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Abstract
This paper studies conditions for high-
dimensional inference when the set of ob-
servations is given by a linear combination
of a small number of groups of columns of
a design matrix, termed the “block-sparse”
case. In this regard, it first specifies condi-
tions on the design matrix under which most
of its block submatrices are well conditioned.
It then leverages this result for average-case
analysis of high-dimensional block-sparse re-
covery and regression. In contrast to earlier
works: (i) this paper provides conditions on
arbitrary designs that can be explicitly com-
puted in polynomial time, (ii) the provided
conditions translate into near-optimal scal-
ing of the number of observations with the
number of active blocks of the design ma-
trix, and (iii) the conditions suggest that the
spectral norm, rather than the column/block
coherences, of the design matrix fundamen-
tally limits the performance of computational
methods in high-dimensional settings.

1 Introduction

Consider the linear model y = Xβ, which relates a pa-
rameter vector β ∈ Rp to observations y ∈ Rn through
a design matrix (henceforth referred to as a dictionary)
X ∈ Rn×p. Statistical inference using this linear model
requires understanding conditions under which the in-
ference problem is well posed. For instance, inferring
anything about β will be a moot point if the nullspace
of X were to contain β. Thus, a large part of the lit-
erature on linear models is devoted to characterizing
conditions on X and β for reliable inference.

Traditionally, inference using linear models proceeds
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under the assumption that the number of observa-
tions n equals or exceeds the number of parameters
p. In this setting, explicitly verifiable conditions such
as X being full column rank or XXT being well con-
ditioned are common in the literature [1–3]. In con-
trast, there has recently been a growing interest to
study high-dimensional inference under linear mod-
els, corresponding to n being much smaller than p.
This setting is the hallmark of high-dimensional statis-
tics [4], arises frequently in many application areas [5],
and forms the cornerstone of the philosophy behind
compressed sensing [6, 7]. It of course follows from
simple linear algebra that inferring about every pos-
sible β from y = Xβ is impossible in this setting; in-
stead, the high-dimensional inference literature com-
monly operates under the assumption that β has only
a few nonzero parameters—typically on the order of
n—and characterizes corresponding conditions on X
for reliable inference. Some notable conditions in this
regard include the spark [8], the restricted isometry
property [9], the irrepresentable condition [10], the in-
coherence condition [11], the restricted eigenvalue as-
sumption [12], and the nullspace property [13].

While these and other conditions in the literature dif-
fer from each other in one way or the other, they all
share one simple fact: requiring that X satisfies one
of these conditions implies that one or more column
submatrices (subdictionaries) of X must be full column
rank and/or well conditioned. Explicitly verifying that
X satisfies one of these properties is computationally
daunting (NP-hard in some cases [14]), while indirect
means of verifying these conditions provide rather pes-
simistic bounds on the dimensions of subdictionaries
of X that are well conditioned [15]. In a recent se-
ries of seminal works, these pessimistic bounds asso-
ciated with verifiable conditions on X have been cir-
cumvented through an average-case analysis [16–21].

Our Contributions: Our focus in here is on high-
dimensional inference for the case when β not only
has a few nonzero parameters, but also its nonzero
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parameters exhibit a certain block (or group) struc-
ture. Specifically, we have β = [βT1 βT2 . . . βTr ]T with
βi ∈ Rm for m, r ∈ Z+, p = rm, and only k � r of
the βi’s are nonzero (sub)vectors. Such setups are re-
ferred to as block sparse (or group sparse) and arise in
various contexts in a number of applications [22–26].
The challenge for inference in this block-sparse setting
then becomes specifying conditions under which one or
more block subdictionaries of X are full column rank
and/or well conditioned. A number of researchers have
made progress in this regard recently, reporting con-
ditions on X in the block setting that mirror many of
the ones reported in [8–13] for the classical setup; see,
e.g., [22, 23, 27–52]. However, just like in the classical
setup, verifying that X satisfies one of these properties
in the block setting ends up being either computation-
ally intractable or results in rather pessimistic bounds
on the dimensions of block subdictionaries of X that
are well conditioned. In contrast to these works, and
in much the same way [16–21] reasoned in the classical
case, we are interested in overcoming the pessimistic
bounds associated with verifiable conditions on X for
high-dimensional inference in the block-sparse setting
by resorting to an average-case analysis.

Our first contribution in this regard is a generaliza-
tion of [18, 19] that establishes that most block subdic-
tionaries of X having unit `2-norm columns are guar-
anteed to be well conditioned with the number of blocks
in the subdictionary proportional to r/(‖X‖22 log p)
provided X satisfies a polynomial-time verifiable con-
dition, termed the block incoherence condition (BIC).
This result also implies that if X is a unit norm tight
frame [15], corresponding to ‖X‖22 = p/n, then it can
be explicitly verified that most block subdictionaries of
X of dimension n×O(n/ log p) are well conditioned.

While our ability to guarantee that most block sub-
dictionaries of a dictionary that satisfies the BIC
are well conditioned makes us optimistic about the
use of such designs in inference problems, there re-
mains an analytical gap in going from conditioning
of block subdictionaries to performance of inference
tasks. Our second contribution in this regard is the
application of the result concerning the conditioning
of block subdictionaries to provide tighter verifiable
conditions for average-case guarantees in block-sparse
recovery (i.e., obtaining block-sparse β from y = Xβ)
and block-sparse regression (i.e., estimating Xβ from
y = Xβ + noise with β being block sparse).

Finally, we present numerical experiments to highlight
an aspect of inference under the linear model that is
seldom discussed in the related literature: the spectral
norm of the dictionary ‖X‖2 influences the inference
performance much more than any of its other mea-
sures. Specifically, our numerical experiments show

that the performances of block-sparse recovery and re-
gression are inversely proportional to ‖X‖22 and are
for the most part independent of correlations between
the columns of X—an outcome that also hints at the
possible (orderwise) tightness of our results.

Notational Convention: We use uppercase and
lowercase Roman/Greek letters for matrices and vec-
tors/scalars, respectively. Given a matrix A, ‖A‖2 and
AT denote the spectral norm (σmax(A)) and the ad-
joint operator of A, respectively. Given a vector v,
we use ‖v‖q and vT to denote the usual `q norm and
transpose of v, respectively. Given a set S, we use AS
(resp. vS) to denote the submatrix (resp. subvector)
obtained by retaining the columns of A (resp. entries
of v) corresponding to the indices in S. Given a ran-

dom variable R, we use Eq[R] to denote
(
E[Rq]

)1/q
.

Finally, Id, ⊗, and 〈·, ·〉 denote the identity operator,
Kronecker product and inner product, respectively.

2 Conditioning of Random Block
Subdictionaries

In this section, we state and discuss the main result of
this paper concerning the conditioning of block sub-
dictionaries of the n × p dictionary X. Here, and
in the following, we assume X has a block structure
that comprises r = p/m blocks of dimensions n × m
each; in particular, we can write without loss of gen-
erality that X = [X1 X2 . . . Xr], where each block
Xi = [Xi,1 . . . Xi,m] is an n × m matrix. We also
assume throughout this paper that the columns of X
are normalized: ‖Xi,j‖2 = 1 for all i = 1, . . . , r, j =
1, . . . ,m. The problem we are interested in address-
ing in this section is the following. Let S ⊂ {1, . . . , r}
with |S| = k and define an n×km block subdictionary
XS = [Xi : i ∈ S]. Then what are the conditions
on X that will guarantee that the singular values of
XS concentrate around unity? Since addressing this
question for an arbitrary subset S is known to lead to
either nonverifiable conditions or pessimistic bounds
on k, our focus here is on a subset S that is drawn
uniformly at random from all

(
r
k

)
possible k-subsets of

{1, . . . , r}. In words, such a model for S in the context
of high-dimensional inference asserts that no one block
in β = [βT1 βT2 . . . βTr ]T is more likely to be nonzero
than the others. Our main result for the conditioning
of random block subdictionaries relies on a condition
that we term the block incoherence condition (BIC).

Definition 1. Define the intra-block coherence of the
dictionary X as µI := max1≤i≤r ‖XT

i Xi − Idm‖2, and
define the inter-block coherence1 of the dictionaryX as
µB := max1≤i 6=j≤r ‖XT

i Xj‖2. We say that X satisfies
the block incoherence condition (BIC) with parameters
(c1, c2) if µI ≤ c1 and µB ≤ c2/ log p for some positive
numerical constants c1, c2.

1See [38] for a related measure that is given by µB/m.
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Note that µI measures the deviation of individual
blocks {Xi} from being orthonormal and is identically
equal to zero for the case of orthonormal blocks. In
contrast, µB measures the similarity between differ-
ent blocks and cannot be zero in the n smaller than p
setting. Informally, the BIC dictates that individual
blocks of X do not diverge from being orthonormal in
an unbounded fashion and the dissimilarity between
different blocks scales as O(1/ log p). Note also that
the BIC can be verified in polynomial time. We are
now ready to state our first result, proven in [53].

Theorem 1. Suppose that the n × p dictionary X =
[X1 X2 . . . Xr] satisfies the BIC with parameters
(c1, c2). Let S be a k-subset drawn uniformly at
random from all

(
r
k

)
possible k-subsets of {1, . . . , r}.

Then, as long as k ≤ c0r/(‖X‖22 log p) for some
positive numerical constant c0 that depends only on
(c1, c2), the singular values of the block subdictionary
XS = [Xi : i ∈ S] satisfy σi(XS) ∈ [

√
1/2,

√
3/2 ],

i = 1, . . . , km, with probability (with respect to the ran-
dom choice of the subset S) of at least 1− 2p−4 log 2.

Note that Theorem 1 does require (c1, c2) to be suf-
ficiently small, with c0 decreasing as c1 and c2 in-
crease. In words, Theorem 1 states that if X sat-
isfies the BIC then most of its block subdictionar-
ies of dimensions n × km act as isometries on Rkm
for k = O(r/(‖X‖22 log p)). To better understand the
bound k = O(r/(‖X‖22 log p)), notice that ‖X‖22 ≥ p/n
for the case of a normalized dictionary [18], imply-
ing r/(‖X‖22 log p) = O(n/(m log p)). The equality
‖X‖22 = p/n is achievable by an X with orthogonal
rows, implying Theorem 1 allows optimal scaling of
the dimensions of well-conditioned block subdictionar-
ies. Perhaps the most surprising aspect of this theo-
rem, which sets it apart from other works in block
settings [28–30, 34, 38, 48, 50], is the assertion it makes
about the effects of different measures of X on the con-
ditioning of random block subdictionaries. Roughly,
Theorem 1 suggests that as soon as the BIC is satis-
fied for sufficiently small (c1, c2), both µI and µB stop
playing a role in determining the dimensions of well-
conditioned subdictionaries; rather, it is the spectral
norm ‖X‖2 that plays a primary role in this regard.
Such an assertion of course needs to be carefully ex-
amined, given that Theorem 1 is only concerned with
sufficient conditions. Nevertheless, numerical experi-
ments carried out in the context of block-sparse recov-
ery (cf. Section 3) and block-sparse regression (cf. Sec-
tion 4) lend credence to this assertion.
Discussion: Among existing works focusing on the
conditioning of random (non-block) subdictionaries
[16–21], [19] and [20] are the ones with the strongest
results. Specifically, [16, 17] deal with the case of X
being a concatenation of two orthonormal bases, while
[21] studies the case of X being a disjoint union of

orthonormal bases. The results in [19] and [20] are re-
lated to each other in the sense that [20] extends [19]
to the case when the subdictionaries of X are not nec-
essarily selected uniformly at random. Theorem 1 is
inspired by [19] and is rather tight in the sense that it
reduces to the result of [19] for m = 1.

3 Average-Case Analysis of
Block-Sparse Recovery

We now shift our focus to the applicability of Theo-
rem 1 in the context of inference problems. In this sec-
tion, we begin with the problem of recovery of block-
sparse β from y = Xβ. Because of the relevance
of block sparsity in many applications, significant ef-
forts have been made toward development of block-
sparse recovery methods and matching guarantees on
the number of observations required for successful re-
covery [27–30, 34–44, 49–51, 54]. However, the results
reported in some of these works are only applicable in
the case of random designs [35–37, 44, 51], while those
reported in other works rely on conditions that either
cannot be explicitly verified in polynomial time [27–
29, 36, 41–44, 49, 50, 54] or result in a suboptimal scal-
ing of the number of observations due to their focus
on the worst-case performance [28–30, 38–41, 50].

To the best of our knowledge, the only work that does
not have the aforementioned limitations is [34]. How-
ever, the focus in [34] is only on the restrictive multiple
measurement vector (MMV) problem, rather than the
general block-sparse recovery problem. In addition,
the guarantees provided in [34] rely on the nonzero
entries of β following either Gaussian or spherical dis-
tributions. In contrast, we make use of Theorem 1 in
the following to state a result for average-case block-
sparse recovery that suffers from none of these and ear-
lier limitations. Our result depends primarily on the
spectral norm of X, while it has a mild dependence on
the intra- and inter-block coherence through the BIC;
all three of these quantities can be explicitly computed
in polynomial time. It further requires only weak as-
sumptions on the distribution of the nonzero entries of
β. Equally important, the forthcoming result does not
suffer from the so-called “square-root bottleneck” [20];
specifically, it allows near-optimal scaling of the spar-
sity level km as a function of n for dictionaries X with
small spectral norms (e.g., tight frames).

Problem Formulation: Our exposition throughout
this section will be based upon the following formu-
lation. We are interested in recovering a block-sparse
β ∈ Rp from observations y = Xβ, where X is an n×p
observation matrix with n � p and y ∈ Rn denotes
the observations. We assume β comprises a total of r
blocks, each of size m (yielding p = rm), and represent
it without loss of generality as β = [βT1 βT2 . . . βTr ]T

with each block βi ∈ Rm. In order to make this prob-
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lem well posed, we require that β is k-block sparse
with #{i : βi 6= 0} = k � r. Finally, we impose a
mild statistical prior on β, as described below.

M1) The block support of β, S = {i : βi 6= 0}, has a
uniform distribution over all k-subsets of {1, . . . , r},

M2) Entries in β have zero median (i.e., its nonzero
entries are equally likely to be positive and negative):
E(sign(β)) = 0, where sign(·) denotes the entry-wise
sign operator, and

M3) Nonzero blocks of β have statistically indepen-
dent “directions.” Specifically, defining the block-wise
sign operator sign(βi) = βi/‖βi‖2 to be the unit-norm
vector pointing in the direction of βi in Rm, we require
P
(⋂

i∈S
(
sign(βi) ∈ Ai

))
=

∏
i∈S P

(
sign(βi) ∈ Ai

)
,

where Ai ⊂ Sm−1 and Sm−1 is the unit sphere in Rm.

Note that M2 and M3 are trivially satisfied in the
case of the nonzero blocks of β drawn independently
from either Gaussian or spherical distributions. How-
ever, it is easy to convince oneself that many other
distributions—including those that are not absolutely
continuous—will satisfy these two conditions.

Main Result and Discussion: We are interested
in understanding the average-case performance of the
following mixed-norm convex optimization program
for recovery of block-sparse β satisfying M1–M3:

β̂ = arg min
β̄∈Rp

‖β̄‖2,1 such that y = Xβ̄, (1)

where the `2,1 norm of a vector β ∈ Rp containing
r blocks of m entries each is defined as ‖β‖2,1 :=∑r
i=1 ‖βi‖2. While (1) has been utilized in the past

for block-sparse recovery (see, e.g., [34, 35, 44]), an
average-case analysis result along the following lines
is novel. The following theorem is proven in [53].

Theorem 2. Suppose that β ∈ Rp is k-block sparse
and it is drawn according to the statistical model M1,
M2, and M3. Further, assume that β is observed
according to the linear model y = Xβ, where the
n × p matrix X satisfies the BIC with some param-
eters (c1, c2). Then, as long as k ≤ c0r/‖X‖22 log p for
some positive numerical constant c0 := c0(c1, c2), the

minimization (1) results in β̂ = β with probability at
least 1− 4p−4 log 2.

Interestingly, Theorem 2 specialized to the non-block
sparse case (by setting m = 1 and r = p) gives us an
average-case analysis result for sparse recovery that
has never been explicitly stated in prior works. In
the interest of space, we forgo a formal statement of
that corollary of Theorem 2 (see [53] for details), but
we do elaborate on the similarities and differences be-
tween the two results. In terms of similarities, the
results for both non-block sparse and block-sparse set-
tings allow for the same scaling of the total number of

nonzero entries in β. However, while the guarantee
for non-block sparsity requires that the inner product
of any two columns in X be O(1/ log p), Theorem 2
allows for less restrictive inner products of columns
within blocks as long as µI = O(1). Similarly, while in
non-block sparsity it is required that the signs of the
nonzero entries in β be independent, Theorem 2 al-
lows for correlations among the signs of entries within
nonzero blocks. With the caveat that in both cases
the guarantees only specify sufficient conditions, this
seems to suggest that explicitly accounting for block
structures allows one to expand the classes of sparse
β and dictionaries X under which successful (average-
case) recovery can be guaranteed.

Next, we comment on the tightness of the scaling
on the number of nonzero entries in both non-block
sparse and block-sparse settings. Assuming appropri-
ate conditions on β and (intra-/inter-block) coherence
of X are satisfied, both results allow for the number
of nonzero entries to scale like O(n/ log p) for dictio-
naries X that are “approximately” tight frames [15]:
‖X‖22 ≈ p/n. This suggests a near-optimal nature of
both results (modulo perhaps log factors) as one can-
not expect better than linear scaling of the number of
nonzero entries as a function of the number of obser-
vations. In particular, literature on frame theory [55]
can be leveraged to specialize these results for oft-used
designs (e.g., Gaussian, random partial Fourier) and to
establish that in such cases the scaling of our guarantee
matches that obtained using nonverifiable conditions
such as the restricted isometry property [9, 56].

We conclude by noting that the main difference be-
tween our non-block sparse average-case result (Theo-
rem 2 using m = 1) and existing literature (e.g., [18,
Theorem 14]) is the role that the coherence µ(X) plays
in the guarantees. In [18, Theorem 14], the maxi-
mum allowable sparsity k is inversely proportional to
µ2(X). In contrast, we assert that the maximum al-
lowable sparsity is not fundamentally determined by
the coherence. Numerical experiments reported in the
following verify that this is indeed the case.

Numerical Experiments: One of the fundamental
takeaways of this section is that the spectral norm of
X, rather than its (intra-/inter-block) coherence, de-
termines the maximum allowable sparsity in (block)-
sparse recovery problems. In order to experimentally
verify this insight, we performed a set of block-sparse
recovery experiments with custom-designed dictionar-
ies having varying spectral norms and coherence val-
ues. Throughout our experiments, we set p = 5000,
the block size and the number of blocks to m = 10
and r = 500, respectively, and the number of observa-
tions to n = 858 (computed from the bound in [57] for
k = 20 nonzero blocks). In order to design our dictio-
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Figure 1: Performances of dictionaries X with vary-
ing spectral norms and roughly equal coherences (cf.
Table 1) in block-sparse recovery as a function of the
number of nonzero blocks k; τ ∈ T denotes the spec-
tral norm multiplier used to generate the dictionary.

τ 1 2 3 4
‖Xτ‖2 3.3963 6.7503 10.0547 13.2034
µ(Xτ ) 0.1992 0.2026 0.2000 0.2207
µB(Xτ ) 0.2973 0.3431 0.5573 0.8490
µI(Xτ ) 0.1992 0.2026 0.2177 0.3787

Table 1: Spectral norms and coherences for the dictio-
naries used in the experiments of Figure 1.

naries, we first used Matlab’s random number genera-
tor to obtain 2000 standard normal matrices, followed
by normalization of the columns. Next, we manipu-
lated the singular values of each of these matrices to
increase their spectral norms by a set of integer mul-
tipliers T . Finally, for each of the 2000 · |T | resulting
matrices, we normalized their columns to obtain our
dictionaries and recorded their spectral norms ‖X‖2,
coherences µ(X), inter-block coherences µB(X), and
intra-block coherences µI(X).

We evaluate the block-sparse recovery performance of
each resulting X using Monte Carlo trials, correspond-
ing to the generation of 1000 block-sparse β’s with k
nonzero blocks. Each β has block support selected uni-
formly at random according to M1 and nonzero entries
drawn independently from the standard Gaussian dis-
tribution N (0, Id). We then obtain the observations
y = Xβ using the dictionary X under study for each
one of these β and perform recovery using the mini-
mization (1).2 We define successful recovery to be the

case when the block support of β̂ matches the block
support of β and the submatrix of X with columns
corresponding to the block support of β has full rank.

2We used the SPGL1 package [58] for these simulations.
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Figure 2: Performances of dictionaries X with varying
spectral norms and extremal coherences (cf. Table 2)
in block-sparse recovery as a function of the number
of nonzero blocks k; τ ∈ T denotes the value of the
spectral norm multiplier used. Solid lines correspond
to X’s with minimum coherence, while dashed lines
correspond to X’s with maximum coherence.

Figure 1 shows the performances of dictionaries X of
increasing spectral norms (T = {1, 2, 3, 4}), where we
choose the dictionary (among the 2000 available op-
tions) whose coherence value is closest to 0.2. The
spectral norms, coherences, inter-block coherences,
and intra-block coherences for each one of these four
chosen (and fixed) dictionaries are collected in Table 1.
The performance is shown as a function of the number
of nonzero blocks k in β. The figure shows a consistent
improvement in the values of k for which successful re-
covery is achieved as the spectral norm of X decays,
even though µ(X) does not significantly change among
the dictionaries.

To further emphasize strong dependence of sparse re-
covery on spectral norm and weak dependence on
(intra-/inter-block) coherences, Figure 2 shows the
performance of dictionaries X with increasing spectral
norms (T = {1, . . . , 9}), where we choose dictionaries
with the largest and smallest coherence values for each
τ ∈ T (among the 2000 available options). The spec-
tral norms, coherences, inter-block coherences, and
intra-block coherences for these 18 chosen (and fixed)
dictionaries are collected in Table 2. The figure shows
not only the same consistent improvement as the spec-
tral norm of the dictionary decays, but also that signif-
icant changes in the values of the (intra-/inter-block)
coherences do not significantly affect the recovery per-
formance. This behavior agrees with our expectation
from Theorem 2 that the role of the intra-/inter-block
coherences in performance guarantees is limited to the
BIC and decoupled from the number of nonzero blocks
k (equivalently, number of nonzero entries km) in β.



Average Case Analysis of High-Dimensional Block-Sparse Recovery and Regression

τ 1 2 3 4 5 6 7 8 9
‖Xτ,min‖2 3.4064 6.7726 10.0536 13.2034 16.3421 19.2980 22.1413 24.6710 27.2951
‖Xτ,max‖2 3.3963 6.7503 10.0543 13.2250 16.2747 19.1506 21.9975 24.7026 27.3199
µ(Xτ,min) 0.1230 0.1198 0.1500 0.2207 0.2964 0.3760 0.4583 0.5337 0.6000
µ(Xτ,max) 0.1992 0.2026 0.2698 0.3816 0.4863 0.5778 0.6566 0.7225 0.7758
µB(Xτ,min) 0.2887 0.3177 0.5357 0.8490 1.2917 1.7372 2.2263 2.5989 3.1204
µB(Xτ,max) 0.2973 0.3431 0.6516 1.0287 1.4419 1.6616 2.0230 2.4479 2.8737
µI(Xτ,min) 0.1487 0.2002 0.3368 0.3787 0.3472 0.4385 0.5462 1.0551 1.3095
µI(Xτ,max) 0.1992 0.2026 0.2698 0.3816 0.4863 0.5778 0.8273 1.0415 1.2723

Table 2: Metrics for the dictionaries used in the experiments of Figure 2 and Figure 3.

4 Average-Case Analysis of
Block-Sparse Linear Regression

In this section, we leverage Theorem 1 to obtain
average-case results for block-sparse linear regression,
defined as estimating Xβ from y = Xβ + noise when
β has a block-sparse structure. In particular, we fo-
cus on two popular convex optimization-based meth-
ods, the lasso [59] and the group lasso [22], for charac-
terizing results for block-sparse regression. Empirical
evidence in the literature suggests that an appropri-
ately regularized group lasso can outperform the lasso
whenever there is a natural grouping of the regres-
sion variables in terms of their contributions to the
observations [22, 23]. We analytically characterize the
block-sparse regression performances of both the lasso
and the group lasso, which helps us highlight one of
the ways in which the group lasso might outperform
the lasso for regression problems.

Note that the analytical characterization of the
group lasso using `1/`2 regularization in the high-
dimensional (n � p) setting has received attention
recently in the literature [23, 31–33, 45–48, 52]. How-
ever, prior work on the performance of the group
lasso either studies an asymptotic regime [23, 31–33],
focuses on random designs [23, 32, 45, 46], and/or re-
lies on conditions that are either computationally pro-
hibitive to verify [31, 33, 47, 52] or that do not allow
for near-optimal scaling of the number of observations
with the number of active blocks of regression vari-
ables k [48]. In contrast, our forthcoming analysis
circumvents these shortcomings by adopting a prob-
abilistic model for the blocks of regression coefficients
in β. Our probabilistic model, described by the con-
ditions M1–M3 in Section 3, is motivated by that of
Candès and Plan [60] for non-block linear regression,
which helped them overcome somewhat similar analyt-
ical hurdles in relation to non-block regression perfor-
mance of the lasso. To the best of our knowledge, the
results stated in the sequel concerning the block-sparse
regression performances of the lasso and the group
lasso3 are the first ones that are non-asymptotic in na-

3We refer to the group lasso using `1/`2 regularization
as simply “group lasso” in the following for brevity.

ture and applicable to arbitrary designs through veri-
fiable conditions, while still allowing for near-optimal
scaling of the number of observations with the number
of nonzero blocks of β.

Problem Formulation: We are once again in the
high-dimensional (n � p) setting with y = Xβ + z,
where X is the design matrix containing one regres-
sion variable per column, β ∈ Rp = [βT1 βT2 . . . βTr ]T

is the k-block sparse vector of regression coefficients
corresponding to these variables (i.e., #{i : βi 6= 0} =
k � r), and z ∈ Rn is the modeling error. Here,
we assume without loss of generality that X has unit-
norm columns, while we assume the modeling error z
to be an independent and identically distributed (i.i.d.)
Gaussian vector with variance σ2. Finally, in keeping
with the earlier discussion, we impose a mild statistical
prior on β that is given by the conditions M1, M2, and
M3 in Section 3. The fundamental goal in here then is
to obtain an estimate β̂ from y such that Xβ̂ is as close
to Xβ as possible, where the closeness is measured in
terms of the `2 regression error, ‖Xβ −Xβ̂‖2.

Main Results and Discussion: In this section, we
are interested in understanding the average-case block-
sparse regression performance of two methods. The
first one of these methods is the lasso [59], which ig-
nores any grouping of the regression variables and es-
timates the vector of regression coefficients as

β̂ = arg min
β∈Rp

1

2
‖y −Xβ‖22 + 2λσ‖β‖1, (2)

where λ > 0 is a tuning parameter. In terms of a
baseline result for the lasso, we can extend the prob-
abilistic model of Candès and Plan [60] for non-block
linear regression to the block setting and state the fol-
lowing theorem that follows trivially from Theorem 1
in this paper and the proof of [60, Theorem 1.2].

Theorem 3 ([60, Theorem 1.2] and Theorem 1). Sup-
pose that the vector of regression coefficients β ∈ Rp is
k-block sparse and that the observation vector can be
modeled as y = Xβ+z with the modeling error z being
i.i.d. Gaussian with variance σ2. Further, assume that
β is drawn according to the statistical model M1 and
M2 with the signs of its nonzero entries being i.i.d.,
and the n×p matrix X satisfies (i) µ(X) = O(1/ log p)
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and (ii) the BIC with some parameters (c′1, c
′
2). Then,

as long as k ≤ c′0r/‖X‖22 log p for some positive nu-

merical constant c′0 := c′0(c′1, c
′
2), the lasso estimate β̂

in (2) computed with λ =
√

2 log p obeys

‖Xβ −Xβ̂‖22 ≤ C ′mkσ2 log p

with probability at least 1−O(p−1), where C ′ > 0 is a
constant independent of the problem parameters.

While this theorem suggests that the lasso solution in
the block setting enjoys many of the optimality proper-
ties of the lasso solution in the non-block setting (see,
e.g., the discussion in [60]), it fails to extend to the
case when the independence assumption on the signs
of the nonzero regression coefficients is replaced by the
less restrictive condition M3. In particular, one ex-
pects that allowing for arbitrary correlations within
the blocks of regression coefficients will limit the use-
fulness of the lasso for linear regression in the presence
of large blocks. While such an insight can be difficult
to confirm in the case of arbitrary design matrices and
average-case analysis, we provide an extension of The-
orem 3 in the following that highlights the challenges
for the lasso in the case of regression of block-sparse
vectors with arbitrarily correlated blocks. The follow-
ing theorem is proven in [53].

Theorem 4. Suppose that the vector of regression co-
efficients β ∈ Rp is k-block sparse and it is drawn ac-
cording to the statistical model M1, M2, and M3. Fur-
ther, assume that the observation vector can be mod-
eled as y = Xβ+ z, where the n×p matrix X satisfies
µI(X) ≤ c′′1 and µB(X) ≤ c′′2/(

√
m log p) for some

positive numerical constants c′′1 , c′′2 , and the modeling
error z is i.i.d. Gaussian with variance σ2. Then, as
long as k ≤ c′′0r/‖X‖22m log p for some positive numer-

ical constant c′′0 := c′′0(c′′1 , c
′′
2), the lasso estimate β̂ in

(2) computed with λ =
√

2 log p obeys

‖Xβ −Xβ̂‖22 ≤ C ′′mkσ2 log p

with probability at least 1 − p−1(2π log p)−1/2 −
8p−4 log 2, where C ′′ > 0 is a constant independent of
the problem parameters.

While both Theorems 3 and 4 guarantee same scaling
of the regression error, the scalings of the maximum
number of allowable nonzero blocks and the block co-
herence in Theorem 4 match the ones in Theorem 3
only for the case of m = O(1); otherwise, Theorem 4
with correlated blocks results in less-desirable scalings
of k and µB(X). The proof of Theorem 4 in [53] shows
that this dependence upon m—the size of the blocks—
is a direct consequence of allowing for arbitrary corre-
lations within blocks. A natural question to ask then
is whether it is possible to return to the scalings of

Theorem 3 without sacrificing intra-block correlations.
The answer to this is in the affirmative as long as one
explicitly accounts for the block structure of β.

Specifically, the group lasso explicitly accounts for the
grouping of the regression variables in its formulation
and estimates the vector of regression coefficients as

β̂ = arg min
β∈Rp

1

2
‖y −Xβ‖22 + 2λσ

√
m‖β‖2,1, (3)

where λ > 0 is once again a tuning parameter. The fol-
lowing theorem shows that the group lasso can achieve
the same scaling results as the lasso for block-sparse
vectors (cf. [60]), while allowing for arbitrary correla-
tions among the regression coefficients within blocks.
The following theorem is proven in [53].

Theorem 5. Suppose that the vector of regression co-
efficients β ∈ Rp is k-block sparse and it is drawn ac-
cording to the statistical model M1, M2, and M3. Fur-
ther, assume that the observation vector can be mod-
eled as y = Xβ+ z, where the n×p matrix X satisfies
the BIC with some parameters (c1, c2), and the model-
ing error z is i.i.d. Gaussian with variance σ2. Then,
as long as k ≤ c0r/‖X‖22 log p for some positive numer-
ical constant c0 := c0(c1, c2), the group lasso estimate

β̂ in (3) computed with λ =
√

2 log p obeys

‖Xβ −Xβ̂‖22 ≤ Cmkσ2 log p

with probability at least 1 − p−1(2π log p)−1/2 −
8p−4 log 2, where C > 0 is a constant independent of
the problem parameters.

We note in passing that when m = 1, block sparsity re-
duces to the canonical sparsity, block coherence µB(X)
reduces to the coherence µ(X), (3) reduces to (2), and
Theorem 5 essentially reduces to [60, Theorem 1.2].

With the caveat that both Theorems 4 and 5 are con-
cerned with sufficient conditions for average-case re-
gression, we now comment on the strengths and weak-
nesses of these two results. Assuming appropriate con-
ditions are satisfied, we have that both the lasso and
the group lasso result in the same scaling of the re-
gression error, ‖Xβ − Xβ̂‖22 = O(mkσ2 log p), in the
presence of intra-block correlations. This scaling of the
regression error is indeed the best that any method can
achieve, modulo the logarithmic factor, since we are as-
suming that the observations are described by a total
of mk regression variables. Unlike the lasso, however,
the group lasso also allows for a more favorable scaling
of the maximum number of regression variables con-
tributing to the observations, km = O(p/‖X‖22 log p),
even when arbitrary intra-block correlations are per-
mitted. In fact, similar to the discussion in Section 3,
it is easy to conclude that this scaling of the number of
nonzero regression coefficients is near-optimal since it
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leads to a linear relationship (modulo logarithmic fac-
tors) between the number of observations n and the
number of active regression variables km for the case
of design matrices that are approximately tight frames:
‖X‖22 ≈ p/n. The other main difference between The-
orems 4 and 5 is the role that the inter-block coherence
µB(X) plays in guarantees for the lasso and the group
lasso. Specifically, Theorem 4 requires the inter-block
coherence to be smaller, µB(X) = O(1/

√
m log p),

than Theorem 5 for the lasso to yield near-optimal
regression error in the case of intra-block correlations.
This discussion suggests that reliable linear regression
of block-sparse vectors can be carried out using the
group lasso for a larger class of regression vectors and
design matrices than the lasso. We plan to provide
a more rigorous mathematical understanding of these
and other subtle but important differences between the
lasso and the group lasso in future works.

Numerical Experiments: One of the most impor-
tant implications of this section is that, similar to the
case of block-sparse recovery, the number of maximum
allowable active regression variables in regression of
block-sparse vectors is fundamentally a function of the
spectral norm of X, provided its inter- and intra-block
coherences are not too large. However, such a claim
needs to be carefully investigated since our results are
only concerned with sufficient conditions. To this end,
we resort to numerical experiments that help us evalu-
ate the regression performance of the group lasso for a
range of design matrices with varying spectral norms,
coherences, inter-block coherences, and intra-block co-
herences. In order to generate these design matrices,
we reuse the experimental setup described in Section 3
(corresponding to n = 858, m = 10, and r = 500).

For the sake of brevity, we focus only on the perfor-
mance of the group lasso (3) for regression of block-
sparse vectors.4 This performance is evaluated for dif-
ferent design matrices using Monte Carlo trials, corre-
sponding to generation of 1000 block-sparse β with k
nonzero blocks. Each vector of regression coefficients
has block support selected uniformly at random ac-
cording to M1 in Section 3 and nonzero entries drawn
independently from the Gaussian distribution. We
then obtain the observations y = Xβ + z using X
under study for each one of the block-sparse β, where
the variance σ2 of the modeling error z is selected such
that ‖β‖22/nσ2 ≈ 0.84. Finally, we carry out linear re-
gression using the group lasso by setting λ ≈ 1.4592
and we then record the regression error ‖Xβ −Xβ̂‖22.

Figure 3 shows the regression performance of the
group lasso for designs with increasing spectral norms
(τ = {3, . . . , 7}), where we once again choose matri-

4We used the SpaRSA Matlab package [61] with debias
option turned on in all simulations in this section.
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Figure 3: Performances of the group lasso for designs
with varying spectral norms and extremal coherence
values (cf. Table 2) in regression of block-sparse vec-
tors as a function of the number of nonzero regression
blocks k; τ denotes the value of the spectral norm mul-
tiplier used. Solid lines correspond to X’s with mini-
mum coherence, while dashed lines correspond to X’s
with maximum coherence.

ces with the largest and smallest coherence values for
each τ (among the 2000 available options). The spec-
tral norms, coherences, inter-block coherences, and
intra-block coherences for these 10 chosen design ma-
trices are still given by Table 2 in Section 3. Similar
to the case of block-sparse recovery, we not only ob-
serve a consistent increase in the range of values of k
for which the regression error exhibits linearity as the
spectral norm of X decreases, but also see that sig-
nificant changes in the (intra-/inter-block) coherences
do not significantly affect the regression performance.
This is in agreement with our expectation from The-
orem 5 that the role of (intra-/inter-block) coherences
in regression is limited to the BIC and is decoupled
from the number of nonzero blocks k.

5 Conclusion

We have provided conditions under which most block
subdictionaries of a dictionary are well conditioned,
and utilized these conditions for average-case analysis
of block-sparse recovery and regression. Our results
are based on verifiable conditions, they lead to near-
optimal scaling of the number of observations with
the number of active blocks, and they suggest that
the spectral norm plays a far important role than the
(inter-/intra-block) coherences in statistical inference.
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