I: Antenna Domain Processing

We are now ready to state the training structure and the
associated DS-based reconstruction algorithm for our first
proposed estimation scheme forD-sparse narrowband MIMO
channels. The focus here is on receiver processing in the
antenna domain, and we refer to this particular scheme as
NBE-AP for NarrowBand Estimation-Antenna Processing.

NBE-AP Training: Let S = {1, . . . , NR}×{1, . . . , NT } be
the set of indices of elements within the antenna domain matrix
H. Further, let the number of receive signal space dimensions
dedicated to trainingNtr ≥ c2 · log5 Dmax · D for some
constantc2 > 0 and chooseStr to be a set ofNtr ordered
pairs sampled uniformly at random fromS. Define the number
of (transmit) training vectorsMtr = |{k : (i, k) ∈ Str}|.
The NBE-AP training strategy corresponds to measuringNtr

elements ofH at the receiver that are indexed by the setStr:
xtr =

√
E/Mtr {H(i, k)}Str

+ w. Here,xtr ∈ CNtr is the
vector of received training data andw ∼ CN (0Ntr

, INtr
).

NBE-AP Reconstruction: Let vec−1 denote the inverse of
the vec operator (defined as the stacking of the columns of a
matrix into a vector) and chooseλ = (2Ẽ(1+a) logDmax)1/2

for any a ≥ 0, whereẼ = ENtr/DmaxMtr. Further, letaT
T,i

and aT
R,i denote thei-th row of A∗

T and AR, respectively,
and consider anNtr × Dmax matrix Utr that is comprised
of {(aT

T,k ⊗ aT
R,i) : (i, k) ∈ Str} as its rows. The NBE-AP

estimate ofH is obtained fromxtr as follows:

Ĥ = AR

(
vec−1

(
DS(

√
E/Mtr Utr,xtr, λ)

))
AH

T . (10)

Remark 1:As an illustrative example of NBE-AP training
and reconstruction, consider the case of a5×5 MIMO system
with Ntr = 3 and let Str = {(3, 2), (1, 4), (4, 4)}. In this
case,Mtr = 2 and the two training vectors are given by
{s(1) = e2, s(2) = e4}, whereei denotes thei-th standard
basis element ofCNT . At the receiver, we first formxtr by
stacking the third element ofx(1) =

√
E/2Hs(1)+w(1) and

first and fourth elements ofx(2) =
√
E/2Hs(2)+w(2) into

a vector, and then reconstructH using (10).
Finally, the following theorem states the MSE performance

of NBE-AP for estimating narrowband MIMO channels.
Theorem 2 (NBE-AP MSE):The NBE-AP estimate (10) of

a D-sparse narrowband MIMO channel satisfies

‖Ĥ− H‖2
F ≤ c3 · log Dmax ·

(
NT D

E

)
·
(

NRMtr

Ntr

)
(11)

with probability exceeding1− 2 max
{
2(π(1 + a) log Dmax ·

D2a
max)−1/2, c4D

−c5

max

}
. Here,c3, c4 andc5 are strictly positive

constants that do not depend onE , NR or NT .
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Proof Sketch: Defineh = vec(H) and hv = vec(Hv).
From (5), we have thath = (A∗

T ⊗AR)hv. It is then easy to
see that NBE-AP training impliesxtr =

√
E/Mtr Utrhv +w,

whereUtr is as defined earlier. Next, defineU = A∗
T ⊗AR,

which is a unitary matrix, and note that by constructionUtr

corresponds to randomly samplingNtr rows ofU. Therefore,
[12, Th. 3.3] implies that the matrix

√
NRNT /Ntr Utr satis-

fies RIP of order2D with δ2D <
√

2 − 1 with probability at
least1−c4D

−c5

max. The theorem follows by noting that (i)H and
Hv are unitarily equivalent to each other, and (ii)‖hv‖0 = D,
and combining these observations with Theorem 1.

A few remarks regarding the performance of the proposed
scheme are in order now. First, NBE-AP training structure
requires that the number of training vectorsMtr ≤ NT as
opposed toMtr ≥ NT for traditional schemes. Second, MSE
scaling of the NBE-AP channel estimate given in (11) is less
than that for traditional methods given in (7). Finally, and
perhaps most importantly, the number of receive signal space
dimensions that NBE-AP dedicates to training isNtr ≈ O(D)
as opposed toNtr = O(Dmax) for conventional schemes. This
is significant from the perspective of multiuser MIMO systems
since these savings in the receive signal space dimensions can
result in increased network spectral efficiency for appropriately
designed cognitive/ad-hoc networks.

C. Estimation Scheme II: Beamspace Processing

We know from elementary estimation theory that at the very
minimumD measurements are needed to reasonably estimate
a D-dimensional parameter. Therefore, NBE-AP performs
near optimally in terms of the number of receive signal
space dimensions that it dedicates to training. However, the
same cannot be said of NBE-AP for the number of training
vectorsMtr and the MSE. In fact, by appealing to the classic
“occupancy problem” [13], it can be shown that ifD ≥ NT

then the NBE-AP training strategy results inMtr = NT with
high probability and hence, NBE-AP and traditional schemes
perform near identically in terms of the MSE andMtr in
this case. We now present an alternative estimation scheme,
referred to as NBE-BP, that circumvents this problem by
focusing on receiver processing in the beamspace and, as a
result, achieves near-optimal MSE ofO(NT D/E).

NBE-BP Training: Let hT
v,i denote thei-th row of Hv and

defineDi to be the number of nonzero virtual coefficients in
each row ofHv; that is,Di = ‖hv,i‖0. Choose the number
of training vectorsMtr ≥ c6 · log(NT / maxi Di) · maxi Di

for some constantc6 > 0 and let each training vector
s(n), n = 1, . . . , Mtr, be an i.i.d. vector of binary random
variables taking values+1/

√
NT or −1/

√
NT with probabil-

ity 1/2 each. At the receiver, all the received training signals
{x(n), n = 1, . . . , Mtr} are stacked into anMtr×NR matrix
X (just like in the traditional training setup) to yield (6).

NBE-BP Reconstruction: First, defineXv = XA∗
R and let

xv,i denote thei-th column of Xv. Next, fix somea ≥ 0
and pickλ = (2E(1 + a)(log Dmax)/NT )1/2. Finally, define
ĥv,i = DS

(√
E/Mtr SA∗

T ,xv,i, λ
)

for i = 1, . . . , NR. The
NBE-BP estimate ofH is then given as follows:

Ĥ = AR

[
ĥv,1 . . . ĥv,NR

]T

AH
T . (12)

The following theorem states the MSE performance of
NBE-BP for estimating narrowband MIMO channels.

Theorem 3 (NBE-BP MSE):The NBE-BP estimate (12) of
a D-sparse narrowband MIMO channel satisfies

‖Ĥ− H‖2
F ≤ c7 · log Dmax ·

(
NT D

E

)
(13)

with probability exceeding1 − 4 max
{
(π(1 + a) log Dmax ·

D2a
max)−1/2, e−c8Mtr

}
. Here, c7 and c8 are strictly positive

constants that do not depend onE , NR or NT .
Proof Sketch:By definitionxv,i =

√
E/Mtr SA∗

Thv,i +
wv,i, where‖hv,i‖0 = Di andwv,i ∼ CN (0Mtr

, IMtr
). Next,

defineD̄ = maxi Di and note that [11, Th. 5.2] implies that√
NT /Mtr SA∗

T satisfies RIP of order2D̄ with δ2D̄ <
√

2−1
with probability at least1 − 2e−c8Mtr . It can then be shown
through a slight variation of the proof of [10, Th. 1.1] that
‖ĥv,i−hv,i‖2

2 = O(log Dmax ·
(

NT Di

E

)
) for all i = 1, . . . , NR

with probability exceeding1 − 4 max
{
(π(1 + a) log Dmax ·

D2a
max)−1/2, e−c8Mtr

}
, and the proof of this theorem follows

by noting the fact that
∑NR

i=1 Di = D.
Remark 2:The aforementioned scheme remains unchanged

if the random binary probing is carried out in the beamspace
instead of in the antenna domain:s(n) = AT sv(n), where
thesv(n)’s are now i.i.d. binary random vectors. The NBE-BP
estimation can also be carried out using a completely different
set of training vectors without significantly altering its efficacy
as follows. LetStr be a (sorted) set ofMtr = O(log5(NT /D̄)·
D̄) elements sampled uniformly at random from{1, . . . , NT}
and define theMtr training vectors to be{s(n) = ei : i ∈
Str}. Then the preceding analysis still follows through with the
difference being that the second term in themax expression
in Theorem 3 is changed toO(N

−O(1)
T ).

The preceding discussion shows that NBE-BP achieves
near-optimal MSE performance. However, the other two per-
formance metrics of interest, namely, the number of training
vectors (Mtr) and the number of receive signal space di-
mensions dedicated to training(Ntr), vary with the channel
sparsity pattern in this scheme:Mtr ≈ O(maxi Di) and
Ntr ≈ O(maxi DiNR). However, if one assumes that theD
nonzero virtual coefficients are uniformly distributed across
the channel angular spread then we havemaxi Di ≈ D/NR

and, in this case, NBE-BP requiresMtr ≈ O(D/NR) as
opposed toMtr = O(NT ) for existing methods; in terms of
the receive signal space dimensions dedicated to training,this
translates into near-optimal performance ofNtr ≈ O(D) for
NBE-BP versusNtr = O(Dmax) for ML-based estimators.

IV. L EARNING SPARSEWIDEBAND MIMO CHANNELS

In this section, we extend the results of Section III to en-
compass sparse wideband MIMO channels (corresponding to
Wτmax ≥ 1). Because of space constraints, we limit ourselves
to block-fading channels (corresponding toTνmax ≪ 1),
and assume that the communication packet is comprised of
No ≈ T/(Tf + τmax) ≥ NT orthogonal frequency division
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multiplexing (OFDM) vector-valued symbols and each OFDM
symbol consists ofQ = TfW ≥ ⌈Wτmax⌉ + 1 tones. Here,
Tf < T denotes the OFDM symbol duration and extensions
of this to the case whenNo = 1 (Tf ≈ T ), and to sparse
doubly-selective MIMO channels will be reported in a journal
version of this paper currently under preparation.

For block-fading wideband MIMO channels, the virtual
channel representation (3) reduce to

H(f) ≈
L−1∑

ℓ=0

H̃(ℓ)e−j2π ℓ
W

f (14)

where the (antenna domain matrices)H̃(ℓ)’s are defined in
terms of the beamspace matrices:H̃(ℓ) ≈ ARHv(ℓ)A

H
T .

Here, the channel frequency responseH(f) is completely
characterized by theDmax = NRNT L virtual channel co-
efficients {Hv(i, k, ℓ)}, out of which only D ≪ Dmax

coefficients are assumed to be nonzero. To learn thisDmax-
dimensional channel, training-based methods dedicateMtr of
the NoQ OFDM tones as “pilot tones” and transmit known
(vector-valued) training signals to the receiver over these tones.
The transmitted and received training signals in this case are
related to each other as

x(n, q) =

√
E

Mtr
H(q)s(n, q) + w(n, q) , (n, q) ∈ Ptr (15)

whereE is the transmit energy budget available for training,
the matrixH(q) = H(f)|f=q/Tf

, w(n, q) ∼ CN (0NR
, INR

),
Ptr ⊂ {1, . . . , No} × {0, . . . , Q − 1} : |Ptr| = Mtr, and the
set of transmit training vectors{s(n, q)}Ptr

is designed such
that

∑
Ptr

‖s(n, q)‖2
2 = Mtr.

Traditional training-based methods often assume that the
number of pilot tonesMtr ≥ NT L and typically employ ML-
based estimators at the receiver to recover{Hv(i, k, ℓ)} from
the knowledge of{s(n, q),x(n, q)}Ptr

.2 Irrespective of the
set of pilot tonesPtr and the exact nature of training vectors
{s(n, q)}Ptr

, it can be shown in this case too that the MSE
in the channel estimate is lower bounded as [5], [6]

∑

i,k,ℓ

E

[
|Ĥv(i, k, ℓ) − Hv(i, k, ℓ)|2

]
≥ NT Dmax

E . (16)

In contrast, we now propose a new training-based estimation
scheme that significantly improves upon the performance of
traditional schemes, both in terms of the MSE and the number
of pilot tones (resp. receive dimensions) dedicated to training.
The proposed scheme can be thought of as an extension of the
NBE-BP scheme to sparse wideband MIMO channels and is
accordingly referred to as WBE-BP.3

WBE-BP Training: Let hT
v,i(ℓ) denote thei-th row ofHv(ℓ)

and defineHv,i =
[
hv,i(0) . . . hv,i(L − 1)

]
. Further,

define Di to be the number of nonzero virtual coefficients
in Hv,i (Di =

∑L−1
ℓ=0 ‖hv,i(ℓ)‖0) and let the number of

2This means that traditional schemes dedicate a total ofNtr = NRMtr ≥

Dmax receive dimensions for training in wideband MIMO channels.
3Likewise, an extension of NBE-AP to wideband channels also exists.

Because of space constraints, however, we do not indulge in its details.

pilot tones Mtr ≥ c9 · log(NT Q/ maxi Di) · maxi Di for
some constantc9 > 0. Define the pilot tonesPtr to be a
set of Mtr ordered pairs sampled uniformly at random from
{1, . . . , NT }×{0, . . . , Q−1}, and the corresponding training
vectors as{s(n, q) = en : (n, q) ∈ Ptr}. At the receiver, the
received signals{x(n, q)}Ptr

are stacked row-wise to yield an
Mtr × NR matrix X consisting ofx(n, q)’s as its rows.

WBE-BP Reconstruction: First, define anMtr ×NT L ma-
trix Utr that is comprised of{(uT

f,q ⊗ aT
T,n) : (n, q) ∈ Ptr}

as its rows; here,uT
f,q =

[
e−j2π q

Q
0 . . . e−j2π q

Q
(L−1)

]

and aT
T,n denotes then-th row of A∗

T . Next, chooseλ =

(2E(1 + a)(log Dmax)/NT )1/2 for any a ≥ 0. Finally, define
Xv = XA∗

R and letxv,i denote thei-th column ofXv. The
WBE-BP estimate ofHv,i’s is then given as follows:

Ĥv,i = vec−1
(
DS(

√
E/Mtr Utr,xv,i, λ)

)
. (17)

Theorem 4 (WBE-BP MSE):The WBE-BP estimate of the
virtual channel coefficients of aD-sparse wideband MIMO
channel (given by (17)) satisfies
∑

i,k,ℓ

E

[
|Ĥv(i, k, ℓ)− Hv(i, k, ℓ)|2

]
= O

(
log Dmax ·

(
NT D
E

))

with probability exceeding1− 2 max
{
2(π(1 + a) log Dmax ·

D2a
max)−1/2, O(NT L)−O(1)

}
. Here, the scaling constants are

independent ofE , NR, NT or L.
We omit the proof of this theorem for the sake of brevity.

Note that: (i) WBE-BP achieves near-optimal MSE scaling
of O(NT D/E), and (ii) it requires that the number of pilot
tonesMtr ≈ O(maxi Di) versusMtr ≈ NT L for traditional
schemes—a significant improvement assuming uniformly dis-
tributed sparsity within the channel angle-delay spread.
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