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Abstract—Subsampled (or partial) Fourier matrices were origi-
nally introduced in the compressive sensing literature by Cand̀es
et al. Later, in papers by Cand̀es and Tao and Rudelson and
Vershynin, it was shown that (random) subsampling of the rows
of many other classes of unitary matrices also yield effective
sensing matrices. The key requirement is that the rows ofU, the
unitary matrix, must be highly incoherent with the basis in which
the signal is sparse. In this paper, we consider acquisition systems
that—despite sensing sparse signals in an incoherent domain—
cannot randomly subsample rows fromU. We consider a general
class of systems in which the sensing matrix corresponds to
subsampling of the rows of matrices of the formΦ = RU

(instead of U), where R is typically a low-rank matrix whose
structure reflects the physical/technological constraints of the
acquisition system. We use the term “structurally-subsampled
unitary matrices” to describe such sensing matrices. We inves-
tigate the restricted isometry property of a particular class of
structurally-subsampled unitary matrices that arise naturally in
application areas such as multiple-antenna channel estimation
and sub-nyquist sampling. In addition, we discuss an immediate
application of this work in the area of wireless channel estimation,
where the main results of this paper can be applied to the
estimation of multiple-antenna orthogonal frequency division
multiplexing channels that have sparse impulse responses.

I. I NTRODUCTION

A. Background

In a nutshell, the theory of sparse signal recovery—or
compressive sensing (CS), as it is commonly called today—
deals with recovering a signalx ∈ C

p from linear observations
of the form

y = Ax : ‖x‖0 ≤ S (1)

where ‖x‖0 counts the number of nonzero entries inx and
A ∈ C

n×p is a known matrix. This mathematical model
corresponds to a nonadaptive measurement process that senses
an S-sparse signalx by taking n linear measurements of
the signal and the goal here is to reliably recoverx from
knowledge of theobservation vectory and thesensing matrix
A. Fundamentally, however, the theory of CS deals with the
special case ofn ≪ p—which arises in many data-starved
inverse problems in a number of application areas—and at-
tempts to answer the following questions [1], [2]: (i) What
conditions doesA need to satisfy to ensure successful recovery
of a sparsex? (ii) Can (1) be reliably solved forx in practice
using polynomial-time solvers? and (iii) What performance
guarantees can be given for various practical solvers when

y is corrupted by either stochastic noise or deterministic
perturbation?

A number of researchers have successfully addressed these
questions, and their extensions to less restrictive notions of
sparsity, over the past 30 years or so. In particular, the
celebrated success of CS theory can primarily be attributed
to some of the recent research breakthroughs that established
that a signalx that is either S-sparse or approximately
S-sparse can be reliably and efficiently reconstructed from
(noiseless or noisy)y by making use of (i) an appropriately
designed sensing matrix with a relatively small number of
rows—typically much smaller thanp—and (ii) tractable linear
optimization programs, efficient greedy algorithms, or fast
iterative thresholding methods. Proofs of these remarkable
results all rely in some sense on the same property of the
sensing matrix, namely that every collection of2S columns
of (appropriately normalized)A should behave almost like an
isometry. One concise way to state this condition is through
the restricted isometry property(RIP), first introduced in [3].

Definition 1: An n × p matrix A having unit ℓ2-norm
columns is said to have the RIP of orderS with parameter
δS if there exists someδS ∈ (0, 1) such that

(1 − δS)‖x̃‖2
2 ≤ ‖Ax̃‖2

2 ≤ (1 + δS)‖x̃‖2
2 (2)

holds for all S-sparse vectors̃x. In this case, we sometimes
make use of the shorthand notationA ∈ RIP (S, δS) to state
that A satisfies the RIP of orderS with parameterδS .

It is easy to see from (2) that the RIP of orderS is
essentially a statement about the singular values of alln × S
submatrices ofA. And while no algorithms are known to
date that can check the RIP for a given matrix in polynomial
time, one of the reasons that has led to the widespread
applicability of CS theory in various application areas is the
revelation that certain probabilistic constructions of matrices
satisfy the RIP with high probability. For example, it has been
established in [4] that if the entries of ann × p matrix A

are drawn independently from aN (0, 1
n ) distribution then

A ∈ RIP (S, δS) with probability exceeding1 − e−O(n)

for every δS ∈ (0, 1) provided n = Ω(S log p
S ). Similarly,

consider ann × p subsampled unitary matrixA obtained by
first randomly selectingn rows of ap × p unitary matrixU

and then normalizing them so that the resulting columns of
A have unit ℓ2-norms. Then it has been shown in [5], [6]
thatA ∈ RIP (S, δS) with probability exceeding1− p−O(δ2

S)



for every δS ∈ (0, 1) provided n = Ω(µ2
U

S log5 p), where

µU

def
=

√
p maxi,j |ui,j | is termed as thecoherenceof the

unitary matrixU.

B. Structurally-Subsampled Unitary Matrices

Subsampled unitary matrices were originally introduced—
and partially analyzed—in the modern CS literature in [7].
Initially, the focus in [7] was on sensing matrices that cor-
responded to subsampled (or partial) Fourier matrices. Later,
the analysis was advanced further by Candès and Tao and
Rudelson and Vershynin in [5] and [6], respectively, where
they established—among other things—that (random) subsam-
pling of the rows of many other classes of unitary matrices
also yield effective sensing matrices. Together, the results of
[5]–[7] form the basis of the so-calledprinciple of incoherent
measurements, stated as follows.

It is best to acquire samples of a sparse signalx

in a maximally incoherent transform domainU,
where the incoherence is measured by the coherence
parameterµU—the smaller the coherence parameter,
the greater the incoherence.1

This principle is made mathematically precise in [5], [6] by
stating that a (randomly) subsampled unitary matrixA needs
to haven = Ω(µ2

U
S log5 p) rows in order for it to satisfy

the RIP of orderS with high probability. Note that since
µU =

√
p maxi,j |ui,j |, we have that (i) the coherence of

a unitary matrix cannot be smaller than1, and (ii) unitary
matrices with entries of magnitudeO(1/

√
p) are maximally

incoherent. In other words, transform domains such as Fourier,
composition of Fourier and wavelet, and Hadamard are all
maximally incoherent and are, therefore, particularly well-
suited for acquisition of sparse signals.

It turns out that a number of real-world signal acquisi-
tion systems already adhere to the principle of incoherent
measurements due to various physical/technological reasons.
For example, data acquired by magnetic resonance imaging
scanners naturally correspond to Fourier-domain samples of
the object being imaged [8]. Similarly, channel measurements
collected by a communications receiver using multicarrier
modulation inherently correspond to Fourier-domain samples
of the single-antenna channel being estimated [9]. As such,
there is a natural fit between the theory of subsampled unitary
matrices and these two applications, as noted in, e.g., [8],[9].

Contrary to these examples, however, our interest in this
paper is in acquisition systems that—despite sensing sparse
signals in an incoherent domain—cannot sampleindividual
coefficients in the transform domain. This indeed happens ina
number of real-world systems because of a multitude of phys-
ical constraints and/or technological limitations. For example,
the impulse response of a multiple-antenna channel generally
lives in a three-dimensional (3-d) space but a communica-
tions receiver using multicarrier modulation can only acquire

1The coherence parameter gets its name from the fact that we can write
µU =

√
p maxi,j |〈ui, ej〉|, whereui denotes thei-th column ofUH and

ej denotes thej-th column of the canonical basisIp.

2-d projections of its 3-d Fourier-domain samples (physical
constraint) [10]. Similarly, it is generally desirable to project
an ultrawideband signal with limited spectral content ontoa
smaller spectral band before sampling it since randomized
sampling to acquire the signal can be very sensitive to timing
errors (technological constraint) [11].

In the parlance of CS, the sensing matrices in both the
aforementioned cases now correspond to subsampling of the

rows of matrices of the formΦ
def
= RU (instead ofU),

whereR is typically a low-rank matrix whose structure reflects
the physical and/or technological constraints of the acquisition
system andU is the transform domain (unitary) matrix. We
use the termstructurally-subsampled unitary matricesfor such
sensing matrices so as to distinguish them from the canonical
subsampled unitary matrices studied in [5]–[7] and formally
define these matrices as follows.

Definition 2: Let U be ap × p unitary matrix,m ≤ p be
an integer parameter, andR be anm × p row-mixing matrix,
given by

R
def
=
[
r1 r2 . . . rm

]T
. (3)

Next, choose a subsetΩ of cardinalityn
def
= |Ω| uniformly at

random (without replacement) from the set{1, . . . ,m}. Then
the structurally-subsampled unitary matrixA generated from
(R,U) is a submatrix ofΦ = RU obtained by selectingn
rows of Φ corresponding to the indices inΩ and normalizing
the resulting columns so that they have unitℓ2-norms.

Remark 1:A structurally-subsampled unitary matrixA
generated from(R,U) can also be thought of as a twice-
subsampled version of the unitary matrixU. Here, the first
subsampling step corresponds to obtaining anm×p matrix Φ

from U by projecting thep columns ofU onto them rows
of R. In contrast, the second subsampling step corresponds to
obtainingA from Φ by randomly selecting (and appropriately
normalizing)n rows of Φ.

C. Main Result

It is easy to see from Definition 2 that the theory of subsam-
pled unitary matrices is not easily extendable to structurally-
subsampled unitary matrices, except for the trivial case ofR

being a (square) diagonal matrix. In this paper, we investi-
gate the restricted isometry property of a particular classof
structurally-subsampled unitary matrices that arise naturally in
application areas such as multiple-antenna channel estimation
and sub-nyquist sampling. Specifically, letk ∈ {1, . . . , p} be a

parameter that is an integer factor ofp and definem
def
= p/k.

Further, letAp
def
= {ai ∈ C}p

i=1 denote ap-length generating
sequence and define them rows of R to be generated from
the sequenceAp as follows

rT
i

def
=
[

0 . . . 0︸ ︷︷ ︸
(i−1)k terms

aik−k+1 . . . aik 0 . . . 0︸ ︷︷ ︸
p−ik terms

]
. (4)

In other words, the row-mixing matrixR has a block-diagonal
structure. Then the main result of this paper—stated in terms



of the following theorem—asserts that structurally-subsampled
unitary matrices generated from(R,U) satisfy RIP for the
nontrivial case ofk > 1 whenAp is a Rademacher sequence.2

Theorem 1:Let the elements of the generating sequence
Ap = {ai}p

i=1 be independent realizations of Rademacher
random variables taking values±1 with probability 1/2.
Further, letR be them × p row-mixing matrix whose rows
are generated by the sequenceAp according to (4), where
m = p/k for a parameterk ∈ {1, . . . , p} that is an integer
factor ofp. Choose a subsetΩ of cardinalityn = |Ω| uniformly
at random (without replacement) from the set{1, . . . ,m}.
Finally, let U be any p × p unitary matrix, and letA be
the n × p matrix obtained by samplingn rows of Φ = RU

corresponding to the indices inΩ and normalizing the resulting
columns by

√
m/n. Then for each integerp, S > 2, and for

any z > 1 and anyδS ∈ (0, 1), there exist absolute (positive)
constantsc1 andc2 such that whenever

n ≥ c1zµ2
US log3 p log2 S (5)

the matrixA ∈ RIP (S, δS) with probability exceeding1 −
20max

{
exp

(
−c2δ

2
Sz
)
, p−1

}
.

Remark 2:One of the main advantages of describing the
structurally-subsampled unitary matrixA of Theorem 1 as a
subsampled version ofΦ is that it allows us to borrow some of
the mathematical techniques used by Rudelson and Vershynin
in [6] to establish the RIP of canonical subsampled unitary
matrices. Nevertheless, construction of the sensing matrix A

of Theorem 1 can equivalently be understood in the followsing
sense: Divide thep × p unitary matrixU into m contiguous
blocks of k = p/m rows each and selectn of these blocks
corresponding to the indices in the setΩ. Then every row
of A corresponds to a (random) superposition of thek rows
of one of these selected blocks. In fact, this interpretation
of the structurally-subsampled unitary matrices of Theorem 1
is what enables us to use the results of this theorem later
in the context of estimation of multiple-antenna orthogonal
frequency division multiplexing channels.

Before proceeding with the proof of this theorem, however,
let us introduce some notation (originally used in [6]) that
will greatly facilitate the mathematical analysis in the sequel.
Specifically, it can be easily verified from (2) that ann × p
matrix A ∈ RIP (S, δS) if the following inequality holds for
some constantδS ∈ (0, 1)

max
T⊂{1,...,p}

|T |≤S

∥∥∥AH
T AT − I|T |

∥∥∥
2
≤ δS (6)

where‖ ·‖2 denotes the spectral norm of a matrix (the largest
singular value of the matrix), andAT denotes ann × |T |
submatrix ofA obtained by collecting all the columns ofA
corresponding to the indices in setT . This expression can be

2Here, we term a sequence as a Rademacher sequence if its elements
independently take the values±1 with probability1/2 (in other words, if the
elements of the sequence are independent symmetric Bernoulli or Rademacher
random variables).

further written in a compact form with the help of a non-
negative function‖ · ‖T,S : C

p×p → [0,∞) defined as follows

‖M‖T,S
def
= max

T⊂[1...p]
|T |≤S

∥∥MT×T

∥∥
2

(7)

whereMT×T denotes a|T |×|T | submatrix ofM obtained by
collecting all the entries ofM corresponding to the indices in
setT×T . Going back to the definition of RIP, we can therefore
alternatively state that ann × p matrix A ∈ RIP (S, δS) for
some constantδS ∈ (0, 1) if

‖AHA − Ip‖T,S ≤ δS (8)

and we will prove this inequality in the sequel for the
structurally-subsampled unitary matrices of Theorem 1.

D. Organization

The rest of this paper is organized as follows. In Section II,
we provide a proof of Theorem 1 using tools from the classical
theory of probability in Banach spaces. In Section III, we
discuss an application of Theorem 1 in the area of estima-
tion of multiple-antenna channels that have sparse impulse
responses. Finally, in Section IV, we heuristically compare
the performance of structurally-subsampled unitary matrices
to that of canonical subsampled unitary matrices and discuss
the connections between the results of this paper and some
existing works.

II. PROOF OF THEMAIN RESULT

It is a trivial exercise to verify that‖·‖T,S defines a norm—
which we term as(T, S)-norm—on the vector spaceCp×p.
Therefore, the matrix(AHA − Ip) lives in the Banach space

B def
= (Cp×p, ‖ · ‖T,S) and the main tools that we use to

establish the inequality in (8) come from the classical theory
of probability in Banach spaces [12]. The general roadmap for
our proof is very similar to [6, Theorem 3.3], which is now a
well-established technique in the CS literature for establishing
RIP of subsampled matrices [11], [13]. In particular, the proof
relies heavily on an upper bound on expected(T, S)-norm of
sum of independent rank-one matrices that was established in
[6, Lemma 3.8]. In the following, we describe the basic steps
taken to establish a formal proof of our stated claim.

First, we initially assume that—instead of the uniformly-at-
random sampling model—the structurally-subsampled unitary
matrix A in Theorem 1 is generated from(R,U) according
to a Bernoulli sampling model. That is, letζ1, . . . , ζm be
independent Bernoulli random variables taking the value1
with probability n/m. Then,

Ω
def
= {i : ζi = 1} (9)

and A is a (normalized)|Ω| × p submatrix of Φ = RU

obtained by sampling|Ω| rows of Φ corresponding to the
indices inΩ and normalizing the resulting columns by

√
m/n.

We then have the following lemma that shows that under this
assumption the Gram matrixAHA = Ip in expectation.



Lemma 1:Let the structurally-subsampled unitary matrix
A in Theorem 1 be generated from(R,U) according to a
Bernoulli sampling model (as described above). Then,

E[AHA] = Ip. (10)

Proof: See the Appendix.
Second, we use Lemma 1 to establish that‖AHA− Ip‖T,S

cannot be too large in expectation for large-enough values of
n in the case of a Bernoulli sampling model. The proof of
this result, however, is a little more involved and makes use
of a number of auxiliary lemmas. The most important lemma
that we will need in this regard is the following one, due to
Rudelson and Vershynin [6, Lemma 3.8].

Lemma 2 (Rudelson–Vershynin):Let v1, . . . ,vr, r ≤ p, be
vectors inC

p with uniformly bounded entries,‖vi‖∞ ≤ K
for all i. Further, let{εi} be independent Rademacher random
variables taking values±1 with probability 1/2. Then

E

[∥∥∥
r∑

i=1

εiviv
H
i

∥∥∥
T,S

]
≤ B(r) ·

∥∥∥
r∑

i=1

viv
H
i

∥∥∥
1/2

T,S
(11)

whereB(r)
def
= c3 K

√
S log (S)

√
log p

√
log r for some abso-

lute constantc3 > 0.
In order to make use of Lemma 2, however, we require

the entries ofA to be uniformly bounded by some number
K. To this end, we will make use of the classical Khintchine
inequality for independent and identically distributed (i.i.d.)
Rademacher random variables [12, Lemma 4.1].

Lemma 3 (Khintchine Inequality):Let {εi} be independent
Rademacher random variables taking values±1 with proba-
bility 1/2. For any s ∈ (0,∞), there exist a positive finite
constantCs depending ons only such that for any finite
sequence{αi} of complex numbers

(
E

[∣∣∣
∑

i

εiαi

∣∣∣
s])1/s

≤ Cs

(∑

i

|αi|2
)1/2

. (12)

For the case of real numbers, it has been established by
Haagerup in [14] that the best constantCs in (12) is

C∗
s

def
=





1, if 0 < s ≤ 2,

21/2
(

Γ((s+1)/2)√
π

)1/s

, if 2 < s < ∞,
(13)

whereΓ(z)
def
=
∫∞
0

tz−1e−tdt is the Gamma function. How-
ever, it is trivial to verify thatC∗

s is also a valid constant
in the case of complex numbers, since if the upper bound in
the Khintchine inequality holds for real numbers with some
constant then it also holds for complex numbers with the same
constant. We are now ready to prove that the entries of the
structurally-subsampled unitary matrixA cannot be too large
in the case of a Bernoulli sampling model.

Lemma 4:Let the structurally-subsampled unitary matrix
A in Theorem 1 be generated from(R,U) according to a
Bernoulli sampling model (as described earlier). Then for any

integerp > 2 and anyr ∈ [2, 2 log p], we have

(
E
[
‖A‖r

max

])1/r

≤
√

m

n

(
E
[
‖Φ‖r

max

])1/r

≤
√

16µ2
U

log p

n
(14)

where‖ · ‖max denotes the max norm of a matrix (absolute
value of the largest-magnitude entry of the matrix).

Proof: The proof of this lemma is very similar to that of
[11, Lemma 5] and is, therefore, omitted here for the sake of
brevity (alternatively, see [15, Lemma 3.13]).

All the pieces are now in place to boundE
[
‖AHA−Ip‖T,S

]

in the case of a Bernoulli sampling model using Lemma 2 and
techniques developed in probability in Banach spaces [12].

Lemma 5:Let the structurally-subsampled unitary matrix
A in Theorem 1 be generated from(R,U) according to a
Bernoulli sampling model. Then for any integerp > 2 and
any ǫ ∈ (0, 1), we have

E
[
‖AHA − Ip‖T,S

]
≤ ǫ (15)

provided the number of rowsn ≥ c4 ǫ−2µ2
U

S log3 p log2 S
for some absolute constantc4 > 0.

Proof: The proof of this lemma can be found in [15,
Lemma 3.14].

Finally, we show that‖AHA− Ip‖T,S concentrates around
its mean with high probability. To establish this fact, however,
we need one additional classical result from the theory of
probability in Banach spaces. The following result is originally
due to Ledoux and Talagrand [12, Theorem 6.17] and appears
in the following form in [6, Theorem 3.10].

Theorem 2 (Ledoux–Talagrand):Let B def
= (X, ‖·‖X) be a

Banach space. Further, let{Yi}N
i=1 be independent, symmetric

random variables inB such that‖Yi‖X ≤ B for every i

almost surely. Finally, defineY
def
=
∥∥∑N

i=1 Yi

∥∥
X

. Then for
any integersr ≥ q, any t > 0, and some absolute constant
c5 > 0, Y satisfies

Pr
(
Y ≥ 8qE[Y ] + 2rB + t

)
≤
(

c5

q

)r

+

+ 2 exp

(
− t2

256qE[Y ]2

)
. (16)

We are now ready to establish the RIP for structurally-
subsampled unitary matrices described in Theorem 1.

Proof of Theorem 1: We begin by recalling the result
established in [7, Section 2.3], which states that if it can
be shown that subsampled matrices in a particular class
satisfy the RIP with probability exceeding1 − η for the
Bernoulli sampling model, then it follows that subsampled
matrices belonging to the same class satisfy the RIP with
probability exceeding1 − 2η for the uniformly-at-random
sampling model. As such, we begin by assuming that the
structurally-subsampled unitary matrixA is generated from
(R,U) according to a Bernoulli sampling model.

Next, consider the Banach spaceB def
= (Cp×p, ‖ · ‖T,S)

and define random variables
{
Yi

}p

i=1
and

{
Ỹi

}p

i=1
that take



values inB as follows

Yi
def
=

m

n
ζiφiφ

H
i − 1

p
Ip,

Ỹi
def
=

m

n

(
ζiφiφ

H
i − ζ ′iφ

′
iφ

′ H
i

)
, i = 1, . . . , p (17)

where
{
ζi

}
are the Bernoulli random variables arising in

the Bernoulli sampling model,
{
φH

i

}
denote the rows of

Φ = RU, and
{
ζ ′i
}

and
{
φ′ H

i

}
are independent copies of{

ζi

}
and

{
φH

i

}
, respectively. In other words, each random

variable Ỹi
def
= Yi − Y′

i is a symmetric version of the
corresponding random variableYi, whereY′

i denotes an in-
dependent copy ofYi. In particular, we have that

∑p
i=1 Ỹi is

a symmetric version of
∑p

i=1 Yi and, therefore, the following
symmetrization inequalities hold for allu > 0 [12, Chapter 6]

E

[∥∥∥
p∑

i=1

Ỹi

∥∥∥
T,S

]
≤ 2E

[∥∥∥
p∑

i=1

Yi − E
[ p∑

i=1

Yi

]∥∥∥
T,S

]
, (18)

Pr

(∥∥∥
p∑

i=1

Yi

∥∥∥
T,S

> 2E

[∥∥∥
p∑

i=1

Yi

∥∥∥
T,S

]
+ u

)
≤

2Pr

(∥∥∥
p∑

i=1

Ỹi

∥∥∥
T,S

> u

)
. (19)

There are two key observations that can be made here. First,

we can bound the expected value ofỸ
def
= ‖∑p

i=1 Ỹi‖T,S us-
ing (18) and Lemma 5 since (i)E

[∑p
i=1 Yi

]
= 0 (Lemma 1),

and (ii)Y
def
= ‖∑p

i=1 Yi‖T,S = ‖AHA−Ip‖T,S . Second, we
can obtain a large-deviation bound forY using (19) and The-
orem 2 since—by construction—

{
Ỹi

}p

i=1
are independent,

symmetric random variables inB. Before can use Thereom 2
to characterize the tail behavior of̃Y, however, we need to
establish thatmaxi ‖Ỹi‖T,S ≤ B for someB.

Towards this end, we first (rather trivially) establish that
maxi

{√
m
n ‖φH

i ‖∞,
√

m
n ‖φ′ H

i ‖∞
}

cannot be too large with
high probability. Specifically, note from Lemma 4 that we have
for r = 2 log p

Pr

(√
m

n

∥∥Φ
∥∥

max
>

√
16 eµ2

U
log p

n

)
(a)

≤

E
[
‖Φ‖r

max

]

er/2 · E
[
‖Φ‖r

max

] = p−1 (20)

where(a) follows from an application of Markov’s inequality

(see also [11, Lemma 5]). Next, defineB1
def
=

16 eµ2

U
log p

n .
Then we have from (20) that

Pr

({√
m

n

∥∥Φ
∥∥

max
>
√

B1

}
⋃

{√
m

n

∥∥Φ′∥∥
max

>
√

B1

})
(b)

≤ 2p−1 (21)

whereΦ′ is comprised of
{
φ′ H

i

}
as its rows (in other words,

Φ′ is an independent copy ofΦ), and (b) follows from a

simple union bounding argument. Further, we also have

max
i

∥∥∥Ỹi

∥∥∥
T,S

(c)

≤ max
i

{∥∥∥
m

n
φiφ

H
i

∥∥∥
T,S

+
∥∥∥

m

n
φ′

iφ
′ H
i

∥∥∥
T,S

}

(d)

≤ S
(m

n

∥∥Φ
∥∥2

max
+

m

n

∥∥Φ′∥∥2

max

)
(22)

where(c) mainly follows from triangle inequality, and(d) is
a simple consequence of the definition of(T, S)-norm and

the fact that
∥∥Φ
∥∥

max

def
= maxi ‖φH

i ‖∞ (and in the same way,
∥∥Φ′∥∥

max

def
= maxi ‖φ′ H

i ‖∞). It is then easy to see from (20)
and (22) that we havemaxi ‖Ỹi‖T,S ≤ 2SB1 with probability
exceeding1 − 2p−1.

Finally, define the eventE
def
=
{

maxi ‖Ỹi‖T,S ≤ 2SB1

}
.

Then, conditioned on this event, we have from (18), Lemma 5
and Theorem 2 that whenevern ≥ c4 ǫ−2µ2

U
S log3 p log2 S

Pr
(
Ỹ ≥ 16qǫ + 4rSB1 + t

∣∣E
)

<

(
c5

q

)r

+

+ 2 exp

(
− t2

1024qǫ2

)
(23)

for any integerr ≥ q, any t > 0, and anyǫ ∈ (0, 1). Next,
chooseq = ⌈ec5⌉, t = 32

√
qηǫ, and r = ⌈ t

2SB1

⌉ for some

η > 1. Further, define a new constantc1
def
= max

{
e
√

q, c4

}

and letn ≥ c1 ǫ−2µ2
U

S log3 p log2 S. Note that this choice of
n ensuresr ≥ q, resulting in

Pr
(
Ỹ ≥ (16q + 96

√
qη)ǫ

∣∣E
)

< exp

(
−

√
qηǫn

3µ2
U

S log p

)
+

+ 2 exp
(
−η2

)
. (24)

We can now get rid of the conditioning in the above expression
by noting thatPr(Ec) ≤ 2p−1, which in turn implies

Pr
(
Ỹ ≥ (16q + 96

√
qη)ǫ

)
< exp

(
−

√
qηǫn

3µ2
U

S log p

)
+

+ 2 exp
(
−η2

)
+ 2p−1. (25)

In the end, what remains to be shown is thatY =
‖∑p

i=1 Yi‖T,S = ‖AHA−Ip‖T,S ≤ δS with high probability.
To this end, note that ifn ≥ c1 ǫ−2µ2

U
S log3 p log2 S then

E[Y] ≤ ǫ from Lemma 5. Consequently, we get from (19)
and (25) that

Pr
(
Y ≥ (2 + 16q + 96

√
qη)ǫ

)
< 2 exp

(
−

√
qηǫn

3µ2
U

S log p

)

+ 4 exp
(
−η2

)
+ 4p−1. (26)

Finally, definec6
def
= (2 + 16q + 96

√
q) and note thatc6η ǫ >

(2 + 16q + 96
√

qη)ǫ sinceη > 1. If we now chooseη = δS

c6ǫ

then
√

qηǫn

3µ2

U
S log p

> η2 and, therefore, (26) can be simplified as

Pr
(
Y ≥ δS

)
< 10max

{
exp

(
−c2δ

2
Sz
)
, p−1

}
(27)

wherec2
def
= 1/c6 andz

def
= 1/ǫ2. The theorem now trivially

follows from the discussion at the start of the proof.



III. A PPLICATION: ESTIMATION OF SPARSE

MULTIPLE-ANTENNA CHANNELS

In this section, we discuss an application of structurally-
subsampled unitary matrices in the area of estimation of
multiple-antenna (MIMO) channels that have sparse impulse
responses. For the sake of this exposition, we limit ourselves
to sparse MIMO orthogonal frequency division multiplexing
(OFDM) channels and devise quantitative error bounds for CS-
based channel estimation schemes by leveraging the resultsof
Theorem 1 for structurally-subsampled unitary matrices.

A. Problem Setup

Consider a MIMO OFDM channelH corresponding to a
transmitter withNT antennas, a receiver withNR antennas,
and an L-tap (discrete) impulse response. For simplicity,
we assume uniform linear arrays of antennas and consider
signaling over this channel using OFDM symbols of duration
T and (two-sided) bandwidthW , thereby giving rise to a

temporal signal spaceof dimensionNo
def
= TW . Finally, as

is customary in the wireless literature [16], [17], we assume
that the number of taps in the channel impulse response,L,
is much smaller than the number of OFDM subcarriers,No.

One of the most popular and widely used approaches to
estimating a MIMO channel is to probe it with known signal-
ing waveforms (referred to as training signals) and process
the corresponding channel output to estimate the channel
parameters. In the case of a MIMO OFDM channel, theNT -
dimensional (baseband) training signal can be expressed as

xtr(t) =

√
E

NT

∑

n∈Str

x̃n g(t)ej2π n
T

t, 0 ≤ t ≤ T (28)

whereE denotes the total transmit energy budget for training
purposes,g(t) is a prototype pulse having unit energy,Str ⊂
S def

= {0, . . . , No−1} is the set of indices ofpilot subcarriers
used for training, and

{
x̃n ∈ C

NT } is the (vector-valued)
training sequence having energy

∑
Str

‖x̃n‖2
2 = NT .

At the receiver, the noisy received training signalytr(t) =
H(xtr(t)) + ztr(t) is matched filtered with the OFDM basis
waveforms

{
g(t)ej2π n

T
t
}
Str

to yield [16], [17]

ỹn =

√
E

NT
Hnx̃n + z̃n, n ∈ Str (29)

where
{
z̃n

}
are NR-dimensional complex additive noise

vectors that are independently distributed asCN (0NR
, INR

),
while

{
Hn

}
areNR×NT matrices that are termed asOFDM

channel coefficients. Finally, the OFDM channel coefficients{
Hn

}
are related to the impulse response ofH by [18]

Hn ≈
L−1∑

ℓ=0

ARHT
v(ℓ)AH

T e−j2π ℓ
No

n, n ∈ Str (30)

whereHv(ℓ)
def
=
[
hv,1(ℓ) . . . hv,NR

(ℓ)
]

is an NT × NR

matrix in which thei-th column,hv,i(ℓ), corresponds to the
ℓ-th tap of the (vector) impulse response from the transmit
array to thei-th receive antenna, whileAR andAT areNR×

NR andNT ×NT (unitary) Fourier matrices, respectively. The
goal then is to reliably estimate the impulse response ofH

using{ỹn, x̃n}Str
and a small number of pilot subcarriers.

B. Sparse MIMO OFDM Channel Estimation

Physical arguments and growing experimental evidence sug-
gest that MIMO OFDM channels encountered in practice tend
to exhibit impulse responses dominated by a relatively small
number of dominant taps [19], [20]. Traditional MIMO OFDM
channel estimation methods—typically comprising of linear
reconstruction techniques (such as the maximum likelihood
or the minimum mean squared error estimators), however,
lead to overutilization of the key resources of energy and
bandwidth in suchsparse channels. To see this, define row

vectors
{
yT

n
def
= ỹT

nA∗
R

}
Str

and note from (29) and (30) that

yT
n =

√
E

NT
x̃T

nA∗
T

L−1∑

ℓ=0

Hv(ℓ)e−j2π ℓ
No

n + zT
n (31)

where entries of the noise vectors
{
zT

n
def
= z̃T

nA∗
R

}
Str

are still
(mutually) independently distributed asCN (0, 1) due to the
unitary nature ofA∗

R. Next, let yn(i), i = 1, . . . , NR, denote
the i-th entry of yT

n. Then it can be shown using (31) and
basic matrix identities involving Kronecker products that[15]

yn(i) =

√
E

NT
x̃T

n(uT
n ⊗ A∗

T )hv,i + zn(i) (32)

where ⊗ denotes the Kronecker product,hv,i is an NT L-
dimensional column vector obtained by concatenating the

vectors{hv,i(ℓ)}, uT
n

def
=
[
e−j0ωn,No . . . e−j(L−1)ωn,No

]

is the collection ofL samples of a discrete sinusoid with

frequencyωn,No

def
= 2π n

No
, and zn(i) denotes thei-th entry

of the noise vectorzT
n.

It is now easy to see from (31) and (32) that stacking the
rows vectors

{
yT

n

}
Str

into an |Str|×NR matrix Y yields the
standard linear observation model

Y =

√
E

NT
XHv + Z (33)

whereHv
def
=
[
hv,1 . . . hv,NR

]
is the unknownNT L×NR

channel matrix, whileX is an |Str| × NT L matrix com-
prising of

{
x̃T

n(uT
n ⊗ A∗

T ) : n ∈ Str

}
as its rows. In order to

estimate MIMO OFDM channels, traditional methods relying
on linear reconstruction techniques (such as those in [21],
[22]) therefore (i) require that the number of pilot subcarriers
|Str| = Ω(NT L) so as to ensure thatX has full column rank,
and (ii) produce an estimatêHv of the channel matrixHv that
satisfiesE[‖Ĥv − Hv‖2

F ] = Ω(NRN2
T /E).

In contrast, we now propose a CS-based approach to es-
timation of sparse MIMO OFDM channels that is based on
the results of Theorem 1 for structurally-subsampled unitary
matrices. The proposed approach uses a nonlinear reconstruc-
tion algorithm, known as the Dantzig selector (DS) [23], at
the receiver and achieves a target reconstruction error using
far less energy and bandwidth than that dictated by the



traditional methods based on linear reconstruction techniques.
Before proceeding further, however, it is instructive to state
the reconstruction error performance of the DS. The following
theorem is a slight variation on [23, Theorem 1.1].

Theorem 3 (The Dantzig Selector [23]):Let ν = Aβ + η

be ann × 1 vector of observations of any deterministic but
unknown signalβ ∈ C

p, where the entries ofη are indepen-
dently distributed asCN (0, σ2). Assume that the columns of
A have unitℓ2-norms and further letA ∈ RIP (2S, 0.3) for
some integerS ≥ 1. Chooseλ =

√
2σ2(1 + a) log p for any

a ≥ 0. Then the vectorβDS obtained as the solution of

βDS = arg min
β̃∈Cp

‖β̃‖1 subject to ‖AH(ν − Aβ̃)‖∞ ≤ λ

satisfies

‖βDS − β‖2
2 ≤ c2

0 · S σ2 · log p (34)

with probability exceeding1 − 2
(√

π(1 + a) log p · pa
)−1

.

Here, the constantc0
def
= 4

√
2(1 + a)/(1 − 3δ2S).

We are now ready to state the training structure and the
associated reconstruction algorithm of our proposed estimation
scheme ford-sparse MIMO OFDM channels.

Training: PickStr—the set of indices of pilot subcarriers—
to be a set ofNtr indices sampled uniformly at random
(without replacement) from the setS = {0, . . . , No − 1}.
Further, define the corresponding sequence of training vectors{
x̃n, n ∈ Str

}
associated withxtr(t) to be a sequence

of i.i.d. Rademacher random vectors in which each entry
independently takes the value+1/

√
Ntr or −1/

√
Ntr with

probability 1/2 each.
Reconstruction: Pick λ =

√
2E(1 + a)(log NRNT L)/NT

for some fixeda ≥ 0. Next, define

hDS
v,i = arg min

h∈CNT L

∥∥h
∥∥

1
subject to

∥∥∥∥

√
E

NT
XH(yi −

√
E

NT
Xh
)∥∥∥∥

∞
≤ λ, i = 1, . . . , NR

whereyi ∈ C
Ntr denotes thei-th column of the matrixY.

The CS estimate ofHv is then simply given as follows

HDS
v =

[
hDS

v,1 . . . hDS
v,NR

]
. (35)

Theorem 4:Let H be ad-sparse MIMO OFDM channel in
the sense that its impulse response satisfies

d
def
=

NR∑

i=1

L−1∑

ℓ=0

∥∥hv,i(ℓ)
∥∥

0

︸ ︷︷ ︸
def
= di

≪ NRNT L. (36)

Defined̄ = maxi di and suppose thatNo, d̄ > 2. Then for any
δ2d̄ ∈ (0, 0.3], the CS estimate ofHv satisfies

∥∥HDS
v − Hv

∥∥2

F
≤ c2

0 ·
d · NT

E · log NRNT L (37)

with probability exceeding1−4max
{(

π(1+a) log NRNT L ·
(NRNT L)2a

)−1/2
, 10N

−δ2

2d̄
o

}
, provided the number of pilot

subcarriersNtr ≥ (2c1/c2)d̄ log6 No. Here, the constants
c1, c2 are the same as in Theorem 1, while the constant
c0 = 4

√
2(1 + a)/(1 − 3δ2d̄).

This theorem, which is proved in [15, Theorem 4.14] using
the results of Theorem 1 and Theorem 3, essentially states
that the proposed CS-based MIMO OFDM channel estimator
can potentially reduce both the number of pilots subcarriers
needed for channel estimation and the error in the resulting
estimate by a factor of aboutO(NRNT L/d) when used as an
alternative to existing methods for estimating sparse MIMO
OFDM channels.

IV. D ISCUSSION

In this paper, we have introduced a new class of com-
pressive sensing matrices—which we term as structurally-
subsampled unitary matrices—that can be thought of as a
generalization of subsampled unitary matrices. In particular,
we have investigated the restricted isometry property of a
specific form of structurally-subsampled unitary matricesin
the paper that arise naturally in the estimation of multiple-
antenna orthogonal frequency division multiplexing channels
and successfully established in Theorem 1 that these matri-
ces performnearly as well as subsampled unitary matrices.
Specifically, Theorem 1 for structurally-subsampled unitary
matrices differs from [6, Theorem 3.3] for subsampled unitary
matrices by only a factor oflog p. Note that this difference
is primarily a consequence of the fact that the maximum
magnitude of the entries in a subsampled unitary matrix is
trivially given by µU/

√
n, whereas we could only bound

the maximum magnitude of the entries in the structurally-
subsampled unitary matrices of Theorem 1 byµU

√
log p/n.

However, it remains to be seen whether this is a fundamental
characteristic of structurally-subsampled unitary matrices or
just an artifact of the proof technique employed in Lemma 4.
It is also instructive to note at this point that since the results
for structurally-subsampled unitary matrices should coincide
with those for subsampled unitary matrices for the case of a
diagonal row-mixing matrixR, it is heuristically plausible to
conjecture that the performance of the structurally-subsampled
unitary matrices of Theorem 1 should deviate from that of
subsampled unitary matrices by a factor that is a function of
k (instead ofp). Such a conclusion, however, does not follow
from the results established in this paper.

Finally, we conclude this paper with a brief discussion of
the connections between the results of this paper and some
existing works. As noted earlier, the work in Section II is
closely related in terms of the general proof technique to the
work of Romberg [13] and Tropp et al. [11] in general, and
Rudelson and Vershynin [6] in particular. This is primarilya
consequence of the fact that the arguments used by Rudelson
and Vershynin in [6] are substantially simpler (and tighter)
than, for instance, the ones used in [5] to establish the RIP of
subsampled matrices.

In terms of the actual problem, however, our work in
this paper is most closely related to the recent work of
Tropp et al. [11], where they propose a sub-Nyquist sampling



architecture—termedrandom demodulator—to acquire sparse
bandlimited signals. In particular, it is shown in [11] thatthe
overall action of the random demodulator on a sparse bandlim-
ited signal can be accurately described in terms of a sensing
matrix, which the authors term as arandom demodulator
matrix. However, it is easy to see from [11, Section IV-B] that
a random demodulator matrix is just a structurally-subsampled
unitary matrix of the form described in Theorem 1 withU
being a Fourier matrix andk = p/n (in other words, no
subsampling). In this regard, our work in this paper can also
be thought of a generalization of the RIP analysis of a random
demodulator matrix carried out in [11]. Based on the preceding
discussion, it is perhaps best to think of the structurally-
subsampled unitary matrices of Theorem 1 as filling the void
between the two extremes of subsampled unitary matrices
(maximum subsampling) and random demodulator matrices
(no subsampling) through the choice of the design parameter
k (with k ranging from1 to p/n).

APPENDIX

PROOF OFLEMMA 1

Let aH
i ∈ C

p denote thei-th row of A. ThenAHA can be
written as a sum of rank-one matrices as follows

AHA =

|Ω|∑

i=1

aia
H
i =

m

n

p∑

i=1

ζiφiφ
H
i

⇒ E[AHA] = E[ΦHΦ] (38)

whereφH
i denotes thei-th row of Φ. Next, from the definition

of Φ, we can write an expression forφH
i in terms of elements

of the generating sequenceAp and the rows ofU as follows

φH
i =

k∑

ℓ=1

a(i−1)k+ℓ uH
(i−1)k+ℓ , i = 1, . . . ,m (39)

whereuH
i denotes thei-th row of U. With the help of (39),

we can further write the(i, j)-th entry ofΦ as

φi,j =

k∑

ℓ=1

a(i−1)k+ℓ u(i−1)k+ℓ,j (40)

whereui,j is the(i, j)-th entry ofU. We then have from (40)

E[φ∗
i,jφi,j′ ] =

k∑

q=1

k∑

r=1

E
[
a(i−1)k+q a(i−1)k+r

]
×

u∗
(i−1)k+q,j u(i−1)k+r,j′ =

k∑

q=1

u∗
(i−1)k+q,j u(i−1)k+q,j′ . (41)

Finally, define the Gram matrixG
def
= ΦHΦ. Then we have

from (41) that the expected value of the(i, j)-th entry ofG,
gi,j =

∑m
ℓ=1 φ∗

ℓ,iφℓ,j , is given by

E[gi,j ] =

m∑

ℓ=1

E[φ∗
ℓ,iφℓ,j ] =

m∑

ℓ=1

k∑

q=1

u∗
(ℓ−1)k+q,i u(ℓ−1)k+q,j

=

p∑

ℓ=1

u∗
ℓ,iuℓ,j

(a)
= δij , i, j = 1, . . . , p (42)

whereδij is the Kronecker delta and(a) follows from the fact
thatU is a unitary matrix. This completes the proof since (42)
implies thatE[G] = Ip ⇒ E[AHA] = Ip from (38).
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