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Abstract— Wireless sensor networks are a promising archi-
tecture for monitoring large spatial areas. While recent years
have seen a surge of research activity in sensor networks, many
significant challenges need to be overcome to realize the vision
of sensor networks. The key challenges are tied to two vital
operations in a sensor network: efficient information routing
between sensor nodes to extract useful information from the
data collected by the sensors; and efficient communication of this
information from the network to a certain destination. This paper
proposes a novel collaborative communication and estimation
scheme for distributed signal field estimation that overcomes
these challenges by exploiting the underlying smoothness of the
field. In our approach, the signal field is uniformly partitioned
into multiple regions and the nodes in each region coherently
communicate their measurements via a dedicated noisy multiple
access channel (MAC) to the destination where the estimate of
each region is constructed to give an estimate of the entire field.
Two salient features of our scheme are: it requires relatively
little collaboration among sensing nodes; and is potentially far
more power-efficient due to the power pooling gain afforded by
coherent cooperation of the nodes in each region. In this paper, we
analyze our new approach under the simple setting of estimating
a piece-wise constant field and show that optimal mean-square
distortion scaling can be achieved at the destination with constant
network power (vanishing per node power).

I. INTRODUCTION

Wireless sensor networks are an emerging technology that
promise an unprecedented opportunity to monitor the remote
physical world via wireless nodes that can sense the environ-
ment in various modalities, such as acoustic, seismic, infra-
red [1]-[3]. A wireless sensor network typically consists of
a certain number of low cost sensor nodes equipped with
small batteries that are deployed in a pre-defined or random
manner inside the phenomenon of interest or very close to
it. A wide variety of applications are being envisioned for
sensor networks including disaster relief, border monitoring,
contaminant tracking in the environment, and surveillance in
battlefield scenarios.

An important problem in sensor networking applications
is the estimation of spatially varying processes or fields.
This could correspond to sensing the ambient temperature or
humidity in a rainforest, sensing the intensity of oil contami-
nation of ocean water in a certain area or sensing the intensity
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Fig. 1. A distributed architecture for estimating a piece-wise constant field
with a wireless sensor network. The N, = N/M nodes in each of the M
regions communicate coherently to the destination via a dedicated MAC.

of a biochemical agent in the atmosphere. In this kind of
an application, the goal of the sensor network is to sense
the field, construct an estimate of the field, and communi-
cate that estimate to a desired (typically remote) destination.
This is a particularly challenging problem in sensor networks
because of the strict limitations on the power consumption
and processing power of the sensor nodes which, in turn, put
constraints on the communication and estimation algorithms
that can be employed inside the wireless sensor networks for
field estimation. In this paper, we propose a novel collaborative
communication and estimation scheme for distributed signal
field estimation that combines existing results from wireless
communications [4]-[7] and asymptotically gives us the same
field estimate at the destination in terms of the mean-squared
error as a centralized approach would give us while, at the
same time, makes the sensor nodes expend minimal amount
of power by employing optimal power allocation schemes in
the sensor network. For the scope of this paper, we analyze
our new approach under the simple setting of estimating a
piece-wise constant field and provide metrics for quantifying
the cost of communication and estimation, demonstrate the
effect of different power allocation schemes on the accuracy
of the final field estimate at the destination and show that
optimal mean-square distortion scaling can be achieved at the
destination with constant network power (vanishing per node
power).



A. Problem Formulation

We assume that a two-dimensional spatial field, denoted by
F[n] (n=1,2,...), is being sensed over space and time by a
wireless sensor network and that at any time instant n, the field
is composed of 2 equal sized constant regions, where k € N
(as shown in Fig. 1). Without loss of generality, the spatial
domain of the field can be assumed to be the unit square,
[0, 1]2. The sensor network is assumed to be a collection
of N wireless nodes uniformly distributed on [0,1]%. Each
node measures the field at its position which is contaminated
with a zero-mean Gaussian noise sequence of variance o3,
that is white in both the spatial and the temporal domain.
This Gaussian noise corresponds to the measurement noise
in the sensor network that could encompass ambient noise
in the environment and electronic transducer noise sources.
For the scope of this paper, we assume that local processing
and computation at each sensor requires negligible amount of
power and that sensors have a limited ability (in terms of the
data rate) to noiselessly collaborate with each other.

The goal of the sensor network is to observe F'[n] over
space and time and given some power constraint P on the
transmitted sensor signals, communicate an estimate F'[n] of
the field to a destination which is assumed to be remote from
the sensor network. The idea is to make F[n] as close to
F'[n] as possible, in terms of an appropriately chosen distortion
measure D, while consuming minimal amount of power. The
distortion measure that we are considering here is the mean-
squared error (MSE) given by
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In the absence of any noisy collaboration between the sensors
(requiring additional power), the relevant metric for quantify-
ing the cost of communication and estimation is the trade-off
between the cost (power) P of transmission and the achieved
distortion level D and the problem studied in this paper is that
of finding a communication and estimation scheme that gives
us the optimal trade-off between P and D.

B. Assumptions

We assume that each of the 2% constant regions in the
field can be modeled by a discrete memoryless zero mean
Gaussian source S;[n| of variance 0%, where i = 1,2,...,2"
and n = 1,2,... Furthermore, S;[n] and S;[n] are assumed
to be independent for all ¢ # j (implying that the field F'[n]
has exactly 2% degrees of freedom given by 2* independent
discrete memoryless zero mean Gaussian sources).

C. Notation

Let M = 2F be the number of constant regions in the field
and let R; denote each region, where ¢ = 1,2,..., M. Let NV;
be the number of sensor nodes in the region R;. Because of
the uniform distribution of sensor nodes in the field, we have

N
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Let us denote the measurement of each sensor node in a
particular region R; and at a particular time instant n by
X j[n], where ¢ = 1,2,...,M, j = 1,2,...,N, and n =
1,2,... Each sensor node belonging to a region R; makes
a measurement of the field at its location at a particular
time instant n, corresponding to observing S;[n], which is
contaminated with a zero-mean white Gaussian noise sequence
Wi j[n] of variance o3,. As already mentioned, W; ;[n] is
assumed to be white in both the spatial and the temporal
domain implying W; ;[n] and Wy ;[m] are independent for
alli #k, j # 1 and n # m. Thus, X, ; ~ N (0,0% +0%/)
and is given by

X@j [’I’L] =5, [n] + Wi,]’ [n] 3)

Let T; j[n] be the signal transmitted by each of the sensor
nodes in the region R; at time n. The constraint on the signals
transmitted by the sensors in the network is a sum power
constraint given by
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Because of the homogeneity of F'[n], the sum power constraint
given in (4) can be further broken down into a sum power
constraint on the signals transmitted by the sensors in any
region R; and a power constraint on the signal transmitted by
any sensor. That is,
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D. Related Work

First of all, let us comment on the field model used in
our approach. We assume that the field F'[n] is a piece-wise
constant field having M independent degrees of freedom.
Although far from a realistic scenario, this setting really
helps in understanding the basics of our scheme and clearly
demonstrates the effects of different power allocation schemes
on the accuracy of the final field estimate at the destination.
We refer the reader to [8] for an extension of this work under
a more general and realistic field setting.

Secondly, most previous work in this area has focused
on multihop communication schemes and “in-network™ data
processing and compression [7], [9]-[11]. This requires a
significant level of network infrastructure, and the theoretical
approaches in the works above generally assume this in-
frastructure as given. Our new approach, in contrast to previous
methods, eliminates the need for in-network communications
and processing and instead requires only local synchronization
among nodes and is, therefore, potentially far more power-
efficient.



II. OPTIMAL CENTRALIZED ESTIMATION

We first consider the structure of an optimal centralized
estimator in which all the sensor measurements {X; ;[n|} are
available noise free at the destination. The distortion scaling of
this centralized estimator serves as a benchmark for assessing
the performance of any distributed scheme. Let us denote
this centralized benchmark distortion by D c,:. We say that
the distortion D of a field estimate achieves the benchmark
distortion if, for some large enough N, we get D = C'D ¢y,
where C' is some constant and we write it as D ~ Dcnt.

Now, since MSE = bias? + variance, optimal central-
ized distortion scaling for a piece-wise constant field can be
achieved by using the least squares fit of a constant to the data
in each constant region of the field (resulting in bias? = 0 and
MSE = variance). Let S; cent[n] be the centralized estimate
of S;[n]. Since the field is being estimated by using constant
fits (averaging) on each region of the field, we have

N
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and the resulting field estimate is given by
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where (z,y) € [0,1]* and (z.y)er,y = 1if (z,y) is in the
region R; and zero otherwise. The distortion of the centralized
field estimate F.,:[n] can then be given by
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where C' = 2252, is a constant independent of N. Therefore,
from (9), the benchmark distortion D, is given by!

1
Dcent ~0 <N> .

III. COLLABORATIVE COMMUNICATION AND ESTIMATION
SCHEME

(10)

We now analyze the distortion of the field estimate when the
estimation process must be carried out in conjunction with data
communication over noisy channels. That is, the N, sensor
nodes in each region R; of the field must transmit the constant
fit at time n of the region (corresponding to S;[n]) over a
noisy communication channel to the destination using some
coding strategy (as shown in Fig. 1). Let the communication
channel be a multiple-access (MAC) additive white Gaussian
noise channel, where the communication noise is given by

!Given some function f(a), we say f is ‘of the order of* « if, for large
enough a, we have f = Ca, where C' is some constant and we write it as

f~0O(a).

the sequence Z;[n] ~ N'(0,0%) (i = 1,2,...,M).2 Also, let
Z;[n] and Z;[n] be independent for all i # j. Let Y;[n] be the
signal received by the destination from the region R;, then

and the goal of the destination is to construct an estimate F'[n]
of the field having distortion D as close to the benchmark
distortion D e+ as possible. In order toAachieve this goal,
the destination must construct estimates (S;[n]) of S;[n] with
minimum distortion using the outputs Y; [n] of MAC channels.
Let D, denote the distortion of each S;[n] (region distortion).
Then, the total distortion D of F[n] is given by
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and hence, minimization of D to make it closer to D cy:
would require minimization of D,.. Therefore, we now need a
coding strategy at the sensors in each region R ; and a decoding
strategy at the destination that gives us the lowest (possible)
distortion D, in S;[n] for a given region power constraint
P, or in other words, gives us the optimal trade-off between
D, and P,. However, considering each region R; as a sensor
network of NV,. sensor nodes in itself, it has been shown in [4]
that for such a class of Gaussian sensor networks the optimal
trade-off between D, and P, can be obtained by employing
uncoded transmission at the sensor nodes and a minimum
MSE (MMSE) estimator at the destination. Therefore, for the
optimal trade-off between D, and P,, the transmitted signal
at the sensors must be of the form

P,

T; j[n] = m (13)
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and the region estimator at the destination must be of the form

A LI
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Using (11), (13) and (14), the resulting region distortion for
each region R; is given by
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and using (12) and (15), the total distortion of the field estimate
F[n] is given by
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2We are implicity assuming that separate (independent) MAC channels can
be readily setup from each region to the destination.



A. Asymptotic Optimality of the Scheme

If we assume that all the MAC channels between the M
regions and the destination are noise free (0% = 0) then, from
(2) and (16), the distortion measure of F'[n] at the destination
is given by

M2 2
D= ——W_ (17)
N + M%
and since M is not a function of N, we get
D~O 1 (18)
N

for N > Mo?, /o%. Hence, in the absence of communication
noise, our proposed scheme is asymptotically optimal since
D ~ D¢ept. We now show that even with noisy commu-
nication links (0% # 0), our proposed scheme achieves the
benchmark distortion in the limit of large number of sensors.

In order to show this, let us consider the case where
the power constraint P, on the signal transmitted by each
sensor remains fixed as the number of sensors in the network
increases (P,(N) = P,,). Then, from (2) and (16), the
distortion D is given by
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and since P, is a constant and M is not a function of N, we

again have
1
D~O (> ~ Dcent (20)

N
for N > max (M (0% /03,) (0% + %) /Pu,, Mo}y, /0%).
IV. POWER-DISTORTION SCALING LAWS

In this section, we look at how different power allocation
schemes affect the distortion of the final field estimate at the
destination and which power allocation scheme gives us the
best trade-off between P and D. We have seen in the last
section that even in the presence of communication noise, we
get D ~ Dt (as N gets large enough) provided that all the
sensor nodes in the network transmit with some fixed power
that is independent of N (P, (N) = P,,). From (4) and (5),
however, we see that this power allocation scheme heavily
burdens the power resources of the network since it results in
P(N) ~ O(N) and P.(N) ~ O(N). This brings us to the
question of Can we do better? That is, can we find a more
stringent power allocation scheme which results in P(N) ~
@ (Nﬁ), where 8 < 1 and still give us D ~ D¢ ?

Finding answer to the above question requires careful
analysis of (16). As can be seen in (16), the distortion in the
final field estimate F'[n] at the destination is a result of the
measurement noise {W; ;[n]} and the communication noise
{Z;[n]}. The effect of measurement noise on distortion can
only be reduced by increasing the spatial density of the sensor
nodes in the network and the effect of communication noise on
distortion can only be reduced by putting more power into the
signals transmitted by the sensor nodes. Thus, given a certain
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Fig. 2. Illustration of the different scaling regions for the total network
power, P(N).
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Tllustration of the different scaling regions for the per node power,

number of sensors IV in the network, the only way to reduce
the distortion is by putting more power into each transmitted
signal. This, however, holds true up to a certain critical optimal
power per node and beyond that point, putting more power in
the network would have no impact on distortion because of the
limiting factor of measurement noise which is unaffected by
the power allocation. Therefore, the optimal power allocation
scheme corresponds to allocating just enough power in the
network so that the effect of the measurement noise is balanced
by the effect of the communication noise and this leads us to
the following power-distortion scaling laws (see Fig. 2 and
Fig. 3).

Optimal Power Allocation Scheme: The optimal power
allocation scheme corresponds to allocating a fixed (constant)
power to the entire sensor network regardless of N (P(N) =
Pyt = P,). From (4) and (5), this results in P.(N) = P, /2"
(a constant) and P,(N) ~ O (%) In this case, not only does



the distortion D achieve the benchmark distortion D..,; but
also this power allocation scheme leads to the sensor network
consuming minimal amount of power when compared with
any other power allocation scheme that gives us D ~ D cpn¢.

Measurement-Limited Region: Increasing P at any rate as
N increases (P(N) ~ O (N#) for 3 > 0) has no impact on
D and we still get D ~ D, .. This power allocation scheme
is clearly power sub-optimal since it makes the sensor network
consume more power than needed to achieve D ~ D cp:. In
terms of P, and P,, this power allocation scheme can be given
as P,(N) ~ O (N#) and P,(N) ~ O (N®-Y) for 8 > 0.
This power allocation scheme is shown as REGION I in Fig.
2 and Fig. 3.

Communication-Limited Region: If we are willing to loosen
our requirement of D ~ D .,:, then we can decrease P at
a certain rate as N increases and still asymptotically drive
the distortion D to 0, though at a comparatively slower rate
since, in this case, the distortion scaling is limited by the
communication noise. In order to operate in this distortion
sub-optimal region, we must have P(N) ~ O (N#) for —1 <
B < 0 and this results in D ~ O (ﬁ), P.(N)~O (Nﬁ)
and P,(N) ~ O (N#=1). This power allocation scheme is
shown as REGION 1I in Fig. 2 and Fig. 3.

Inconsistent Region: The distortion D cannot be asymp-
totically driven down to O if the rate at which P decreases
with increasing N is too fast. This corresponds to P(N) ~
O (N®), P.(N) ~ O (NP) and P,(N) ~ O (N®¥=D) for
[ < —1. This (inconsistent) power allocation scheme is shown
as REGION III in Fig. 2 and Fig. 3.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel collaborative
communication and estimation scheme for distributed signal
field estimation that asymptotically gives us the same field
estimate at the destination in terms of the mean-squared error
as a centralized approach would give us while, at the same
time, makes the sensor nodes expend minimal amount of
power by employing optimal power allocation schemes in the
sensor network.

For the scope of this paper, we have analyzed our new
approach under the simple setting of estimating a piece-wise
constant field, provided metrics for quantifying the cost of
communication and estimation and demonstrated the effect of
different power allocation schemes on the accuracy of the final
field estimate at the destination. To summarize, we have shown
that optimal mean-square distortion scaling (D ~ D ¢p;) can
be achieved at the destination with constant network power
(vanishing per node power) and the distortion of the final field
estimate at the destination can be driven to zero asymptotically
as long as the per node power P, (V) decays just a little slower
than 1/N2. This is remarkable since it says that consistent field
estimation is possible in the limit of a large number of sensor
nodes even if the total network power P(N) goes to zero! Our
future work includes extensions to fields with discontinuities.
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