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1 Introduction

The use of sparsity as a prior for efficient signal acquisition and processing
has become prevalent in the last decade. In particular, compressed sensing
(CS) [3, 4] uses sparsity to reduce the number of samples/measurements needed
to acquire a signal. The performance of CS hinges on certain properties of the
measurement matrix that maps the input signal to the obtained measurements.
Early results in CS focused on deterministic conditions on the measurement
matrix for the case of arbitrary (deterministic) signals. However, the conditions
are either difficult to verify or provide highly pessimistic bounds on recovery
performance.

Recent results by Tropp [11] have focused on the performance of measure-
ment matrices for sparse signals under a probabilistic signal model where the
support is drawn at random from a uniform distribution over all sparse supports
of a given size. The result exploits the fact that the product of a matrix with a
sparse signal is essentially controlled by the subdictionary corresponding to the
signal support. In this case, recovery performance is tied to the coherence and
spectral norm of the matrix through the calculation of the expected spectral
norm of randomly selected subdictionaries of the matrix.
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0443. MFD was also supported by NSF Supplemental Funding DMS-0439872 to UCLA-IPAM,
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In this report, we adapt these results to applications where the signal exhibits
block (or group) sparsity, rather than simple sparsity. That is, the block-sparse
signal has support that is drawn uniformly at random from all block-sparse
supports containing a given number of blocks. In block sparsity, the nonzero
coefficients of the sparse signal are grouped together as intervals in the signal
coefficient vector. The block sparsity model is popular for multiband signals,
fusion frames, and signal ensemble applications [1, 2, 5, 6, 8]. Thus, our results
focus on random block subdictionaries, where the columns selected from the
measurement matrix are grouped together into intervals. The results in this
paper can also have implications on the performance of block-sparse signal re-
covery under the random block-sparse support model.

This report is organized as follows. Section 2 sets up notation and presents
our main theorem. Section 3 provides necessary lemmas, and Section 4 gives
the proof of our main theorem.

2 Notation and Main Result

The measurement matrix (or dictionary) is Φ = [Φ1 Φ2 . . . Φp], where each
block Φi = [φi,1 . . . φi,m] is an n×m matrix. The dictionary has coherence

µ := max
(i,j) 6=(k,l)

|〈φ(i,j), φ(k,l)〉|

and each of its columns φi,j has unit norm. We define random variables δ1, . . . , δp

that are independent and identically distributed (i.i.d.) Bernoulli with param-
eter δ := k/p, and form a block subdictionary X = [Φi : δi = 1]. The hollow
Gram matrix for X is A := XHX − I, where I denotes the identity matrix
of appropriate size. To calculate the spectral norm of A, we use a masking
matrix R = S ⊗ Im, where S = diag(δ1, . . . , δp) is a random matrix and ⊗
denotes the standard Kronecker product. We then have ‖A‖2 = ‖RGR‖2 with
G := ΦHΦ− I. We denote EqX := [E|X|q]1/q. We also define the block coher-
ence1

µB = max
1≤i,j≤p

‖ΦH
i Φj − 1{i=j}I‖2.

Finally, we denote T ⊆ {1, . . . , p} to be a subset of the block index set, with
TC := {1, . . . , p} \ T . Using this notation, the main result of this report can
be stated as follows.

Theorem 1. For q = 2 log(pm), we have the bound

Eq‖RGR‖2 ≤ 20µB log(pm) + 9
√

δ log(pm)(1 + (m− 1)µ)‖Φ‖2 + δ‖Φ‖2
2.

1We recently became aware of [5], which also introduces the term “block coherence” in the
context of recovery of block-sparse signals, defined as maxi6=j ‖ΦH

i Φj‖2.
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The proof of the theorem uses many lemmas and tools, following the ideas of
the proof in [11]. To begin, we denote the matrix G in block-diagonal fashion:

G = [G1 G2 . . . Gp] =


G1,1 G1,2 . . . G1,p

G2,1 G2,2 . . . G2,p

...
...

. . .
...

Gp,1 Gp,2 . . . Gp,p


where Gi,j = ΦH

i Φj − 1{i=j}I for 1 ≤ i, j ≤ p. We then split G = H +D, where
D contains the diagonal blocks Gi,i, and H contains only the non-diagonal
blocks. We also define the following “norms” for block matrices:

• when we group only the columns, we define ‖G‖B,1 := max1≤i≤p ‖Gi‖2;

• when we group both columns and rows, we define ‖G‖B,2 := max1≤i,j≤p ‖Gi,j‖2.

Finally, we will make use of the following standard inequalities:

• Cauchy-Schwarz Inequality: |E(XY )|2 ≤ E(X2)E(Y 2).

• Hölder’s Inequality: ‖fg‖1 ≤ ‖f‖p‖g‖q, 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1.

• Jensen’s Inequality for a convex function f : f(EX) ≤ Ef(X).

• Scalar Khintchine Inequality: Let {ai} be a finite sequence of complex
numbers and {εi} be a Rademacher (random ±1 binary) sequence. For
each q ≥ 0, we have

Eq

∣∣∣∣∣∑
i

εiai

∣∣∣∣∣ ≤ Cq

(∑
i

|ai|2
)1/2

,

where Cq ≤ 21/4
√

q/e.

• Noncommutative Khintchine Inequality [12]: Let {Xi} be a finite sequence
of matrices of the same size and {εi} be a Rademacher sequence. For each
q ≥ 2,

Eq

∥∥∥∥∥∥
∑

j

εjXj

∥∥∥∥∥∥
Sq

≤ Wq max


∥∥∥∥∥∥∥
∑

j

XjX
H
j

1/2
∥∥∥∥∥∥∥

Sq

,

∥∥∥∥∥∥∥
∑

j

XH
j Xj

1/2
∥∥∥∥∥∥∥

Sq

 ,

where ‖X‖Sq
= ‖σ(X)‖q denotes the Schatten q-norm for a matrix (equal

to the `q-norm of the vector containing its singular values) and Wq ≤
2−1/4

√
πq/e.
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3 Lemmata

We use the following lemmas in our proof of Theorem 1. The first two lemmas
are used to prove later ones.

Lemma 1. Let X = [X1 . . . Xp] be a block matrix and DX be its block di-
agonalization, i.e., a block-diagonal matrix DX = diag(Xi)

p
i=1 containing the

square matrices Xi in its diagonal, with all other elements being equal to zero.
Then, we have

‖DX‖2 ≤ ‖X‖B,1.

Proof. For a vector a of appropriate length, we evaluate the ratio ‖DXa‖2
2

‖a‖2
2

. We
partition a = [a1 a2 . . . ap] into pieces matching the number of columns of the
blocks Xi, 1 ≤ i ≤ p. Then, we will have

‖DXa‖2
2

‖a‖2
2

=
∑p

i=1 ‖Xiai‖2
2∑p

i=1 ‖ai‖2
2

≤
∑p

i=1 ‖Xi‖2
2‖ai‖2

2∑p
i=1 ‖ai‖2

2

≤
max1≤i≤p ‖Xi‖2

2

∑p
i=1 ‖ai‖2

2∑p
i=1 ‖ai‖2

2

≤ max
1≤i≤p

‖Xi‖2
2.

Thus, the spectral norm obeys

‖DX‖2 = max
a

‖DXa‖2

‖a‖2
≤ max

1≤i≤p
‖Xi‖2 = ‖X‖B,1.

The next lemma is adapted from [9].

Lemma 2. Let X = [X1 X2 . . . Xp] be a block matrix where each block Xi has
m columns. For any q ≥ 2 log(pm), we have

Eq

∥∥∥∥∥
p∑

i=1

εiXiX
H
i

∥∥∥∥∥
2

≤ 1.5
√

q‖X‖B,1‖X‖2,

where {εi} is a Rademacher sequence.

Proof. We start by bounding the spectral norm by the Schatten q-norm:

E := Eq

∥∥∥∥∥
p∑

i=1

εiXiX
H
i

∥∥∥∥∥
2

≤ Eq

∥∥∥∥∥
p∑

i=1

εiXiX
H
i

∥∥∥∥∥
Sq

.

Now use the noncommutative Khintchine inequality (noting that the two terms
in the inequality’s max are equal) to get

E ≤ Wq

∥∥∥∥∥∥
(

p∑
i=1

XiX
H
i XiX

H
i

)1/2
∥∥∥∥∥∥

Sq

.
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We can bound the Schatten q-norm by the spectral norm by paying a multi-
plicative penalty of (pm)1/q, where pm is the maximum rank of the matrix sum.
By the hypothesis, this penalty does not exceed

√
e.

E ≤ Wq

√
e

∥∥∥∥∥∥
(

p∑
i=1

XiX
H
i XiX

H
i

)1/2
∥∥∥∥∥∥

2

≤ Wq

√
e

∥∥∥∥∥
p∑

i=1

XiX
H
i XiX

H
i

∥∥∥∥∥
1/2

2

We note that the sum term is a quadratic form that can be expressed in terms
of X and its block diagonalization, as follows:

E ≤ Wq

√
e‖XDH

XDXXH‖1/2
2 ≤ Wq

√
e‖DXXH‖2

≤ Wq

√
e‖DX‖2‖X‖2

≤ Wq

√
e‖X‖B,1‖X‖2,

where the last step used Lemma 1. Now replace Wq ≤ 2−1/4
√

πq/e to complete
the proof.

The next lemma is adapted from [11].

Lemma 3. Let H be a a Hermitian matrix with zero block diagonal. Then
Eq‖RHR‖2 ≤ 2Eq‖RHR′‖2, where R′ = S′ ⊗ Im with S′ denoting an indepen-
dent realization of the random matrix S.

Proof. We establish the result for q = 1 for simplicity. Denote Hi,j = ΦH
i Φj −

1{i=j}I for 1 ≤ i, j ≤ p. Further, denote H̃i,j as the masking of the matrix H
that preserves only the subblock Hi,j .

E‖RHR‖2 = E

∥∥∥∥∥∥
∑

1≤i<j≤p

δiδj(H̃i,j + H̃j,i)

∥∥∥∥∥∥
2

.

Let ηi be i.i.d. Bernoulli random variables with parameter 1/2. Here, we use
Jensen’s inequality on the new random variable η = {ηi}1≤i≤p: we define
Mi,j(η) = ηi(1− ηj)+ ηj(1− ηi), and note that EηMi,j(η) = 1/2 for all i, j. We
also define the function

f(Mi,j(η)) = Eδ

∥∥∥∥∥∥
∑

1≤i<j≤p

2δiδjMi,j(η)(H̃i,j + H̃j,i)

∥∥∥∥∥∥
2

.

Thus, by applying Jensen’s inequality to f(·), we obtain

E‖RHR‖2 ≤ 2EηEδ

∥∥∥∥∥∥
∑

1≤i<j≤p

[ηi(1− ηj) + ηj(1− ηi)]δiδj(H̃i,j + H̃j,i)

∥∥∥∥∥∥
2

.
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There is a 0-1 vector η∗ for which the expression exceeds its expectation over η.
Let T = {i : η∗i = 1}.

E‖RHR‖2 ≤ 2Eδ

∥∥∥∥∥∥
∑

i∈T,j∈T C

δiδj(H̃i,j + H̃j,i)

∥∥∥∥∥∥
2

= 2Eδ

∥∥∥∥∥∥
∑

i∈T,j∈T C

δiδjH̃i,j

∥∥∥∥∥∥
2

≤ 2Eδ

∥∥∥∥∥∥
∑

i∈T,j∈T C

δiδ
′
jH̃i,j

∥∥∥∥∥∥
2

,

where {δ′j} is an independent realization of the sequence {δi}. The first equality
follows from a standard identity for block counter-diagonal Hermitian matrices.
Now the norm of a submatrix does not exceed the norm of the matrix, so we
re-introduce the missing blocks to complete the argument:

E‖RHR‖2 ≤ 2Eδ

∥∥∥∥∥∥
∑

1≤i,j≤p,i 6=j

δiδ
′
jH̃i,j

∥∥∥∥∥∥
2

= 2Eδ‖RHR′‖2.

The next lemma is adapted from [10, 12].

Lemma 4. Let B = [B1 . . . Bp] be a matrix with p column blocks, and suppose
q ≥ 2 log(pm) ≥ 2. Then

Eq‖BR‖2 ≤ 3
√

qEq‖BR‖B,1 +
√

δ‖B‖2.

Proof. We denote E := Eq‖BR‖2, and have

E2 = Eq/2‖BRBH‖2 = Eq/2

∥∥∥∥∥∥
∑

1≤i≤p

δiBiB
H
i

∥∥∥∥∥∥
2

≤ Eq/2

∥∥∥∥∥∥
∑

1≤i≤p

(δi − δ)BiB
H
i

∥∥∥∥∥∥
2

+ δ

∥∥∥∥∥∥
∑

1≤i≤p

BiB
H
i

∥∥∥∥∥∥
2

Here we replace δ = Eδ′i, with {δ′i} denoting an independent copy of the sequence
{δi}. We then take the expectation out of the norm with Jensen’s inequality to
get

E2 ≤ Eq/2

∥∥∥∥∥∥
∑

1≤i≤p

(δi − δ′i)BiB
H
i

∥∥∥∥∥∥
2

+ δ‖BBH‖2.
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We symmetrize the distribution by introducing a Rademacher sequence {εi},
noticing that the expectation does not change due to the symmetry of the ran-
dom variables δi − δ′i:

E2 ≤ Eq/2

∥∥∥∥∥∥
∑

1≤i≤p

εi(δi − δ′i)BiB
H
i

∥∥∥∥∥∥
2

+ δ‖B‖2
2.

We apply the triangle inequality to separate δi and δ′i, and by noticing that they
have the same distribution, we obtain

E2 ≤ 2Eq/2

∥∥∥∥∥∥
∑

1≤i≤p

εiδiBiB
H
i

∥∥∥∥∥∥
2

+ δ‖B‖2
2.

Writing Ω = {i : δi = 1}, we see that

E2 ≤ 2Eq/2,Ω

(
Eq/2,ε

∥∥∥∥∥∑
i∈Ω

εiBiB
H
i

∥∥∥∥∥
2

)
+ δ‖B‖2

2.

Here we have split the expectation on the random variables Ω and {εj}. Now
we use Lemma 2 on the term in parentheses to get

E2 ≤ 3
√

qEq/2(‖BR‖B,1‖BR‖2) + δ‖B‖2
2.

Using the Cauchy-Schwarz inequality, we get

E2 ≤ 3
√

qEq‖BR‖B,1Eq‖BR‖2 + δ‖B‖2
2.

This inequality takes the form E2 ≤ bE+c. We bound E by the largest solution
of this quadratic form:

E ≤ b +
√

b2 + 4c

2
≤ b +

√
c,

proving the lemma.

The last lemma is adapted from [12].

Lemma 5. Let

B = [B1 B2 . . . Bp] =


B1,1 B1,2 . . . B1.p

B2,1 B2,2 . . . B2.p

...
...

. . .
...

Bp,1 Bp,2 . . . Bp.p


be a block matrix, where each block Bi,j has size m×m. Assume q ≥ 2 log p.Then
we have

Eq‖RB‖B,1 ≤ 21.5√q‖B‖B,2 +
√

δ‖B‖B,1.

7



Proof. We begin by seeing that

E2 := (Eq‖RB‖B,1)2 = Eq

(
max

1≤j≤p
‖RBj‖2

2

)
= Eq/2

(
max

1≤j≤p

p∑
i=1

δi‖Bi,j‖2
2

)

In the sequel, we abbreviate t = q/2 and yi,j = ‖Bi,j‖2
2. We continue by using

the same technique as in the proof of Lemma 4: we split a term for the mean
value of the sequence {δi}, then replace the term by Eδ′i — an independent
copy of the sequence, then exploit symmetrization by introducing a Rademacher
sequence {εi}, and then finish by merging the two terms due to their identical
distributions:

E2 ≤ Et

(
max

1≤j≤p

p∑
i=1

(δi − δ)yi,j

)
+ δ max

1≤j≤p

p∑
i=1

‖Bi,j‖2
2

≤ Et

(
max

1≤j≤p

p∑
i=1

(δi − δ′i)yi,j

)
+ δ‖B‖2

B,1

= Et

(
max

1≤j≤p

p∑
i=1

εi(δi − δ′i)yi,j

)
+ δ‖B‖2

B,1

≤ 2Et

(
max

1≤j≤p

p∑
i=1

εiδiyi,j

)
+ δ‖B‖2

B,1.

Now we bound the maximum by the sum and separate the expectations on the
two sequences:

E2 ≤ 2Et,δ

 p∑
j=1

(
Et,ε

p∑
i=1

εiδiyi,j

)t
1/t

+ δ‖B‖2
B,1.

For the inner term, we can use the scalar Khintchine inequality to obtain

E2 ≤ 2CtEt,δ

 p∑
j=1

(
p∑

i=1

δiy
2
i,j

)t/2
1/t

+ δ‖B‖2
B,1.

We continue by bounding the outer sum by the maximum term:

E2 ≤ 2Ctp
1/tEt,δ

 max
1≤j≤p

(
p∑

i=1

δiy
2
i,j

)t/2
1/t

+ δ‖B‖2
B,1.

Since t ≥ log p, it holds that p1/t ≤ e, which implies that 2Ctp
1/t ≤ 4

√
t. We

now use Hölder’s inequality inside the sum term δiy
2
i,j = yi,j · δiyi,j with p = ∞,
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q = 1:

E2 ≤ 4
√

t

(
max

1≤i,j≤p
yi,j

)1/2

Et,δ

 max
1≤j≤p

(
p∑

i=1

δiyi,j

)t/2
1/t

+ δ‖B‖2
B,1

≤ 4
√

t

(
max

1≤i,j≤p
yi,j

)1/2

Et,δ

 max
1≤j≤p

(
p∑

i=1

δiyi,j

)t
1/2t

+ δ‖B‖2
B,1.

Now we recall that t = q/2 and yi,j = ‖Bi,j‖2
2, to get

E2 ≤ 21.5√q max
1≤i,j≤p

‖Bi,j‖2Eq/2

 max
1≤j≤p

(
p∑

i=1

δi‖Bi,j‖2
2

)q/2
1/q

+ δ‖B‖2
B,1

≤ 21.5√q max
1≤i,j≤p

‖Bi,j‖2Eq/2

(
max

1≤j≤p

p∑
i=1

δi‖Bi,j‖2
2

)1/2

+ δ‖B‖2
B,1

≤ 21.5√q‖Bi,j‖B,2Eq max
1≤j≤p

‖RBj‖2 + δ‖B‖2
B,1

≤ 21.5√q‖Bi,j‖B,2Eq‖RB‖B,1 + δ‖B‖2
B,1

and notice that E has appeared on the right hand side. By following the same
argument that ends the proof of Lemma 4, we comlpete the proof.

4 Proof of Theorem 1

We can now prove the main theorem. Split G into its diagonal blocks D (con-
taining XH

i Xi − I, 1 ≤ i ≤ p) and off-diagonal blocks H (containing XH
i Xj ,

1 ≤ i 6= j ≤ p) and apply Lemma 3:

Eq‖RGR‖2 ≤ 2Eq‖RHR′‖2 + Eq‖RDR‖2.

To estimate the first term, we apply Lemma 4 twice: once for R, and once for
R′:

Eq‖RHR′‖2 ≤ 3
√

qEq‖RHR′‖B,1 +
√

δEq‖R′H‖2

≤ 3
√

qEq‖RHR′‖B,1 + 3
√

δqEq‖HR′‖B,1 + δ‖H‖2.

By applying Lemma 5 on the first term, we obtain

Eq‖RHR′‖2 ≤3
√

q
[
21.5√qEq‖HR′‖B,2 +

√
δEq‖HR′‖B,1

]
+ 3
√

δqEq‖HR′‖B,1

+δ‖H‖2.

Since R and R′ have the same distribution, we can collect terms to get

Eq‖RHR‖2 ≤ 9qEq‖HR‖B,2 + 6
√

δqEq‖HR‖B,1 + δ‖H‖2 + Eq‖RDR‖2.
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To bound ‖HR‖B,1, we denote Φ{i}C = [ΦH
1 . . . ΦH

i−1 ΦH
i+1 . . . ΦH

p ]H ; we then
have

‖HR‖B,1 ≤ ‖H‖B,1 = max
1≤i≤p

‖ΦH
i Φ{i}C‖2 ≤ max

1≤i≤p
‖ΦH

i Φ‖2 ≤ max
1≤i≤p

‖Φi‖2‖Φ‖2.

Using the Geršgorin circle theorem [7], we can show that for each 1 ≤ i ≤ p
‖Φi‖2 ≤

√
1 + (m− 1)µ, so that ‖HR‖B,1 ≤

√
1 + (m− 1)µ‖Φ‖2. Now we use

the facts ‖HR‖B,2 ≤ µB , ‖H‖2 ≤ ‖G‖2 + ‖D‖2 = ‖Φ‖2
2 + ‖D‖2 and

Eq‖RDR‖2 ≤ ‖D‖2 = max
1≤i≤p

‖ΦH
i Φi − I‖2 ≤ µB

(from Lemma 1) to prove the theorem:

Eq‖RGR‖2 ≤ 9qµB + 6
√

δq(1 + (m− 1)µ)‖Φ‖2 + δ(‖Φ‖2
2 + µB) + µB

≤ 20µB log(pm) + 9
√

δ log(pm)(1 + (m− 1)µ)‖Φ‖2 + δ‖Φ‖2
2.
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