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Abstract—Subsampled (or partial) Fourier matrices were origi- 'y is corrupted by either stochastic noise or deterministic
nally introduced in the compressive sensing literature by Cands perturbation?

et al. Later, in papers by Candes and Tao and Rudelson and * A nymber of researchers have successfully addressed these
Vershynin, it was shown that (random) subsampling of the rows ti d thei tensi to | fricti fi
of many other classes of unitary matrices also yield effective questions, an eir extensions to less restrictive netioh

sensing matrices. The key requirement is that the rows otJ, the ~sSparsity, over the past 30 years or so. In particular, the
unitary matrix, must be highly incoherent with the basis in which ~ celebrated success of CS theory can primarily be attributed

the signal is sparse. In this paper, we consider acquisition systemsto some of the recent research breakthroughs that estatilish
that—despite sensing sparse signals in an incohgrent domain—that a signalx that is either S-sparse or approximately
cannot randomly subsample rows fromU. We consider a general . b liabl d efficientl tructed f
class of systems in which the sensing matrix corresponds to SParse can ,e reliably an' efncien y recons rucg rom
subsampling of the rows of matrices of the foom® = RU (noiseless or noisyy by making use of (i) an appropriately
(instead of U), where R is typically a low-rank matrix whose designed sensing matrix with a relatively small number of
structure reflects the physical/technological constraints of the rows—typically much smaller thap—and (ii) tractable linear
acquisition system. We use the term “structurally-subsampled optimization programs, efficient greedy algorithms, ortfas

unitary matrices” to describe such sensing matrices. We inves- . . .
tigate the restricted isometry property of a particular class of iterative thresholding methods. Proofs of these remaekabl

structurally-subsampled unitary matrices that arise naturally in resuI.tS all rel'y in some sense on the same property of the
application areas such as multiple-antenna channel estimation sensing matrix, namely that every collection 28 columns

and sub-nyquist sampling. In addition, we discuss an immediate of (appropriately normalizedA should behave almost like an
application of this work in the area of wireless channel estimation, isometry. One concise way to state this condition is through

where the main results of this paper can be applied to the . . . -
estimation of multiple-antenna orthogonal frequency division the restricted isometry propertiRIP), first introduced in [3].

multiplexing channels that have sparse impulse responses. Definition 1: An n x p matrix A having unit £2-norm
columns is said to have the RIP of ord€rwith parameter
I. INTRODUCTION ds if there exists somég € (0, 1) such that
A. Background (1—=ds)[%[l5 < [[A%[3 < (1 +ds)[I%]13 @)

In a nutshell, the theory of sparse signal recovery—gy,|4s for all S-sparse vector. In this case, we sometimes
compressive sensing (CS), as it is commonly called todaymage use of the shorthand notatidne RIP(S, s) to state
deals with recovering a signal€ C? from linear observations {4t A satisfies the RIP of orde§ with parametes.
of the form It is easy to see from (2) that the RIP of ordsr is

y=Ax : |x[o<S 1) essentia_lly a statement abgut the singglar values of allS

submatrices ofA. And while no algorithms are known to

where ||x||p counts the number of nonzero entriessinand date that can check the RIP for a given matrix in polynomial
A € C™? js a known matrix. This mathematical modekime, one of the reasons that has led to the widespread
corresponds to a nonadaptive measurement process thasseagplicability of CS theory in various application areashe t
an S-sparse signalx by taking n linear measurements ofrevelation that certain probabilistic constructions oftritas
the signal and the goal here is to reliably recowefrom satisfy the RIP with high probability. For example, it haghbe
knowledge of theobservation vectoy and thesensing matrix established in [4] that if the entries of anx p matrix A
A. Fundamentally, however, the theory of CS deals with trege drawn independently from A/(0, %) distribution then
special case of. < p—which arises in many data-starvedA € RIP(S,ds) with probability exceedingl — e~ 9™
inverse problems in a number of application areas—and & every 6s € (0,1) providedn = Q(Slog £). Similarly,
tempts to answer the following questions [1], [2]: (i) Whatonsider am x p subsampled unitary matriA obtained by
conditions does\ need to satisfy to ensure successful recovefirst randomly selecting: rows of ap x p unitary matrix U
of a sparsex? (ii) Can (1) be reliably solved fox in practice and then normalizing them so that the resulting columns of
using polynomial-time solvers? and (iii) What performanc@A have unit/s-norms. Then it has been shown in [5l, [6]
guarantees can be given for various practical solvers whitat A € RIP(S,ds) with probability exceeding — p~©(%s)



for every 65 € (0,1) providedn = Q(u%; Slog® p), where 2-d projections of its 3-d Fourier-domain samples (physica
oy J/Ppmax; ; |u; ;| is termed as theoherenceof the constraint) [10]. Similarly, it is generally desirable tooject

unitary matrixU. an ultrawideband signal with limited spectral content oato
smaller spectral band before sampling it since randomized
B. Structurally-Subsampled Unitary Matrices sampling to acquire the signal can be very sensitive to imin

Subsampled unitary matrices were originally introduced-£/70rs (technological constraint) [11]. o

and partially analyzed—in the modern CS literature in [7]. N the parlance of CS, the sensing matrices in both the
Initially, the focus in [7] was on sensing matrices that co@forementioned cases now corredspond to subsampling of the
responded to subsampled (or partial) Fourier matriceser_atrows of matrices of the form® “/ RU (instead ofU),

the analysis was advanced further by Casmdind Tao and whereR is typically a low-rank matrix whose structure reflects
Rudelson and Vershynin in [5] and [6], respectively, wherthe physical and/or technological constraints of the &sitjon

they established—among other things—that (random) subsagyistem andU is the transform domain (unitary) matrix. We
pling of the rows of many other classes of unitary matricasse the ternstructurally-subsampled unitary matricés such

also yield effective sensing matrices. Together, the tesafi  sensing matrices so as to distinguish them from the canlonica
[5]-[7] form the basis of the so-callgginciple of incoherent subsampled unitary matrices studied in [5]-[7] and forgnall

measuremenisstated as follows. define these matrices as follows.
It is best to acquire samples of a sparse sigaal Definition 2: Let U be ap x p unitary matrix,m < p be

where the incoherence is measured by the coherence 9iven by
parametep.y—the smaller the coherence parameter,
the greater the incoherenée.

This principle is made mathematically precise in [5], [6] byyext, choose a subsét of cardinalityn “< || uniformly at
stating that a (rar;domlyg subsampled unitary ma#pxneeds angom (without replacement) from the <@t ..., m}. Then
to haven = Q(uy; Slog” p) rows in order for it to satisfy e strycturally-subsampled unitary matr generated from
the RIP of orderS with high probability. Note that since (g U) is a submatrix of® = RU obtained by selecting
pu = /pmaxi;|ui;|, we have that (i) the coherence Ofqys of  corresponding to the indices i and normalizing
a unitary matrix cannot be smaller than and (ii) unitary he resulting columns so that they have uhitnorms.
matrices with entries of magnitud@(1/,/p) are maximally — pemark 1:A structurally-subsampled unitary matri
incoherent. In other words, transform domains such as EBQuriyanerated from(R, U) can also be thought of as a twice-
composition of Fourier and wavelet, and Hadamard are %'bsampled versi(;n of the unitary matfix. Here, the first

mgximally inco.hgrent and are, .therefore, particularly Iwelsubsampling step corresponds to obtainingran p matrix &
suited for acquisition of sparse signals. _ ~ from U by projecting thep columns of U onto them rows
It turns out that a number of real-world signal acquisist R |n contrast, the second subsampling step corresponds to

tion systems already adh_ere to th(_a principle of. i“COhereGBtainingA from & by randomly selecting (and appropriately
measurements due to various physical/technological MBastormalizing)n rows of &.

For example, data acquired by magnetic resonance imaging
scanners naturally correspond to Fourier-domain samples@®. Main Result

the object being imaged [8]. Similarly, channel measurémen 4 is aa5y to see from Definition 2 that the theory of subsam-

collected by a communications receiver using multicarri?{led unitary matrices is not easily extendable to strudra
modulatipn inherently correspond .to Fourier-domain Samplsubsampled unitary matrices, except for the trivial cas®of
of the. smgle—antenna channel being estimated [9]. As S,U(Héing a (square) diagonal matrix. In this paper, we investi-
there is a natural fit between the theory of subsampled Ynitafie "he restricted isometry property of a particular clags
matrices and these two applications, as noted in, €.9.[9B], g4 cturally-subsampled unitary matrices that arise nadifuin
Contrary to these examples, however, our interest in thig,jication areas such as multiple-antenna channel eiima
paper is in acquisition systems that—despite sensing sparsg, sub-nyquist sampling. Specifically, ket {1,...,p} be a

signals in an incoherent domain—cannot samipldividual ter that | it factorofind def def e
coefficients in the transform domain. This indeed happerss jparameter that Is an integer factorpand definen = p/k.

def .
number of real-world systems because of a multitude of physurther, letA, = {a; € C}]_, denote g-length generating
ical constraints and/or technological limitations. Foample, Sequence and define the rows of R to be generated from

the impulse response of a multiple-antenna channel géyperdhe sequencel, as follows

R« [rl ry ... rm]T. 3)

lives in a three-dimensional (3-d) space but a communica- de

; . , T : ; T 00 g aip 0 ... 0 4)

tions receiver using multicarrier modulation can only &dogu i oo ik=ktl e Wik o D)
(i—1)k terms p—ik terms

1The coherence parameter gets its name from the fact that we Gtn WI th ds. th .. triR. h block-di |
pu = \/pmax; ; |(u;,e;)|, whereu; denotes the-th column of UM and n other words, the row-mixing matri as a block-alagona

e; denotes thg-th column of the canonical baslg,. structure. Then the main result of this paper—stated in terms



of the following theorem—asserts that structurally-subgi@ah further written in a compact form with the help of a non-
unitary matrices generated froifR, U) satisfy RIP for the negative functior| - |1, s : CP*? — [0, 00) defined as follows

nontrivial case of > 1 when.4,, is a Rademacher sequerfce. def

Theorem 1:Let the elements of the generating sequence M|r,s = Tgfxp] HMTxTﬂz @)
A, = {a;}}_, be independent realizations of Rademacher IT|<5

random variables taking values1 with probability 1/2.
Further, letR be them x p row-mixing matrix whose rows
are generated by the sequendg according to (4), where

whereM . denotes a7'| x |T'| submatrix ofM obtained by
collecting all the entries oM corresponding to the indices in
m = p/k for a parametet € {1,...,p} that is an integer setT xT'. Going back to the definition of RIP, we can therefore

factor ofp. Choose a subsét of cardinalityn = |2| uniformly alternatively state that an x p matrix A € RIP(S, ds) for

at random (without replacement) from the sgt, ..., m}. some constands € (0,1) if

Finally, let U _be anyp x p unitary. matrix, and letA be |APA — Llrs <ds (8)
the n x p matrix obtained by sampling rows of ® = RU _ o o

corresponding to the indices fd and normalizing the resulting and we will prove this inequality in the sequel for the
columns by,/m/n. Then for each integep, S > 2, and for structurally-subsampled unitary matrices of Theorem 1.
any z > 1 and anydg € (0,1), there exist absolute (positive)

constants:; andc; such that whenever D. Organization

The rest of this paper is organized as follows. In Section II,

n > c1zpu¥Slog® plog? S (5) we provide a proof of Theorem 1 using tools from the classical

theory of probability in Banach spaces. In Section Ill, we

the matrix A € RIP(S,ds) with probability exceedind —  giscuss an application of Theorem 1 in the area of estima-
20 max { exp (—c203z) ,p~ ' }. tion of multiple-antenna channels that have sparse impulse

Remark 2:One of the main advantages of describing thessponses. Finally, in Section IV, we heuristically conepar
structurally-subsampled unitary matrix of Theorem 1 as a the performance of structurally-subsampled unitary roegi
subsampled version @ is that it allows us to borrow some oftg that of canonical subsampled unitary matrices and dsscus

the mathematical techniques used by Rudelson and Vershyflg connections between the results of this paper and some
in [6] to establish the RIP of canonical subsampled unitagkisting works.

matrices. Nevertheless, construction of the sensing mairi
of Theorem 1 can equivalently be understood in the follogysin Il. PROOF OF THEMAIN RESULT

sense: Divide the x p unitary matrix U into m contiguous |t is a trivial exercise to verify thaf - || 7.5 defines a norm—
blocks of £ = p/m rows each and select of these blocks \yhich we term ag(T, S)-norm—on the vector spac&r*?.

corresponding to the indices in the s@t Then every row Therefore, the matriA"A — L) lives in the Banach space
of A corresponds to a (random) superposition of theows def

= pXp . i
of one of these selected blocks. In fact, this interpreltatioe stablis(f the’ i|l1e HuTéLTi?[ aigd(Bt)hEomzl?r;%OLiJhSLSZEaTst;ef
of the structurally-subsampled unitary matrices of Theotke g y

. ; f pr ility in Banach 12]. Th neral roadmap f
is what enables us to use the results of this theorem lafer” obab. vy anac spaces [12]. The ge era Of”ld ap 1o
. L . our proof is very similar to [6, Theorem 3.3], which is now a
in the context of estimation of multiple-antenna orthodona . : . . .

- : . Wwell-established technique in the CS literature for es$abig
frequency division multiplexing channels.

. . . RIP of subsampled matrices [11], [13]. In particular, theqir
Befo_re proceeding with the_ proof _Of_ this theorem’ howeve’re“es heavily on an upper bound on expectéd.S)-norm of
let us introduce some notation (originally used in [6]) thaéum of independent rank-one matrices that was established i
will greatly facilitate the mathematical analysis in thejsel.

- . ) o , L .8]. In the following, ibe th i
Specifically, it can be easily verified from (2) that anx p [6, Lemma 3.8]. In the following, we describe the basic steps

; . o . taken to establish a formal proof of our stated claim.
matrix A. € RIP(S,ds) if the following inequality holds for First, we initially assume that—instead of the uniformly-at
some constanis € (0,1)

random sampling model—the structurally-subsampled unitar
matrix A in Theorem 1 is generated frofR, U) according

H
el ) HATAT _I‘T‘Hg < 0s ©) o a Bemnoull sampling model. That is, let,...,¢, be
IT|<s independent Bernoulli random variables taking the value

where|| - ||2 denotes the spectral norm of a matrix (the Iargeg\fIth probability n/m. Then,

singular value of the matrix), andr denotes am x |T| Q% g G =1} )
submatrix of A obtained by collecting all the columns &
corresponding to the indices in sBt This expression can beand A is a (normalized)|2| x p submatrix of® = RU
obtained by samplindQ?| rows of ® corresponding to the
’Here, we term a sequence as a Rademacher sequence if its eemiigices in<) and normalizing the resulting columns Qym/n
independently take the valugsl with probability 1/2 (in other words, if the \\je then have the following lemma that shows that under this

elements of the sequence are independent symmetric BernoRitidemacher . . . .
random Variames),q P Y assumption the Gram matrix"A = I, in expectation.



Lemma 1:Let the structurally-subsampled unitary matrixntegerp > 2 and anyr € [2,2log p], we have
A in Theorem 1 be generated froR, U) according to a

i i i , 1/r m - 1r 16u; logp
Bernoulli sampling model (as described above). Then, (]E[”A”max]) < /;(E“'q"‘ma)(]) <4/ I;

E[A"A] =1, (10) (14)

where || - ||max denotes the max norm of a matrix (absolute
value of the largest-magnitude entry of the matrix).

Proof: The proof of this lemma is very similar to that of
1, Lemma 5] and is, therefore, omitted here for the sake of
evity (alternatively, see [15, Lemma 3.13]). |

Proof: See the Appendix. [ ]
Second, we use Lemma 1 to establish that'A —TI,||r.s
cannot be too large in expectation for large-enough valdies

n in the case of a Bernoulli sampling model. The proof
this result, however, is a little more involved and makes u?é

: : H
of a number of auxiliary lemmas. The most important lemma 'AF]" the p|ecfes are novxllllln placlc_a to bo%ﬁx?HA A_IP||T=S]2 g
that we will need in this regard is the following one, due ! the case of a Bernoulli sampling model using Lemma 2 an

Rudelson and Vershynin [6, Lemma 3.8]. tecl:_hniques qEvelohped in probiellbilitybin Ba?a(;:h spaces [12].
Lemma 2 (Rudelson—Vershynir)et v, ..., vy, r < p, be emma 5:Let the structurally-subsampled unitary matrix

vectors inC? with uniformly bounded entrieg|v;|lcc < K A in Theorem 1 be generated frofR, U) according to a

for all 7. Further, let{e;} be independent Rademacher_randorﬁemou"i sampling model. Then for any integgr> 2 and
anye € (0,1), we have

variables taking values:1 with probability 1/2. Then

r . 1 E[||A"A —T,[l1.s] <€ (15)
E H vH <B H Y 11 .
[ ;E Vivi T,S:| < B(r) ;V Villrs (11) provided the number of rows > ¢, e 2u3; Slog® plog® S
- B for some absolute constaat > 0.
where B(r) " ¢; K+/Slog (S)+/Tog py/log 7 for some abso- Proof: The proof of this lemma can be found in [15,
lute constant:; > 0. Lemma 3.14]. u

In order to make use of Lemma 2, however, we require Finally, we show thaf| A"A — T, |7 concentrates around
the entries ofA to be uniformly bounded by some numbeftS Mean with high probability. To establish this fact, hoee
K. To this end, we will make use of the classical Khintchin¥'® need one additional classical result from the theory of

inequality for independent and identically distributed.¢i) Propability in Banach spaces. The following result is aragly
Rademacher random variables [12, Lemma 4.1]. due to Ledoux and Talagrand [12, Theorem 6.17] and appears

Lemma 3 (Khintchine Inequality).et {¢;} be independent in the following form in [6, Theorem 3:59;
Rademacher random variables taking valtel with proba- _ Theorem 2 (Ledoux—Talagrandlet B = (.Y, ||-||x) be &
bility 1/2. For anys € (0,00), there exist a positive finite Banach space. Further, Ig¥; };=, be independent, symmetric
constantC, depending ons only such that for any finite fandom variables in5 such thgtHYiHX < B for every
sequenceg«;} of complex numbers almost surely. Finally, defing” (DoAM Yi|| - Then for
any integersr > ¢, anyt > 0, and some absolute constant
(E H Z EiQ¢;

le/s - CS(Z \aiIQ)l/Q- 12) ¢ > 0, Y satisfies

Pr (Y > 8qE[Y] + 2rB + 1) < (CE’) +

For the case of real numbers, it has been established by q
Haagerup in [14] that the best constant in (12) is 2
2 —-—— . (16
_ t2ew | o mye ) (10
def 1, if 0<s<2 ]
Ccr = I ((s41)/2)\ 1/ _ (13) We are now ready to establish the RIP for structurally-
21/2<T) ;o f2<s < oo, subsampled unitary matrices described in Theorem 1.
Proof of Theorem 1: We begin by recalling the result
whereI'(z) def oo t*"le~tdt is the Gamma function. How- established in [7, Section 2.3], which states that if it can

ever, it is trivial to verify thatC? is also a valid constant b& shown that subsampled matrices in a particular class
in the case of complex numbers, since if the upper bound $atisfy the RIP with probability exceeding — » for the

the Khintchine inequality holds for real numbers with somBernoulli sampling model, then it follows that subsampled
constant then it also holds for complex numbers with the sarfiatrices belonging to the same class satisfy the RIP with
constant. We are now ready to prove that the entries of tREODability exceedingl — 27 for the uniformly-at-random
structurally-subsampled unitary matrix cannot be too large Sampling model. As such, we begin by assuming that the

in the case of a Bernoulli sampling model. structurally-subsampled unitary matrix is generated from
Lemma 4:Let the structurally-subsampled unitary matrixR- U) according to a Bernoulli sampclllgfg model.
A in Theorem 1 be generated frofR, U) according to a  Next, consider the Banach spate = (CP*,|| - |1.s)

Bernoulli sampling model (as described earlier). Then foy a and define random variablgsy; }7_, and {?i}le that take



values in as follows simple union bounding argument. Further, we also have

def ﬂ@ﬁbcb o (©) {Hm ‘ }
¢ n T,8

max e < max
v, ‘“fm(czw —c¢¢’”) i=Lep {17) |
Ls(Mel, s ele,) @

where {g}-} are the Bernoulli random variables arising in
the Bernoulli sampling model{ ¢} denote the rows of where(c) mainly follows from triangle inequality, an¢) is
® = RU, and {¢/} and {¢’H} are independent copies ofa simple consequence of the definition @, S)-norm and

{¢;} and {¢f'}, respectively. In other words, each randonthe fact that|®|| S max; #H]|s (and in the same way,
def def

variable Y; 2 Y, — Y/ is a symmetric version of the @] = max; ||¢;"] ). Itis then easy to see from (20)

corresponding random variale, whereY; denotes an in- and (22) that we havmax; ||Y; lr,s < 25B; with probability
dependent copy oY ;. In particular, we have that'?_, Y, is exceedingl — 2p~ .

a symmetric version of_%_, Y, and, therefore, the following Finally, define the evenk % {maxz ||Y lz.s < 2531}
symmetrization inequalities hold for ail > 0 [12, Chapter 6] Then conditioned on this event, we have from (18), Lemma 5

P P P and Theorem 2 that whenever> c, e 2u; Slog® plog® S
JEU‘ Y. T,J < QE[H ;Y —E[;Yl]
} —i—u) < + 2exp (—t2> (23)
s = 1024¢¢€?

p

b (H

i=1

P for any integerr > ¢, anyt > 0, and anye € (0,1). Next,

Pr (H il g > u) . (19) chooseq = [ecs], t = 32,/qne, andr = iQStB | for some
- ’ n > 1. Further, define a new constant max{e\f (:4}

There are two key observations that can be made here. Figg{d letn > ¢; ¢ 242 2 Slog® plog? S. Note that this choice of

we can bound the expected valuewfs/ 1>% Y,|lr.5 Us- n ensures > g, resulting in

ing (18) and Lemma 5 since B[ >-7_, Y;] = 0 (Lemma 1), N Janen

and (i)Y </ || T2, Yillrs = |APA T, |lrs. Second, we Pt (¥ > (160 +96an)e|B) < exp < 3MU51ogp) *

can obtain a large- deV|at|0n bound f¥r using (19) and The- 4 2ex (7 ) (24)

orem 2 since—bhy construction{A{ }p are independent, AN

symmetric random variables if. Before Can use Thereom 2We can now get rid of the conditioning in the above expression

to characterize the tail behavior af, however, we need to by noting thatPr(E¢) < 2p~!, which in turn implies

establish thatax; ||Y; |lr.s < B for someB. n
Towards this end, we first (rather trivially) establish that Pr (Y > (16 + 96./qn)e ) < exp (_\/577> +

+ | B gt
S n

max

L] 0o i N
, Pr (Y > 16ge + 4rSB, +t|E) < <qf’> +

p
A s 215:[“
.8 i=1

2
max; { /2| éf [loo, /¢ [« } cannot be too large with 3“U2510gp X
high probability. Specifically, note from Lemma 4 that we &av +2exp (—n°) +2p~". (25)
for r =2logp

In the end, what remains to be shown is th#t =

m 16 ep2; logp | @ >0 Yillrs = |[A"A-L,| 7.5 < ds with high probability.
Pr qu’HmaX > n = To this end, note that il > ¢; e=23; Slog® plog® S then
E[Y] < e from Lemma 5. Consequently, we get from (19)
[Hq)”max] _ p—l (20) and (25) that

er/2 E[||®|ral /i
max qnen
. . Pr(Y>(12+1 2 —_——
where(a) follows from an application of Markov’s mequality . ( = (2416 + 96\/677)6) s e < 3M%Slogp>

(see also [11, Lemma 5]). Next, defirig, "</ w +4exp (—n®) +4p~'. (26)
Then we have from (20) that

Finally, definec6 = (2+ 16¢ +96,/q) and note that:Gne >

Pr <{\/f||¢,||max > /31} U (2 + 16q + 96\[17)5 sincen > 1. If we now choose; = @

then 3M\2/;”f:gp > n? and, therefore, (26) can be simplified as

m ®
{\/:H'I)/”max >V Bl}) <2p' (21) Pr (Y > 55) < 10max{exp (7026?92) ,pil} 27)

where®’ is comprised of{ ¢;"} as its rows (in other words, wherec, def 1/ce and z def 1/€%. The theorem now trivially
&’ is an independent copy ob), and (b) follows from a follows from the discussion at the start of the proof. =



I11. A PPLICATION: ESTIMATION OF SPARSE Ngr and N x Nt (unitary) Fourier matrices, respectively. The
MULTIPLE-ANTENNA CHANNELS goal then is to reliably estimate the impulse responsé-of
In this section, we discuss an application of structuralySing{¥»,%x}s,, and a small number of pilot subcarriers.
subgampled unitary matrices in the area of estima}tion gf Sparse MIMO OFDM Channel Estimation
multiple-antenna (MIMO) channels that have sparse impulse
responses. For the sake of this exposition, we limit oueselv
to sparse MIMO orthogonal frequency division multiplexin
(OFDM) channels and devise quantitative error bounds for C
based channel estimation schemes by leveraging the redult
Theorem 1 for structurally-subsampled unitary matrices.

Physical arguments and growing experimental evidence sug-
est that MIMO OFDM channels encountered in practice tend

exhibit impulse responses dominated by a relatively kmal
gumber of dominant taps [19], [20]. Traditional MIMO OFDM
channel estimation methods—typically comprising of linear
reconstruction techniques (such as the maximum likelihood
A. Problem Setup or the minimum mean squared error estimators), however,

Consider a MIMO OFDM channeH corresponding to a lead to overutilization of the key resources of energy and
transmitter with N antennas, a receiver witlV; antennas, bandwidth ig suchsparse channelsTo see this, define row
and an L-tap (discrete) impulse response. For simplicityectors{y = y;A}}St and note from (29) and (30) that
we assume uniform linear arrays of antennas and consider L )
signaling over this channel using OFDM symbols of duration T - T
T and (two-sided) bandwidthV, thereby giving rise to a n ]TTX”AT ;_%H”(g)e Yol 2y (31)

temporal signal spacef dimensionN, “rw. Finally, as

is customary in the wireless literature [16], [17], we assumwhere entries of the noise vectofa], = z, A%y} are still
that the number of taps in the channel impulse respohse, (mutually) independently distributed @\V'(0,1) due to the
is much smaller than the number of OFDM subcarrié¥s,  unitary nature ofA%,. Next, lety,(i),i = 1,..., Ny, denote
One of the most popular and widely used approaches te i-th entry of y'. Then it can be shown using (31) and

estimating a MIMO channel is to probe it with known signalbasic matrix identities involving Kronecker products tf5]
ing waveforms (referred to as training signals) and process

the corresponding channel output to estimate the channel (i) = /i X" (0] © A% hy; + 2, (0) (32)

Yn (2 X, (a, 7)1y 4 Zn (2
parameters. In the case of a MIMO OFDM channel, Mg Nr '
dimensional (baseband) training signal can be expressed aghere @ denotes the Kronecker produdi,, ; is an Ny L-

5 ‘ dimensional column vector obtained by concatenating the
xir(t) = (/5= D FngMHL 0<t<T  (28) vectors{h,(0)}, ul & [e=i0nne . emi(bDenn]
T nesi is the collection of L samples of a discrete sinusoid with

where& denotes the total transmit energy budget for traininjequencyw,, v, def 2m 3=, and z, (i) denotes the-th entry

purposesg(t) is a prototype pulse having unit energy, C  of the noise vector! .
s {0,...,N,—1} is the set of indices gpilot subcarriers It is now easy to see from (31) and (32) that stacking the
used for training, and{x, € C"7} is the (vector-valued) rows vectors{yl}st into an|S;,.| x Ng matrix Y yields the

training sequence having enerys X, 3 = Nr. standard linear observation model
At the receiver, the noisy received training signal).(t) = c
H (x4 (t)) + 24-(t) is matched filtered with the OFDM basis Y =4/ - XH, +Z (33)
T

waveforms{g(t)e’>" 1!} o to yield [16], [17]

= whereH,, &/ [h,1 ... hy,n,]isthe unknowrN-Lx Ng
Vn=1/——H,Xn 4+ Zp, n € Sy (29) channel matrix, whileX is an [S;.| x NpL matrix com-

N prising of {x] (u] ® A%) :n € S} as its rows. In order to
where {z,} are Np-dimensional complex additive noiseestimate MIMO OFDM channels, traditional methods relying
vectors that are independently distributedCa®(0y,,,Iy,), OnN linear reconstruction techniques (such as those in [21],
while {Hn} are N x Ny matrices that are termed &-DM [22]) therefore (i) require that the number of pilot subdens
channel coefficientsFinally, the OFDM channel coefficients|S;,| = Q(NrL) so as to ensure tha& has full column rank,

{Hn} are related to the impulse responsefby [18] and (ii) produce an estimald,, of the channel matri#l, that
L1 satisfiesE[|H, — H, ||%] = Q(NrN2/E).
H, ~ Z ARHI(K)A?E—janLOn7 nes, (30) In contrast, we now propose a CS-based approach to es-

= timation of sparse MIMO OFDM channels that is based on
the results of Theorem 1 for structurally-subsampled uypita
where H,, (¢) = [hy1(¢) ... hyn.(0)]isanNy x Nz matrices. The proposed approach uses a nonlinear reconstru
matrix in which thei-th column,h, ;(¢), corresponds to the tion algorithm, known as the Dantzig selector (DS) [23], at
(-th tap of the (vector) impulse response from the transntlie receiver and achieves a target reconstruction errargusi
array to thei-th receive antenna, whilA ; and A are Np x  far less energy and bandwidth than that dictated by the



traditional methods based on linear reconstruction tepkes. subcarriers N, > (201/02)Jlog6 N,. Here, the constants
Before proceeding further, however, it is instructive tatet c;,c, are the same as in Theorem 1, while the constant
the reconstruction error performance of the DS. The follayvi ¢y = 41/2(1 4+ a)/(1 — 3657).
theorem is a slight variation on [23, Theorem 1.1]. This theorem, which is proved in [15, Theorem 4.14] using
Theorem 3 (The Dantzig Selector [23]let v = AG +n the results of Theorem 1 and Theorem 3, essentially states
be ann x 1 vector of observations of any deterministic buthat the proposed CS-based MIMO OFDM channel estimator
unknown signal3 € CP?, where the entries ofy are indepen- can potentially reduce both the number of pilots subcaarier
dently distributed a€ (0, 02). Assume that the columns ofneeded for channel estimation and the error in the resulting
A have unité;-norms and further leA € RIP(2S,0.3) for estimate by a factor of abo@(NgNrL/d) when used as an

some integelS > 1. Choose\ = /202(1 + a)logp for any alternative to existing methods for estimating sparse MIMO
a > 0. Then the vecto3"® obtained as the solution of OFDM channels.
B° = argmin ||8]; subjectto [|A"(r — AB)[w <A IV. DISCUSSION
Becr

In this paper, we have introduced a new class of com-

satisfies pressive sensing matrices—which we term as structurally-
18°° = Bl2 < - Sa?-logp (34) subsampled unitary matrices—that can be thought of as a
B generalization of subsampled unitary matrices. In pakdicu
with probability exceedingl — 2( 7(1+a) 1ng.pa) . we have investigated the restricted isometry property of a
def specific form of structurally-subsampled unitary matridas
Here, the constanty = 4./2(1 +a)/(1 — 3025). the paper that arise naturally in the estimation of multiple

We are now ready to state the training structure and th@ienna orthogonal frequency division multiplexing chelan
associated reconstruction algorithm of our proposed @$iim 5 syccessfully established in Theorem 1 that these matri-
scheme ford-sparse MIMO OFDM channels. , ces performnearly as well as subsampled unitary matrices.

Training: P|ck8tr_—th.e set of indices of.pllot subcarrlers—speciﬁca"y, Theorem 1 for structurally-subsampled ugita
to be a set ofN;, indices sampled uniformly at randommayices differs from [6, Theorem 3.3] for subsampled ugita
(without replacement) from the s& = {0,...,No — 1}. matrices by only a factor ofog p. Note that this difference
Further, define the corresponding sequence of rainin@Y&Clis primarily a consequence of the fact that the maximum
{Xrg’." € Sy} associated withx,, (1) to be a sequence magnitude of the entries in a subsampled unitary matrix is
pf i.i.d. Rademacher random vectors in which each em{MVially given by uu/y/n, whereas we could only bound
g‘gﬁgﬁﬂﬁ;?% ;aalzehs the valuel//Ni, of —1/v/Nir With  the maximum magnitude of the entries in the structurally-

. . subsampled unitary matrices of Theorem 1 /y+/logp/n.

Reconstruction: Pick A = \/_25(1 +a)(log NeNrL)/Nr HoweveE, it remair?é to be seen whether this/ki)z a fugnd{';\mental
for some fixeda > 0. Next, define characteristic of structurally-subsampled unitary nuasi or
h2S = arg min HhH1 subject to jugt an ar.tifact of_ the proof techn.ique.employe.d in Lemma 4.

heCNTE It is also instructive to note at this point that since theuhess
E wn I3 , for structurally-subsampled unitary matrices should cua
H\/ Ny X (Yi Y Ny Xh)H <A i=L....Nr \ith those for subsampled unitary matrices for the case of a
o diagonal row-mixing matrixR, it is heuristically plausible to
wherey; € CV- denotes the-th column of the matrixY.  conjecture that the performance of the structurally-sysad

The CS estimate oH, is then simply given as follows unitary matrices of Theorem 1 should deviate from that of
HO = [2% ... h2% ] (35) subsampled unitary matrices by a factor that is a function of

’ ’ k (instead ofp). Such a conclusion, however, does not follow

Theorem 4:Let H be ad-sparse MIMO OFDM channel in from the results established in this paper.
the sense that its impulse response satisfies Finally, we conclude this paper with a brief discussion of
des Ng L-1 the connections between the results of this paper and some
d = Z Z |hy.i(6)]|, < NrNrL. (36) existing works. As noted earlier, the work in Section Il is
i=1 ¢=0 closely related in terms of the general proof technique o th

work of Romberg [13] and Tropp et al. [11] in general, and
Rudelson and Vershynin [6] in particular. This is primardy
Defined = max; d; and suppose tha¥,,d > 2. Then for any consequence of the fact that the arguments used by Rudelson
dsq € (0,0.3], the CS estimate dH,, satisfies and Vershynin in [6] are substantially simpler (and tighter
) d- Ny than, for instance, the ones used in [5] to establish the RIP o
|HY® — H, ||}, < ¢ - —¢ logNgNrL — (37) subsampled matrices.

In terms of the actual problem, however, our work in
5 this paper is most closely related to the recent work of
,10N, 2d’}, provided the number of pilot Tropp et al. [11], where they propose a sub-Nyquist sampling

=d;

with probability exceeding — 4 max { (7(1+a) log Ngk Nz L-
(NRNTL)2a) —-1/2



architecture—termedandom demodulaterto acquire sparse whered;; is the Kronecker delta an@) follows from the fact

bandlimited signals. In particular, it is shown in [11] thhe

thatU is a unitary matrix. This completes the proof since (42)

overall action of the random demodulator on a sparse bandlimplies thatE[G] = I, = E[AHA] = I, from (38).

ited signal can be accurately described in terms of a sensing
matrix, which the authors term as mndom demodulator
matrix. However, it is easy to see from [11, Section IV-B] that[!]
a random demodulator matrix is just a structurally-subdanhp 2]
unitary matrix of the form described in Theorem 1 with
being a Fourier matrix and = p/n (in other words, no
subsampling). In this regard, our work in this paper can alst”
be thought of a generalization of the RIP analysis of a randoma;
demodulator matrix carried out in [11]. Based on the prengdi
discussion, it is perhaps best to think of the structurally;
subsampled unitary matrices of Theorem 1 as filling the voi
between the two extremes of subsampled unitary matrices
(maximum subsampling) and random demodulator matric
(no subsampling) through the choice of the design parameter
k (with k£ ranging from1 to p/n). [7]

APPENDIX
PROOF OFLEMMA 1

Let al! € CP denote thei-th row of A. Then A" A can be
written as a sum of rank-one matrices as follows

12| 14
A"A :Zaia'{' ZC@@T
i=1 i=1

= E[A"A] = E[®"®] (38)
where¢"! denotes the-th row of . Next, from the definition [11]
of ®, we can write an expression fgi! in terms of elements
of the generating sequencg, and the rows ofU as follows
k
(ZS:' = Za(ifl)k+( ul(_{iil)k+e 5 7 = 1, e
(=1

whereu!! denotes the-th row of U. With the help of (39),
we can further write thes, j)-th entry of ® as

(8]

El
_m

n [10]

(12]

(39) [13]

,m
(14]

(18]

k
Bij = D A1)t Uim1)h4L,j (40) [16]
(=1

wherew; ; is the (7, j)-th entry of U. We then have from (40) (7]
k

[18]
E[¢:J¢l]/] = Z

g=1r=1

E[agi-1)k+q A(i-1)k4r] X

k [19]

u?ifl)k+q,j U(i—1)k+r,j = Z U>(ki71)k+q,j Ui~ 1)ktq,j- (41)
q=1 [20]

def

Finally, define the Gram matritz ®"®. Then we have
from (41) that the expected value of titg j)-th entry of G,

Gij = Dyey B} 00,5, IS given by

[21]

(22]

m k

m
Elgij] =Y Elb760il = > > U0 1y g Ue—1)kra
/=1

¢=1q=1 [23]

(@) .
é 77 Zvjzla"'ap

[~ |

(42)
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