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Abstract—The problem of model selection arises in a number model-selection question is equally—if not more—important
of contexts, such as compressed sensing, subset selection in lineahan the estimation question. In particular, the problem of
regression, estimation of structures in graphical models, and model selection (sometimes also knownvasiable selection

signal denoising. This paper generalizes the notion éhcoherence it it . indirectly i b
in the existing literature on model selection and introduces two or sparsity pattern recovejyarises indirectly in a number

fundamental measures of coherence—termed as the worst-eas Of contexts, such as subset selection in linear regresdibn [
coherence and the average coherence—among the columns of @stimation of structures in graphical models [2], and signa

design matrix. In particular, it utilizes these two measures of denoising [3]. In addition, solving the model-selectiontpem

coherence to provide an in-depth analysis of a simple one-step ; ; ;

thresholding (OST) algorithm for model selection. One of the key Solr‘netttl.'r.nes also enablt?[sdon(tehto SO'Y}? the esltlmatl(.)nl groblem.
insights offered by the ensuing analysis is that OST is feasible n this paPer’_ we study the pro _em blynomial-time

for model selection as long as the design matrix obeys an easilymodel selection in a compressed setting for the case when the

verifiable property. In addition, the paper also characterizes true model orderk is unknown Despite being well-motivated
the model-selection performance of OST in terms of the worst- by applications, this problem has received less attentan-c
case coherencey, and establishes that OST performs near- 5.a4 19 jts estimation counterpart in the compressed mgnsi

optimally in the low signal-to-noise ratio regime for N x C design . . . .
matrices with 1 ~ O(N~"/2). Finally, in contrast to some of the literature; the most notable exceptions here being [2]; [4]

existing literature on model selection, the analysis in the paper is [8]. In particular, the results reported in [2], [4] estatblithat
nonasymptotic in nature, it does not require knowledge of the true the lasso [9] asymptotically identifies the correct modedem
model order, it is applicable to generic (random or deterministic) certain conditions on the design matxand the sparse vector
de5|gn matrices, and it neither requires submatrices (_)f _the de_s,lgn «. Later, Wainwright in [5] strengthens the results of [2]] [4
matrix to have full rank, nor does it assume a statistical prior L . .
on the values of the nonzero entries of the data vector. and makes explicit the dep_endenC? of model selection using
the lasso on the smallest (in magnitude) nonzero entry.of

. INTRODUCTION However, apart from the fact that the results reported in [2]

[4], [5] are asymptotic in nature, the main limitation of gee

In information - processing problems _involving hlgh'works is that explicit verification of the conditions thhinheeds

dimensional data, the “curse of dimensionality” can often satisfy is computationally intractable fér> /N .
broken by exploiting the fact that real-world data tend v lin The most general (and nonasymptotic) results for model

low-dimensional manifolds. This phenomenon is exemplified : . . -
by the important special case in which a data veetar C° Selection using the lasso have been reported in [6]. Speltyfic

- L C . Candes and Plan establish in [6] that the lasso correctly
Zigi‘:g;”o‘!g %e;fﬁé;r{lxgﬁguérseft %:ggls q())bsirved identifies most models with probabilityl — O(C~') under
9 = 2T certain conditions on the smallest nonzero entry @rovided:
Here,® is an N x C (real- or complex-valued) matrix called

the measuremenor desian matrix while » € CN represents (i) the spectral norm (the largest singular value) and thestwo
S 9 X " < P catse coherence (the maximum absolute innerproduct between
noise in the measurement system. In this problem, the f

. ) e columns) of® are not too large, and (ii) the values of
that « is “k-sparse” allows one to operate in the so—calleﬁl1 ) g (i

scompressed” settingk < N < C. thereby enabling tasks e nonzero entries ofv are statistically independent (and
pr 9 L oy 9 statistically symmetric around zero). The main limitatioh
that might be deemed prohibitive otherwise.

) this work is that statistical independence among the nanzer
Fundamentally, given a measurement vecfor= da + 7

in th mor d setting. there are tw mplementar l()antries ofa can be difficult to ensure in many applications.
ethccl) P ifst.e ;se 9, i c et?? 0 co get enta y—. u‘:inally, as opposed to the approach taken in [2], [4]-[6],
nonetheless distinct—questions that one needs 10 answer-y e focus in [7], [8] is on model selection using a simple

[Estimation] Under what conditions can &-sparsex be  thresholding algorithm. In particular, it is shown in boffi[
reliably and efficiently reconstructed frorff? [8] that model selection using thresholding is asymptdica
[Model Selection]Under what conditions can the Iocation%ptimau in the low signal-to-noise ratis(R) regime. How-
of the nonzero entries of &-sparsex be reliably and ever, one of the main limitations of these works is that the
efficiently recovered frony? reported results are mainly asymptotic in nature and rely on
A number of researchers have successfully addressed Ka@ing some knowledge of the true model order. In addition,
estimation question over the past few years under the ratbricthe analysis carried out in [7] is for the specific case of an
compressed sensingn many application areas, however, théndependent and identically distributed (i.i.d.) Gaussiasign



matrix, while the analysis carried out in [8] is for the sgieci Algorithm 1 The One-Step Thresholding (OST) Algorithm

case ofo with i.i.d. Gaussian nonzero entries. for Model Selection .
Input: An N xC (real- or complex-valued) matrig, a vector

A. Our Contributions f € CV, and a thresholding paramet&r> 0.

We begin by assuming that the design matfixhas unit Output. Computey = &' f and return an estimate of the
¢5-norm columns and introducing two fundamental measurg¥delS = {i € {1,...,C} : |y;| > A}
of coherence among the columfig; € CV} of ®:

« Worst-Case Coherence i = max |(i,¢;)|, and
N RE]

the noise vecton to be distributed a€N(0, 02 1), although the
. Average Coherencev = -1 max| 3 (i, ;) results can be read.ily generalized for other noise disﬂipbs.
LG We also assume without loss of generality thahas unitl,-
In words, worst-case coherence is a similarity measure b#rm columns andj«||2 = 1, since any scaling of and «
tween the columns of a design matrix and average cohereé@ be accounted for in the scaling ®f In addition, we do
is a measure of the spread of the columns of a design matniat impose any prior distribution on the design matfixand
within the N-dimensional unit ball. Our main objective in thisthe nonzero entries af. Finally, we use the notatiosupp(c)
paper is to make use of these two measures of coherencdointhe set containing the locations of the nonzero entrfes o
order to analyze th@ne-step thresholdingOST) algorithm and assume, similar to the case of [6], [8], tkapp(«) is a
(see Algorithm 1) for model selection. Algorithmically,ish uniformly randomk-subset of{1,...,C}. In other words, we
makes our approach to model selection somewhat similarfteve a uniform prior on the modekpp(c).
the one studied by Fletcher, Rangan, and Goyal [7] and Reeées
and Gastpar [8]. Analytically, however, the results repdrin C i ) ;
this paper are more general in nature than the ones in [7], [8] It is often rgallzed in the literature that s.uccessfu.l model
in particular, the asymptotic results of [7], [8] for thresting ;electlon requires the columns of the design matrlx_ to be
can be obtained as a special case of Theorem 1 in Sectiorllfoherent see, e.g., [2], [4], [6]. Below, we mathematically
More specifically, Theorem 1 holds for any (random c)formahze this notion in terms of the coherence property.

deterministic) design matrix with sufficiently small vatief Definition 1 (The Coherence Propertyp matrix & is said to

the worst-case and average coherence, and the stated ressity the coherence property if the following conditionsdhol
in that case is completely nonasymptotic in nature. Equally 1

. . ) 12p
importantly, unlike the case of [7], [8], the threshold v&@ilm  (CP-1) 4 < ———, and (CP-2) v< —.
Theorem 1 is completely independent of the model okdend _ 10logC ‘/N -~
relies only on the knowledge gf,C, and SNR. In addition, Notice that.the. coher'ence'property can be easﬂy verified
Theorem 1 can also be combined with the necessary conditidhsPOlynomial time since it only requires checking that
for asymptotically consistent model selection reported7i |29 — I|lmax < (1010gC)~/* and [|(@7® — 1)1l <

[10] to conclude that model selection using the OST i?(c_l)N71/2||<I’_H‘D —_IHmax- o o
asymptotically optimal in the lovéNR regime for any design Before proceeding with describing the implications of the

The Coherence Property and Its Implications

matrix that has: ~ O(N~1/2) andv ~ O(N~1). coherence property, it is instructive to first define threedar
Finally, in order to compare the results obtained in thisgrapMental quantities as follows:

for model selection using the OST with the nonasymptotic L a2 Loz

results reported in [6, Theorem 1.3] for the lasso, Theorem 2min =, ML | |l SNRuin = E[[[4|2]/k’ MAR = 1/k

rederives Theorem 1 in terms of conditions on the model Ordﬁlrwords,amin is the magnitude of the smallest nonzero entry

k and the smallest nonzero entry @f In particular, it can be . . .

: oI «, SNRyi, IS the ratio of the energy in the smallest nonzero
easily concluded from Theorem 2 and [6, Theorem 1.3] th"é‘nt of a and the average noise ener er nonzero entry, and
the OST—despite being computationally primitive—performs ry 9 ayp Y.

. . MAR—Wwhich is termed as thminimum-to-average ratif/]—
as well as the lasso for model selection in the IenR 9 o]

regime provided the design matrix has~ O(N-1/2) and is the ratio of the energy in the smallest nonzero entryvof

. . . .and the average signal ener er nonzero entry. We are now
v ~ O(N~1). In addition, unlike the assumptions made in ge sig gy p 4

[6], the OST achieves this without requiring that maétx k feady to state the main result of this paper.
submatrices ofp be well-conditioned and the nonzero entrie§heorem 1. Suppose thatb obeys the coherence property

of « be statistically independent. and write its worst-case coherence as= ¢; N~/ for some
¢1 > 0 (which may depend oivgC) and 5 € (1, c0]. Next,

Il. MAIN RESULT choose the threshold = 4 max {1241/21ogC, /02 logC }.
A. Problem Setup Then the OST satisfidr(S # supp(a)) < 9C~! as long as

Before proceeding with presenting the main result of thi§e number of measurements
paper, we need to be precise about our problem formulation. { 64 2s B/2
To this end, we begin by reconsidering the measurement modal > max < 2klogC, klogC, (klog C) } .
f = ®a+n in the compressed setting & N < C) and take min MAR




Here, the quantity:, > 0 is defined as:; = (96 ¢;)?. OST recovers the support of with high probability provided

Remark1. The constants in the second and third terms if™® is large enough. Subsequently, we establish in Lemma 2

; S : and Lemma 3 the relationship between the StOC parameters
the max expression can be significantly reduced if one is

only interested in showing the model-selection consistesfc and the worst-case and average coherence. d1he proofs of

: . Theorem 1 and Theorem 2 then follow by judiciously com-
OST; that is,lim¢_,o Pr(S # supp(a)) = 0. One should be . - .

. - : : : bining the results of these three lemmas using the coherence
particularly vigilant of this fact while comparing thesesudts ropert
to the asymptotic ones reported in [7] for thresholding. property.

Note that there are two fundamental but complementaBefinition 2 ((k,¢,6)-StOC) Let T = (m1,...,m) be a
approaches that can be taken while analyzing an algoritnm f#iformly random (ordered):-subset of{1,...,C} and let
model selection, namely, theinimum measurement resource$l® = {1,...,C} — II. Then, givene,§ € [0,1), @ is said
statement of Theorem 1 helps us analyze the OST for mod@jowing inequalities

selection using the former approach and is best suited for S H

tOC-1 S dPy — 1 <
comparing our results with those in [5], [7], [10]. On the eth ( ) H( 1 HH )ZHOO < ellzll.
hand, Candls and Plan in [6] take the latter approach while (StOC-2) [ @1 Prz]| , < elzl2

analyzing the lasso for model selection and the followirsyte

) . . S hold f fi k with ilit ind —
is best suited for comparison purposes in this regard. old for everyfixed z € C* with probability exceeding — o

(with respect to the choice dfl).
Theorem 2. Suppose tha® obeys the coherence property an

choose the threshold = 4 max {12u+/21logC, /02 logC }.
Then, as long ag < N/(2log(C) and

q%emarkz. Note that the StOC derives its name from the fact
that if ® is an orthogonal matrix then it trivially satisfies the
StOC for everyk with e = § = 0.

Oémin>maX{8vU2 10gca96ﬁbv210gc} Lemma 1. Let II = supp(e) be a uniformly random

- N . k-subset of{1,...,C}. Further, suppose that the matrix
the OST satisfieBr(S # supp(a)) < 9. ® satisfies the(k, e, )-StOC and choose the threshold as
C. Discussion A =2 max {¢,2,/02logC }. Then, under the assumption that

The statements of Theorem 1 and Theorem 2 can be be&" > 2), the OST satisfies

put into perspective by considering specific examples abaes & (e -1
matrices. Because of space constraints, we only consider Pr (S #H) = 5+2< 27r10gC~C> '
here the case \_/vhem _is an (appropriately n(_)rmalize_d) i.i.d. Proof: We begin by defining”™ = [a, ... a,] and
Gaussian matrix. It is a WeII-knoyvn f_act in the IlteraturgNriting the vectory — ®H f asy — by + dHy. Now, let
that the worst—case_cohgrence (Dfm_ _thls case is roughly [I° = {1,...,C} — I1 and note that in order to establish that
=y Q.IOgC/N with high probgbnlty; see, €9, .[6]' In S = II we need to show thatyric|| oo < A andmin |y,,| > A.
addition, it can also be shown using the Bernstein inequalit _ _ _ i ’ _
that v < 12N~1/2TogC with high probability in this case. In this regard, first note thajti <I>Hn_|sac_omplex Gaussian
It therefore follows that a Gaussian design matrix obeys th@ndom vector whose entries are identically (although not
coherence property with high probability. mdependently) distributed a@N(O,a2). It thgrefore follows
Theorem 1 therefore implies that the OST identifies tHEOM the tail bound on the maximum ¢f arbitrary complex
correct model in this case with high probability as long>aussian random variables thigjo < 2/o*logC with
as N > max {5“12756’ %} In particular, this expression Probability exceeding —2 (v2rlogC - C) . Further, define
reduces taV > SkNl;ii for the case o6NR = 1/E[||n]j3] < 1. g = {1l <2 /52 1og C} ﬂ{(StOC-l) N (StoC-2)}}
On the other hand, we have from [7], [10] that no scheme

can asymptotically identify the correct model i 7 ‘lesigC_ and notice that, since the noise is independeritl pfve have

This proves the near-optimality of the OST for model Sele®r(G) > 1—5—2 (v2rlogC - C) . In addition, conditioned
tion in the low SNR regime for any design matrix that hason the eventj, we have
p~O(N—2)andv ~ O(N~'). Finally, note that we could

(a)
have made a similar conclusion by focusing on Theorem 2 lyelloe < (@M ®riz]loo + |70
and comparing the conditions in the IoswR regime in that (b) (c)
case with those in [6, Theorem 1.3]. < e +2y/0%logC < A (1)
[1l. PROOFS where (a) follows from the triangle inequality,(b) is a

The general roadmap for the proofs of Theorem 1 arffPnsequence of the conditioning ¢h and (c) follows from
Theorem 2 is as follows. Below, we first introduce the notiof'e fact that = 2 max {¢, 2,/0 logC }-
of (k,e,d)-statistical orthogonality conditior(StOC). Next, ~ Finally, in order to show thainin [yr,
we establish in Lemma 1 that ib satisfies the StOC thenr = (®1® — I)z and note that, conditioned on the event

> )\, we define




we have for anyi € {1,...,k} then, since(My, M,...,My_1) is a Doob’s martingale se-
- - quence, it can be easily verified thdt/, — M,_1| is upper-
| = |, ; 1> ag, | — -
Y.l = lem, +7i 4 pr | (—d)|a”'ﬁ| 17 lloe ”n||°°(e) bounded bysup, , [My(z) — My(y)] (see, e.g., [12]).
Cox—e—2\02logC > A (2)  Next inorder to upperbounsiip, , [M(z) — Mi(y)], we

where(d) follows from the conditioning o and the assump- first define d ; = E[@i"(p”»‘ﬂl;[*l’w_ - x’Ai'} B

tion thata,in > 2\, while (e) is a simple consequence of theE | (¢, ©n;)
choice ofA. This completes the proof of the lemma since we

T = y,Aw} and then notice that

have now shown thabr(S # II) < Pr (G¢). [ iMZ(x) _ Mz(y)’ < 2il|d | + 2illdes|. (7)
Having established Lemma 1, our next goal is to relate th - j;j‘rl’ iflde jzil‘ iflde
StOC parameters with the worst-case and average coherence. G J#
Lemma 2. Let IT = (my,...,7) be a uniformly random In addition, we have that for every> ¢+1, j # i, the random
(ordered) k-subset of{1,...,C}. Then, for any fixed € C*, Vvariable 7; has a uniform distribution 0Ve'{1 - C) =
€ >0, and k < min{e2v~2/4,C/2}, we have {mi sy, 2,7} when conditioned or{m; ", |, 7, " = x4},
(22 while 7; has a uniform distribution over{1,...,C} —
Pr ({® does not satisf{stOC-1)}) < 4k exp (— 5/;6 ) {m%, 1,y,i'} when conditioned of{n; ", 7, " =y,i'}.
Therefore, we have for every > ¢ + 1,5 # ¢ that
Proof: The proof of this lemma relies heavily on the so- 1 9
called method of bounded differenceMOBD) [11]. Specifi- |de ;| = W‘(cpi,,@y) {piry 0z)| < e Mk (8)
cally, note that/|(®PEd — = max 2i{Qn., On
y H( 1o — D2l iZi 2 % {pmis fmy) Similarly, it can be argued thaE]qH 2| de,j| < |2e41 |20
and definell™* = (my,...,m—1,T+1,...,7T). Then for a

fixed indexi, and conditioned on the evemtZ = {m =1}, wheni < ¢, ZJ:{;“ |25[de 51 < |Z"‘2“ wheni = £ +1,

we have the following equality from basic probability thgor 54 S i< i ]zj||de]| < (|ze| + IZZ+1\)2“ wheni > ¢+ 1.

Conse uéntl it can be easily verified that
Pr (| sz<(p7rm<pﬂj>| > E”Z 2 A ) = q Y. y
— .
i sup [My(x) — My(w)] < 20 (Jze] + |z | + JAL) . (@)
k zy C—k
Pe (|3 50w on)] > el ). @) Be
]2 We have now established thab/y, M, ..., M, 1) is a
Next, in order to apply the MOBD, we construct a Doob'@0unded- dllf;ferencle; mﬁmngale W'q'iMf o M, 1f| 3 fcé for o
martingale sequenc@\ly, M, ..., M;_,) as follows: t=1,. — 1. Further, it can also be verified from (9)

that Zf L2 < 36p2|z|2 since k < C/2. In addition,

since |[My| < VEv|z|, and k < €2v~2/4, we have from
Mo = [Zzﬂ $is Pr; ‘A”} and the Azuma inequality for bounded-difference martingale se
J;m guences [13] adapted to the complex-valued setup that
k
M = E[mea%ﬂ W;L@,Ay}, f=bon k=L@ P (\ D zi(eis o] > ellzll2 sz> <
i=1 j=1
J# J#i

2, -2

Ai/) < dexp(— e ). (10)

wheren; ", is the first/ coordinates of1~*. Here, note that

I |zj|!E[<soa,som>w

€llzl2

Pr| [My_1 — M,
r(‘ k—1 of > 576

i Combining all these facts together, we therefore finallyaobt
(a) ¢
S Z ovoo)| S VBVl 6)  Pr (H@%@n - D3l > elila)
i =
q#l
where(a) follows since, conditioned onl;/, 7; has a uniform < k Z Pr (’ sz ¢ ;)| > ellzl2| A ) r(Air)
distribution over{1,...,C} — {¢'}, while (b) mainly follows o=t #Z
from the definition of average coherence. Further, if we defin (4 €22
< dkexp <— a ) (11)
~ - 576

M[(I):E Z'<<)Oi/7<p‘n’j> W_i_ 77T_1::'I5A7?' (6)
{; ! e } where(c) follows from the union bound and the fact that the

JF#i m;'s are identically (although not independently) distriait




while (d) follows from (10) and the fact that; has a uniform Pr(S # supp(e)) < 9C~! as long asN > 2klogC,

distribution over{1,...,C}. B Qi > 4€, andag, > 84/0?logC. Further, note that
Lemma 3. Let IT = (m,...,m) be a uniformly random Oin > 81/0210gC = N > 64 klogC. and
(ordered) k-subset of{1,...,C}. Further, define the random SNRmin

subsetIl® = {1,...,C} — II. Then, for any fixedx € C*, ) 25 p/2

€ >0, andk < min{e?v=2/4,C/2}, we have Qumin > 4€ <= N > (MARleogC> :

. e2p? This completes the proof of the theorem [
- < — :
Pr({® does not satis§5tOC-2)}) < 4C exp < ) Proof of Theorem 2:The proof of this theorem follows

256
Proof Sketch: The proof of this lemma also relies Onanng similar lines as that of Theorem 1 and is therefore
' omitted here for the sake of brevity. ]

the MOBD and is very similar to that of Lemma 2. As such;
we only provide a sketch of the rroof here. To begin with, IV. CONCLUSION

we note thaf| @} ®pz|| = max
i€[C—K] |7 ) (OST) algorithm for model selection in terms of the worst-
[C — K] ={1,...,C — k} andr{ denotes the"" coordinate case and average coherence of the design matrix. In stark
of IT°. Then for a fixed index € [C — k], and conditioned on conrast to the existing work on model selection using thres
the eventA;, = {r7 = i'}, we have the following equality  o|ding, our analysis is completely nonasymptotic in nature
it does not require knowledge of the true model order, and
AZ-,> = it is applicable to arbitrary (random or deterministic) idgs
matrices. In particular, we have established in the papatr th
the OST can be used for model selection as long as the
Az) (12) design matrix obeys an easily verifiable property. Furtie,
have specified the dependence of the OST performance on
Next, as in the case of Lemma 2, we construct a Dookfge worst-case cohe_rence _Of the design maFrix and sho_vvn that
martingale sequencelo, M, ..., My) as follows: it pe_rforms_ near—o_ptlmally in the lovBNR regime _for deS|g|_’1
matrices withO (NN ~'/2) worst-case coherence. Finally, unlike
the assumptions made in [6], our analysis also does notrequi

sz<%¢,<pﬂj>‘, where In this paper, we have analyzed the one-step thresholding

k
Pr <| sz<507rfa<pﬂj>‘ > E||Z||2

Jj=1

Pr <| > zi(ir om,)| > €ll2lla

j=1

k
Mo = E{Z 2j{ @i, m;) Al} and that mostN x k submatrices of® be well-conditioned and the
J=1 nonzero entries of the data vector be statistically inddpah
k
M, = E{sz<gpi/7(pﬂj> 7714,«41*'}, (=1,...,k (13) REFERENCES
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